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Periodically driven Kondo impurity in nonequilibrium steady states
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We study the nonequilibrium dynamics of a periodically driven anisotropic Kondo impurity model. The
periodic time dependence is introduced for a local magnetic field which couples to the impurity spin and also for
an in-plane exchange interaction. We obtain the exact results on the time evolution for arbitrary periodic time
dependence at the special point in the parameter space known as the Toulouse limit. We first consider a specific
case where the local magnetic field is periodically switched on and off. When the driving period is much shorter
than the inverse of the Kondo temperature, an intriguing oscillating behavior (resonance phenomenon) emerges
in the time average of the impurity spin polarization with increasing the local magnetic field intensity. By taking
the high-frequency limit of the external driving, we elucidate that the system recovers the translational invariance
in time and can be described by a mixture of the zero-temperature and infinite-temperature properties. In certain
cases, the system is governed by either zero-temperature or infinite-temperature properties and, therefore, can be
properly described by the corresponding equilibrium state.
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I. INTRODUCTION

A single impurity in a fermionic or bosonic environment
has been investigated intensively over the past several decades
in solid-state physics, and many important concepts such as
Anderson’s orthogonality catastrophe, the Kondo effect, and
polarons have been introduced. As well as bulk solid-state
systems, ultracold atomic systems and nanostructured systems
such as quantum dots coupled to some leads have also provided
intriguing platforms to study the single-impurity problems
thanks to recent progress in experimental techniques. In
nanostructured systems, the Kondo effect has been observed
in transport properties [1–4]. More recently, polaronic systems
have been experimentally realized in ultracold atomic systems
for a strongly imbalanced mixture of two species of atoms
[5–9], and the realization of Kondo physics with ultracold
atomic gases has been proposed theoretically [10–12]. Because
ultracold atomic systems and nanostructured systems have
high controllability, more detailed studies of equilibrium
properties and also nonequilibrium properties of impurity
systems, which are difficult to study in bulk solid-state
systems, have been performed both experimentally [13–18]
and theoretically [19–35].

In particular, real-time dynamics of the standard impurity
models, such as the Anderson model and the Kondo model,
has been studied intensively in nonequilibrium conditions;
dynamics under periodic driving [23–33] as well as postquench
dynamics (i.e., dynamics after a sudden change of the system
parameters) [19–22] have been explored. These studies have
focused on nanostructured systems in which some leads and
quantum dots are coupled with each other and, therefore, have
concentrated on the transport quantities such as the current
between two leads through a dot. We investigate below the
time-dependent local quantities such as the impurity spin
polarization and the spin density in a fermionic bath. This
is partly motivated by recent experimental advances in cold
atomic systems which enable us to observe the time-dependent
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local densities, for example, by using the single-site-resolved
imaging technique in ultracold atomic systems [14–16]. Also,
we note that these quantities have not been investigated
in detail in the previous studies focused on nanostructured
systems. We elucidate nontrivial time-dependent phenomena,
especially an unusual resonance phenomenon, emerging in the
long-time limit of a periodically driven Kondo system.

More importantly, the detailed analysis of such real-time
dynamics of the Kondo system provides an opportunity
to address a fundamental problem of current interest in
condensed-matter physics, that is, how the periodically driven
quantum systems behave in the long-time limit. This problem
has attracted much attention recently because novel properties
of matter emerge when a time-periodic external field is
applied to quantum systems [36–40]. Actually, recent studies
have revealed intriguing properties of periodically driven
isolated systems where the Magnus expansion [41,42] (a series
expansion in the inverse of the external driving frequency)
is not guaranteed to converge [43–49]. On the other hand,
for open quantum systems, there are many issues to be
explored. One of the problems is whether periodically driven
open systems can be described by some equilibrium systems
[50–61]. Recently, it was shown that the Gibbs distribution
of the Floquet states can emerge only when certain special
conditions are fulfilled [58–61]. In general, an asymptotic state
of the periodically driven open systems is not described by
the Floquet-Gibbs state, so it is important to study such open
quantum systems in more detail to figure out in what conditions
equilibrium-state properties emerge.

To address the above-mentioned problems, in this paper,
we study the steady state of a periodically driven anisotropic
Kondo impurity which is coupled to a fermionic bath with
an infinite bandwidth. The time dependence we consider is for
the local magnetic field which couples to the impurity spin and
also for the in-plane interaction strength. We obtain the exact
expression of time evolution for arbitrary time dependence
of them by using the exact solution known as the Toulouse
limit [62]. First, when the local magnetic field is periodically
switched on and off and the in-plane interaction is time
independent, we find a nonmonotonic behavior of the time
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average of the impurity spin polarization, which is regarded
as a resonance phenomenon, as a function of the intensity of
the local magnetic field. Second, by taking the high-frequency
limit of the external driving, we show that the system recovers
time translational invariance and the properties of the system
are described by a mixture of the zero-temperature state and
the infinite-temperature state in general. In certain cases, the
system has properties either at zero or infinite temperature
and thereby can be described by the equilibrium state in these
special cases.

This paper is organized as follows. In Sec. II, we summarize
the Kondo model at the Toulouse limit and the method to
obtain the exact analytical expression of the time evolution in
the Heisenberg picture when the time-periodic local magnetic
field is applied to the system. In Sec. III, we investigate a
specific case where the local magnetic field is periodically
switched on and off. In Sec. IV, we extend the calculations in
Sec. II to the case where the in-plane interaction strength is also
time dependent. This model enables us to address the question
posed in the introduction: in what conditions equilibrium-state
properties emerge for an open system. For this purpose, we
consider the case where the local magnetic field and the in-
plane interaction are both time dependent, and we analyze the
properties of the high-frequency limit of the external driving.
A brief summary of our results is presented in Sec. V.

II. MODEL AND METHOD

A. Effective one-dimensional model and the bosonization
and refermionization methods

The Kondo model was originally introduced in order to
solve the resistivity minimum problem in dilute magnetic
alloys. The model consists of a three-dimensional fermionic
bath and a spin-1/2 magnetic impurity, and they interact with
each other via an antiferromagnetic coupling J [63]. The
Kondo physics has been intensively studied because it has
essential features of strongly correlated systems, and recently
the realization of Kondo physics with ultracold atomic gases
was proposed [10–12].

We here consider a periodically driven impurity spin cou-
pled to a fermionic bath via the anisotropic Kondo exchange
interaction,

H (t) =
∑

σ=↑,↓

∫
d3xψ†

σ (x)

(−∇2

2m
− μ

)
ψσ (x)

+
∑

i=x,y,z

JiS
isi(0) − h(t)Sz. (1)

The operator ψσ (x) (σ =↑, ↓) annihilates a fermion in the
bath. si(x) = ∑

ss ′ ψ
†
s (x)σ i

ss ′ψs ′ (x) (i = x,y,z) is the spin
density of the fermionic bath, where σ i

ss ′ are the Pauli matrices.
Si (i = x,y,z) are the impurity spin operators whose spin
is 1/2 and the couplings Ji (i = x,y,z) have anisotropy:
Jx = Jy = J⊥, Jz = J‖. We consider a time-dependent local
magnetic field with the periodicity h(t + τ ) = h(t) and assume
that the initial state is in the ground state of the Kondo
model without a local magnetic field. We also consider a
time-periodic interaction case later (see Sec. IV).

Because the scattering term is pointlike and only fermions
whose angular momentum is zero (s-wave) are scattered,
we can transform Hamiltonian (1) into an effective one-
dimensional system [64]. While we have a radial problem
for s-wave fermions, we can transform it into a full one-
dimensional problem by regarding the incoming waves (out-
going waves) as those in the negative (positive) region in one
dimension. We linearize the dispersion of the fermion near the
Fermi level, then we obtain the following full one-dimensional
Hamiltonian (for details about this discussion, see Ref [64]):

H (t) =
∑

σ=↑,↓

∫
dx : ψ†

σ (x)(−iu∂x)ψσ (x) :

+
∑

i=x,y,z

JiS
isi(0) − h(t)Sz. (2)

In order to avoid infinities in the calculation, we introduced
the normal ordering (the colons : · · · :), and the origin of the
normal ordering is taken as the Fermi sea state. The spin
density of the fermionic bath is written as

sz(x) =
∑

σ σ : (ψ†
σ (r) − ψ†

σ (−r))(ψσ (r) − ψσ (−r)) :

4πr2
,

(3)

where r = |x|. From now on, we treat this Hamiltonian.
We here make use of the bosonization and refermion-

ization methods [65,66] to treat the interaction term in
Hamiltonian (2). We add a left-mover fermion

∑
σ

∫
dx :

ψ (L)†
σ (−iu∂x)ψ (L)

σ (x) : to Hamiltonian (2) to use the ordinary
notation of the bosonization method. By bosonizing the Hamil-
tonian, spin-charge separation occurs and the Hamiltonian can
be written in the following way:

H (t) = Hcharge + Hspin(t), (4)

Hcharge =
∫

dx

2π
u : [(∂xθc(x))2 + (∂xφc(x))2] : , (5)

Hspin(t) =
∫

dx

2π
u : [(∂xθs(x))2 + (∂xφs(x))2] :

+ JzS
z

π
√

2
[∂xθs(0) − ∂xφs(0)] − h(t)Sz

+ J⊥
2πα

[U †
↓U↑S+e−√

2i(φs (0)−θs (0)) + H.c.],

(6)

where the bosonic field fulfills the commutation relation
[φc/s(x),∂xθc/s(y)] = iπδ(x − y) and Uσ=↑,↓ is the Klein
factor of the fermionic field ψσ (x). The annihilation operator
of the fermion ψσ (x) and the spin density of fermions are
written as

ψσ (x) = 1√
2πα

Uσe−i(φs (x)−θs (x)), (7)

∑
σ

σ : ψ†
σ (x)ψσ (x) := −

√
2

π
∂x(φs(x) − θs(x)). (8)

We apply a unitary transformation U= exp[−i(
√

2 −
1)Sz(φs(0)−θs(0))] (Emery-Kivelson transformation) to the
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Hamiltonian and then the Hamiltonian reads

Hspin(t) =
∫

dx

2π
u : [(∂xθs(x))2 + (∂xφs(x))2] :

+ Jz − √
2πu(

√
2 − 1)

π
√

2
Sz[∂xθs(0) − ∂xφs(0)]

+ J⊥
2πα

[U †
↓U↑S+e−i(φs (0)−θs (0)) + H.c.] − h(t)Sz.

(9)

Note that we can refermionize the bosonic field by
introducing a new spinless fermionic field ψ̃(x) =
U

†
↓U↑e−i(φs (x)−θs (x))/

√
2πα. By applying another unitary trans-

formation exp[iπ (N↑ − N↓)Sz], the impurity spin operator Si

can also be refermionized, where Ns = N↑ − N↓ is the spin
polarization of the fermionic bath. Then, we can refermionize
Hamiltonian (9) in the following way:

Hspin(t) =
∫

dx : ψ̃†(x)(−iu∂x)ψ̃(x) :

+
√

2(Jz −
√

2πu(
√

2 − 1))
(

c̃
†
d c̃d − 1

2

)
:

× ψ̃†(0)ψ̃(0) : + J⊥√
2πα

(ψ̃†(0)c̃d + H.c.)

−h(t)

(
c̃
†
d c̃d − 1

2

)
, (10)

where c̃
†
d = −e−i(Ns−Sz)S+ and we have omitted the left-mover

fermions. This Hamiltonian is an interacting resonant-level
model. The second term describes the interaction between the
fermionic bath and a fermion in the resonant level. The third
term describes hopping between the fermionic bath and the
resonant level. The impurity spin polarization and the spin
density of the fermionic bath are written by

Sz = c̃†cc̃d − 1
2 , (11)∑

σ

σ : ψ†
σ (x)ψσ (x) :=

√
2 : ψ̃†(x)ψ̃(x) : (x 	= 0). (12)

As mentioned above, the density of the original fermions is
written by Eq. (3). Therefore, we need

∑
σ σψ†

σ (x)ψσ (−x) as
well as

∑
σ σψ†

σ (x)ψσ (x), where the former quantity describes
the Friedel oscillation (spatial 2kF oscillation of the density of
the fermions) [67,68]. The spin density of fermions reads

sz(x) = 1

4πr2
[sz(r) + (Friedel oscillation term)], (13)

where sz(x) = ∑
σ σ : ψ†

σ (x)ψσ (x) :. The quickly oscillating
Friedel term cannot easily be obtained by these bosonization
and refermionization methods, and we only focus on the slow
oscillation term sz(x).

To simplify the problem, we take the strength of
z-component coupling as J‖/πu = √

2(
√

2 − 1) (Toulouse
limit [62,66]). This is the strong antiferromagnetic coupling
regime and it is known that the exact results can be obtained
at this point while keeping most of the essential properties of

the Kondo model intact. At this point, Eq. (9) is reduced to

H (t) =
∫

dx : ψ̃†(x)(−iu∂x)ψ̃(x) :

+ J⊥√
2πα

(ψ̃†(0)c̃d + H.c.) − h(t)

(
c̃
†
d c̃d − 1

2

)
. (14)

In this model, we can obtain the impurity spin contribution
to the specific heat as cimp = (2π2/3)(1/π�)T + O(T 2),
where � = J 2

⊥/4παu. On the other hand, the impurity
spin contribution to the specific heat is obtained as cimp =
(2π2/3)(w/TK )T + O(T 2) by using the renormalization-
group method in the original model (2), where w = 0.4128
is known as the Wilson number [63,69]. Comparing these
two results, the Kondo temperature, which provides a typical
energy scale characterizing this quantum impurity system, can
be determined as TK = πwJ 2

⊥/4παu [20].

B. Calculation of the time evolution

We calculate the time evolution of the system in the
Heisenberg picture. The time evolution operator of this
system is U (t) = T exp [ − i

∫ t

0 duH (u)], where T is the
time-ordering operator. Because Hamiltonians of different
time do not commute with each other, it is difficult to obtain
the explicit expression for U (t). Thus, we use the following
strategy to obtain the time evolution of operators. First, we
divide the time-periodic local magnetic field h(t) into discrete
M time steps:

h(t) =
∞∑

N=0

M∑
n=1

θ{t − [N − (n − 1)/M]τ }θ [(N + n/M)τ

− t]h(n). (15)

When h(t) is divided into M time steps, the time evolution of
operators in each period reads

c̃l(τ ) = eiH (1)τ/M · · · eiH (M)τ/M c̃le
−iH (M)τ/M · · · e−iH (1)τ/M,

(16)

where l = k,d and c̃k is a Fourier coefficient of ψ̃(x) (ψ̃(x) =
1/

√
L

∑
k eikx c̃k). H (n) is a time-independent Kondo model

with a local static magnetic field h(n). As the Hamiltonian H (n)

is quadratic, the time evolution by H (n) is denoted as

cl(t) = eiH (n)t cle
−iH (n)t

=
∑

l′
G

(n)
ll′ (t)cl′ (l = k,d),

(17)

where G
(n)
ll′ (t) is the transition matrix from l′ to l. Thus, the

time evolution in a period is given by

c̃l(τ ) =
∑

l′
Mll′ c̃l′ ,

(18)
Mll′ =

∑
{li }

G
(M)
ll1

(τ/M)G(M−1)
l1l2

(τ/M) · · · G(1)
lM−1l′ (τ/M).

The explicit expression of Mll′ is shown in Appendix A. By
taking the continuum limit, the time evolution of the operators
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ψ̃(x) and c̃d is obtained in the long-time limit,

ψ̃(x,t) = ψ̃(x − ut)

− i
∑

k

J⊥√
2παu2

θ (x)Tdk(t − x/u)c̃k,

c̃d (t) =
∑

k

Tdk(t)c̃k,

Tdk(t) = J⊥√
2παL

−ie−iεk t

1 − eiεkτMdd

(19)

×
∫ τ

0
ds exp

[
i

∫ τ

τ−s

h(s ′ + t)ds ′ − �τ + iεks

]
,

Mdd = exp

[
i

∫ τ

0
h(t)dt − �τ

]
, � = J 2

⊥
4παu

.

These expressions are applicable for an arbitrary time-periodic
function h(t) and contain the whole information about the
dynamics of the system including the fermionic bath. We note
that similar exact analytical expressions for a time-dependent
current between the two leads through a nanostructure are
obtained by using the Keldysh Green function method [25,70].

The relation between the spin density of the fermionic bath
and the time derivative of the impurity spin is also obtained:

〈sz(x,t)〉 =
{

−
√

2
u

〈 d
dt

Sz(t − x/u)〉 (x > 0),

0 (x < 0).
(20)

This relation means that a fermion whose spin is antiparallel
to the impurity spin is scattered and propagates with the Fermi
velocity u because the fermionic bath and the impurity spin
are coupled by antiferromagnetic interaction and the fermionic
bath has a linear dispersion.

III. TIME-DEPENDENT PROPERTIES AND EMERGENT
RESONANCE PHENOMENON

A. Time evolution of observables

Here, we discuss a specific case: the local magnetic
field is periodically switched on and off. Note that the
following analysis and discussion can be straightforwardly
applied to more generic periodically driven systems. The time
dependence of h(t) we consider is

h(t) =
∞∑

N=0

θ (t − Nτ )θ (Nτ + τ/2 − t)h. (21)

Decompose time into periodic intervals: t = Nτ + s, N ∈
N, 0 < s < τ . Then, the time evolution of the impurity spin
polarization in the steady state in the long-time limit is

〈Sz(t)〉 N→∞−−−→

⎧⎪⎨
⎪⎩

A1 + A2 e−(TK/πw)s + Re[A3(s)eihs]
(0 < s < τ/2),

A′
1 + A′

2 e−(TK/πw)(s−τ/2)

(τ/2 < s < τ ).

(22)

The prefactors A
(′)
i (s) can be obtained by the momentum

integral in the fermionic-bath sector. The second term is the
relaxation term due to the switching of the field intensity. The
third term in 0 < s < τ/2 represents the oscillation caused by
the local magnetic field, which comes from the interference
between the impurity spin and the spins in the fermionic bath.
Recall that the spin density of the fermionic bath is represented
by the time derivative of the impurity spin polarization
[see Eq. (20)].

The time evolution of the impurity spin polarization 〈Sz(t)〉
and the spin density of the fermionic bath, 〈sz(x,t)〉, in a period
are shown in Fig. 1. Because the impurity spin polarization
〈Sz(t)〉 is time periodic in the steady state, the spin density of
the fermionic bath, 〈sz(x,t)〉, is spatially periodic as well as
time periodic, as seen from Eq. (20). We thus show only the
data at the point x = Muτ (M ∈ N). In the first half of the
period the local magnetic field is switched on [i.e., h(t) = h],
while in the second half it is off [i.e., h(t) = 0]. In the long
driving period (see the figures of τ = 10/�), the impurity
spin polarization oscillates with a frequency proportional to
the field intensity h, and eventually relaxes to its equilibrium
value in the time scale proportional to 1/TK . Wave packets
whose width is of the order of the inverse of the Kondo
temperature are observed in the spin density of the fermionic
bath since the spin density of the fermionic bath is given by
the time derivative of the impurity spin polarization. These
wave packets propagate with the Fermi velocity u without
decaying due to the linear dispersion. In the short driving
period (see the figures of τ = 0.3125/�), the system cannot
keep up with the temporal change of the local magnetic field
and thus approaches constant values. Note that a large cusp
is observed at half of the period in the spin density of the
fermionic bath, because it is given by the time derivative
of the impurity spin polarization and thus amplified by the
factor  = 2π/τ .

B. Emergent resonance in the time-averaged observables

In the limit of fast driving, the impurity spin polarization
〈Sz(t)〉 approaches a temporally constant value (see Fig. 1).
Under this condition, we investigate how the time average
of the impurity spin polarization, Sz, depends on the local
magnetic field intensity h, and elucidate their intriguing
resonance phenomenon. Here we define the time average Sz

and its variance �Sz:

Sz = lim
N→∞

∫ τ

0

ds

τ
〈Sz(Nτ + s)〉 ,

�Sz = lim
N→∞

∫ τ

0

ds

τ
| 〈Sz(Nτ + s)〉 − Sz|,

(23)

where limN→∞ is taken to extract the steady state.
The obtained results are shown in Fig. 2 as a function of

the field intensity h for a choice of the driving period, τ =
0.3125�. Naively, we expect that Sz increases monotonically
and saturates to 1/2 with increasing h. Interestingly, however,
an emergent oscillation is observed as a function of h and its
period is determined by the driving period of the local magnetic
field. When h � TK , the time average of the impurity spin
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FIG. 1. Time evolution of (a, c) the impurity spin polarization and (b, d) the spin density of the fermionic bath in a period for several
choices of local magnetic field intensity h (h = 10�, blue solid line; h = 2.5�, red dashed line; h = 0.625�, yellow dash-dotted line). (a, b)
τ = 10/�; (c, d) τ = 0.3125/�.

polarization Sz(h) becomes periodic as a function of h:

Sz(h + 4π/τ ) = Sz(h) (h � TK ), (24)

where τ is the driving period of the local magnetic field.
To see the essence of this behavior, let us define the “power”

P and the “work done in a period” W for this system, based
on an analogy to the power in classical mechanics,

P (t) = dSz

dt

dh(t)

dt
,

W = lim
N→∞

∫ τ

0
P (Nτ + s) ds.

(25)

FIG. 2. Time-averaged quantities as a function of the local
magnetic field intensity h: time-averaged impurity spin polarization
Sz (blue solid line), variance �Sz (red dashed line), and work W

(yellow dash-dotted line).

It is expected that dSz/dt corresponds to the velocity of a
particle, v = dx(t)/dt , and dh(t)/dt corresponds to the force
F in classical mechanics; that is, the following correspondence
to classical mechanics is expected:

dSz(t)

dt

dh(t)

dt
↔ v · F = d

dt
(kinetic energy). (26)

The quantity W is shown as a function of h in Fig. 2. The
emergent oscillation in the time average of the impurity spin
polarization as a function of h can be attributed to a resonance
phenomenon between the oscillation of the impurity spin
polarization (see Fig. 1) and switching of the local magnetic
field. The impurity spin polarization oscillates with the period
of 2π/h in the first half of the period, and the local magnetic
field is switched off just at the half of the period. An analogy
to an oscillator in classical mechanics would suggest that if the
time derivative of the impurity spin polarization is negative at
the half of the period where the local magnetic field is switched
off, the amplitude toward the negative direction would become
larger, and therefore the time average would be smaller.
Note that the “work done in a period” W oscillates with the
same period but an opposite phase, whereas the variance of
the impurity spin polarization Sz is small but oscillates with
the same phase as the “work.” These behaviors are indeed
consistent with our interpretation. The resonance condition
deduced by the analogy mentioned above is

2πn

h
= τ

2
⇔ h = 4πn

τ
(n ∈ N), (27)

which reproduces the period observed in Fig. 2.
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IV. SOME NOVEL PROPERTIES DRIVEN
BY TIME-DEPENDENT INTERACTIONS

When the in-plane interaction J⊥ is also time periodic, the
system shows quite different behaviors from those without the
in-plane interaction driving. The method in Sec. II can be easily
extended to the case where both the local magnetic field h(t)
and the in-plane interaction J⊥(t) are time-periodic functions.
The time evolution of the operators in this condition is shown
in Appendix A, where the relation between the spin density of
the fermionic bath and the time derivative of the impurity spin
polarization [Eq. (20)] also holds in this case.

In particular, we investigate below our driven system in the
high-frequency limit of the external driving and elucidate the
characteristic long-time behavior of the periodically driven
system. Note that the Magnus expansion cannot be applied
to this system due to the infinite bandwidth and the Kondo
model can be regarded as an open quantum system where a
localized spin couples to a reservoir. Therefore, it is instructive
to study the properties of this system from the viewpoints
of periodically driven open quantum systems as well as the
divergence of the Magnus expansion. This is indeed related to
the question whether the driven system can be described by
some equilibrium states.

A. Dynamics of the observables

Here, we consider a specific case where the time de-
pendence of the local magnetic field h(t) and the in-plane
interaction parameter J⊥(t) is given by

h(t) = h sin(2t), J⊥(t) = J⊥ sin

(
t + π

4

)
. (28)

Note that the time dependence of the local magnetic field h(t)
equals that of the square of the in-plane interaction parameter
J 2

⊥(t), which has the essence of dynamics when both the local
magnetic field and the in-plane interaction parameter are time
dependent. The dynamics of the impurity spin polarization in
the steady state is

〈Sz(Nτ + s)〉 N→∞−−−→ ex cos(2s)A(s) − 1

2

A(t) =
∫ 0

−∞

dω

2π

∣∣∣∣∣∣
∑
p∈Z

Jp(z)−Jp+1(z)

ω−(2p+1)/�+i
e2ip(t+π/4)

∣∣∣∣∣∣
2

(29)

� = 1

4παu

∫ τ

0

dt

τ
J 2

⊥(t), x = �


, z = h + i�

2
,

where Jn(z) is the integer Bessel function. Because A(t +
τ/2) = A(t), the impurity spin polarization is time periodic
whose period is half of the driving period τ : 〈Sz(t + τ/2)〉 =
〈Sz(t)〉. This is because the in-plane interaction parameter
acts as an effective hopping parameter, and thereby the
square of the in-plane interaction parameter appears in the
observables.

In Fig. 3, we show the time evolution of the impurity spin
polarization 〈Sz(t)〉 and the spin density of a fermionic bath
〈sz(x,t)〉 (x = Muτ, M ∈ N) in a half of the driving period.
Let us define the effective Kondo temperature by T eff

K = πw�

(see Appendix B for the meaning of this definition). When
the driving period is much longer than the time scale of the
inverse of the effective Kondo temperature (see the figures
of τ = 20/�), the system follows a temporal change in the
external driving in the time scale of 1/T eff

K . Therefore, the
behavior of time evolution is similar to the case without

FIG. 3. Time evolution of (a, c) the impurity spin polarization and (b, d) the spin density of the fermionic bath in a half of the driving period
for several choices of local magnetic field h (h = 10�, blue solid line; h = 2.5�, red dashed line; h = 0.625�, yellow dash-dotted line).
(a, b) τ = 20/�; (c, d) τ = 0.625/�.
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in-plane interaction driving (see Sec. III). When the driving
period is much smaller than the inverse of the effective Kondo
temperature (see the figures of τ = 0.625/�), these values
also approach temporally constant values as we have seen for
the case without in-plane interaction driving.

It should be noted, however, that the time average of the
impurity spin polarization does not vanish even though the
local magnetic field does not have the static component (i.e.
zeroth mode of Fourier coefficients). This is because the square
of the in-plane interaction parameter becomes small while the
local magnetic field is negative. Namely, the impurity spin
is effectively decoupled from the fermionic bath when the
local magnetic field is negative. In the high-frequency limit
(�/ → 0), the time average of impurity spin polarization is
Sz = ∑

n∈N Jn(h/2)Jn+1(h/2). This behavior is consistent
with the results by Heyl and Kehrein [33] in the linear response
regime when the coupling term is periodically switched on
and off.

B. High-frequency limit: Analysis of asymptotic steady states

We now demonstrate that intriguing steady states appear
in the high-frequency limit. The following analysis is valid
for any type of time dependence of h(t) and J⊥(t). Note that
the time evolution of the system is determined solely by the
function Tdk(t) in the steady state [see Eq. (A8)], so it is
sufficient to study the properties of Tdk(t). In the language of
the resonant-level model, Tdk(t) denotes a transition matrix
from a state with wave number k in the fermionic bath to the
resonant level. For arbitrary h(t) and J⊥(t), each element of
the transition matrix Tdk(t) is represented as

Tdk(t) = F (t)
∑
n∈Z

T
(n)
dk (t),

T
(n)
dk (t) = J̃ (n)

√
2παL

e−i(εk−n)t

εk + h − n + i�
,

(30)

where f = ∫ τ

0 f (t)dt/τ is a time average in a period and the
coefficients J̃ (n) and F (t) are determined from the Fourier
coefficients of the external driving h(t) and J⊥(t). The
transition matrix without driving T bare

dk (t) in the long-time limit
is

T bare
dk (t)

t→∞−−−→ J⊥√
2παL

e−iεk t

εk + h + i�
. (31)

Thus, T
(n)
dk (t) can be interpreted as an “nth photon assisted

transition matrix.”
By taking the high-frequency limit (�/, h/ → 0), the

impurity spin polarization 〈Sz(t)〉 and the impurity spin time
correlation function 〈Sz(t)Sz(t ′)〉 recover time translational
invariance. We thus end up with the analytic formula in this
limit,

〈Sz(t)〉 t→∞, �/, h/→0−−−−−−−−−−−−→ 1

π

[
�(0)

�

∫ 0

−∞
+

−∞∑
n=−1

�(n)

�

∫ ∞

−∞

]

dω

(ω + h/�)2 + 1
− 1

2
, 〈Sz(t)Sz(t

′)〉 − 〈Sz(t)〉 〈Sz(t
′)〉

t, t ′→∞, �/, h/→0−−−−−−−−−−−−−→
([

�(0)

�

∫ 0

−∞
+

−∞∑
n=−1

�(n)

�

∫ ∞

−∞

]

× dω

π

eiω�(t−t ′)

(ω+h/�)2 + 1

)([
�(0)

�

∫ 0

−∞
+

∞∑
n=1

�(n)

�

∫ ∞

−∞

]

× dω

π

eiω�(t−t ′)

(ω − h/�)2 + 1

)
, (32)

where �(n) = |J̃ (n)|2/4παu. In the equilibrium Kondo model
with a local magnetic field h at Toulouse limit and temperature
T , the impurity spin polarization 〈Sz〉eq and the impurity spin
time correlation function [71,72] 〈Sz(t)Sz〉eq are expressed as
follows:

〈Sz〉eq =
∫ ∞

−∞

dω

π

f (ω�/T )

(ω + h/�)2 + 1
− 1

2
,

〈Sz(t)Sz〉eq − (〈Sz〉eq)2

=
( ∫ ∞

−∞

dω

π

f (ω�/T )eiω�t

(ω + h/�)2 + 1

)
( ∫ ∞

−∞

dω

π

f (ω�/T )eiω�t

(ω − h/�)2 + 1

)
, (33)

where f (ε) = 1/(eε + 1) is the Fermi distribution function.
Comparison between Eq. (32) and Eq. (33) gives

instructive implications for the asymptotic states. Because

f (ω�/T )
T →0−−→ θ (−ω) and f (ω�/T )

T →∞−−−→ 1
2 , the integrals

from −∞ to zero in Eq. (32) have the properties of the
zero-temperature state [the time correlation function shows
a power-law decay 〈Sz(t)Sz(t ′)〉 ∝ (t − t ′)−2 (t � t ′)], while
the integrals from −∞ to ∞ in Eq. (32) have the properties
of the infinite-temperature state [the time-correlation function
shows an exponential decay 〈Sz(t)Sz(t ′)〉 ∝ e−2�|t−t ′|]. Thus,
the properties of the system are described by a mixture of the
zero-temperature state and those of the infinite-temperature
state in general. This means that the reservoir we consider here
cannot prevent the localized spin from heating up completely.
The properties of the zero-temperature state come from the
bare transitions (i.e., transition processes without photons)
while the properties of the infinite temperature come from the
photon-assisted transition processes. If �(0) = 0 and �(n) =
�(−n) (�(n	=0) = 0) the properties of the system are described
by those at zero (infinite) temperature, respectively. In these
special cases, the asymptotic state can be described by the
equilibrium state.

Two concrete examples exhibiting either zero- or infinite-
temperature properties for asymptotic states are in order here.
First, consider the case where the local magnetic field is
sinusoidal, h(t) = h sin(t), and the in-plane interaction is
time independent, J̃ (n) = Jn(h/). Then, the impurity spin
polarization and the impurity spin time correlation function
are exactly reduced to those of the infinite-temperature state
for the intensities h which satisfy the zeros of the zeroth Bessel
function. This is easily confirmed from Eq. (32), where we can
put �(0) = 0. The second example is the h(t)/ → 0 case: if
we take the limit of h(t)/ → 0, then J̃ (n) = J

(n)
⊥ , where J

(n)
⊥

is the nth Fourier coefficient of J⊥(t). In this case, the steady
state cannot be described by the time- averaged Hamiltonian
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even though the frequency of the external driving is set to
infinity. While the impurity spin polarization and the impurity
spin time-correlation function are exactly equivalent to those
of the infinite-temperature state when J

(0)
⊥ = 0 (⇔ J⊥ = 0),

they are exactly equivalent to those of the zero-temperature
state when J

(n)
⊥ = 0 (∀n 	= 0) (⇔ J⊥ is time independent).

The other cases cannot be described effectively by any
equilibrium systems due to the fluctuation dissipation
theorem [33].

To close this section, we make a brief comment on the
nonequilibrium Fermi distribution function. Note that the
above asymptotic behaviors originate from the duplication
of the Fermi edge (or equivalently duplication of the impu-
rity level) [73,74]. In calculating observables, we evaluate
〈c̃†d (t)c̃d (t ′)〉, which can be written explicitly as

〈c̃†d (t)c̃d (t ′)〉 =
∑

k

f (βεk)
∑

n

(
T

(n)
dk (t)

)∗
T

(n)
dk (t ′)

∝
∑

k

∑
n

|J̃ (n)|2f (β(εk + n))

× (
T bare

dk (t)
)∗

T bare
dk (t ′). (34)

The above observation enables us to define the nonequilibrium
distribution function fnoneq(βε) ∝ ∑

n |J̃ (n)|2f (β(ε + n)).
The nonequilibrium distribution function has Fermi edges at
ε = n (n ∈ N) and the weight of each edge is |J̃ (n)|2. Because
the Fermi edge at ε = 0 can pick up the contribution of the
density of states of the resonant level and the others cannot,
a transition without photons results in the zero-temperature
behavior while the others result in the infinite-temperature
behavior.

V. CONCLUSIONS

We have studied the dynamics of a periodically driven
anisotropic Kondo model. By carrying out calculations at the
Toulouse limit, the exact analytical expressions of the time
evolution for an arbitrary periodic time dependence of the
local magnetic field and the in-plane interaction have been
obtained.

Focusing on the specific case where the local magnetic
field is periodically switched on and off, we have specified the
time scale of the dynamics and found the intriguing resonance
phenomenon between the switching of the local magnetic
field and the oscillation of the impurity spin polarization. This
resonance results in a characteristic nonmonotonic behavior in
the time average of the impurity spin polarization as a function
of the local magnetic field.

We have also elucidated the intriguing properties emerging
in the steady state in the high-frequency limit. In that limit,
the impurity spin polarization and the impurity spin time-
correlation function recover the time translational invariance.
In particular, we have found that the properties of the system
are in general described by a mixture of the zero-temperature
and infinite-temperate properties, and, for special cases, the
system can be described either by zero-temperature or infinite-
temperature properties. In the latter special cases, the system
has the equilibrium-state properties. If we regard the Kondo
model as an open quantum system, the above “mixture”

of states means that the fermionic bath cannot prevent the
localized spin from heating up completely. We expect that this
behavior may be common to the open quantum systems where
the Hamiltonian is given by a bilinear form. Our simple system
gives an example which captures the essential structure of such
steady states. Extending the present analysis to more generic
cases beyond the bilinear Hamiltonian is an interesting issue
to be explored in the future study.
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APPENDIX A: CALCULATION OF THE TIME
EVOLUTION

Here, we obtain the time evolution of annihilation operators
for the time-dependent resonant-level model:

H (t) =
∫

dx : ψ̃†(x)(−iu∂x)ψ̃(x) : + J⊥(t)√
2πα

(ψ̃†(0)c̃d

+ H.c.) − h(t)

(
c̃
†
d c̃d − 1

2

)
. (A1)

We perform the calculation by using “quadrature by parts.”
The method is described as follows. First, divide the time-
periodic functions h(t), J⊥(t) into discrete M time steps, and
calculate the time evolution of the system. Then, by taking the
continuum limit M → ∞, we obtain the exact expression of
time evolution which is applicable for arbitrary h(t), J⊥(t).

We define the discretized functions h(t), J⊥(t) as

h(t) =
∞∑

N=0

M∑
n=1

θ{t − [N − (n − 1)/M]τ }θ ((N

+ n/M)τ − t)h(n),

J⊥(t) =
∞∑

N=0

M∑
n=1

θ{t − [N − (n − 1)/M]τ }θ ((N

+ n/M)τ − t)J (n)
⊥ ,

H (n) =
∑

k

uk : c̃
†
kc̃k : + J

(n)
⊥√

2παL

∑
k

(c̃†kc̃d + H.c.)

−h(n)

(
c̃
†
d c̃d − 1

2

)
. (A2)

The time evolution by the Hamiltonian H (n) is given by

c̃l(t) = eiH (n)t c̃le
−iH (n)t =

∑
l′

G
(n)
ll′ (t)c̃l′ (l, l′ = k, d),

(A3)
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where the transition matrices G
(n)
ll′ (t) are

G
(n)
dd (t) = eih(n)t−�(n)t , �(n) =

(
J

(n)
⊥

)2

4παu
, V (n) = J

(n)
⊥√

2παL

,

G
(n)
kd (t) = G

(n)
dk (t) = V (n) e−iεk t − G

(n)
dd (t)

εk + h(n) + i�(n)
,

G
(n)
kk′(t) = δk,k′e−iεk t + Q

(n)
kk′(t),

Q
(n)
kk′(t) = (V (n))2

[
1

εk − εk′

(
e−iεk t

εk + h(n) + i�(n)

− e−iεk′ t

εk′ + h(n) + i�(n)

)

+ G
(n)
dd (t)

(εk + h(n) + i�(n))(εk′ + h(n) + i�(n))

]
. (A4)

The time evolution in a period is obtained as

c̃l(τ ) = eiH (1)τ/M · · · eiH (M)τ/M c̃le
−iH (M)τ/M · · · e−iH (1)τ/M

=
∑
{li }

G
(M)
ll1

(τ/M)G(M−1)
l1l2

(τ/M) · · ·G(1)
lM−1lM

(τ/M)c̃lM

≡
∑

l′
Mll′ c̃l′ . (A5)

Thus, simultaneous ordinary differential equations with time-
dependent coefficients can be mapped onto a problem of
multiplication of matrices. This multiplication of matrices
is easily done in this system due to a linear dispersion. For
example, in the calculation of

∑
l

G
(n)
dl G

(n+1)
ld =

∑
k

G
(n)
dk G

(n)
kd + G

(n)
dd G

(n+1)
dd , (A6)

the first term disappears because the function G
(n)
dk does not

have any poles. The other calculations can be performed in the
same way. The transition matrices Tll′(t) at each time step t =
nδτ are Tll′(nδτ ) = ∑

{li } G
(n)
ll1

(δτ )G(n−1)
l1l2

(δτ ) · · · G(1)
ln−1l′(δτ ),

and thus we end up with the explicit expressions for n > 1,

Tdd (nδτ ) =
n∏

m=1

G
(m)
dd (δτ ),

Tkd (nδτ ) =
n−1∑
m=0

e−imεkδτG
(n−m)
kd (δτ )Tdd [(n − m − 1)δτ ],

Tdk(nδτ ) =
n−1∑
m=1

(
n∏

l=n−m+1

G
(l)
dd (δτ )

)
G

(n−m)
dk (δτ )e−i(n−m−1)εkδτ

+G
(n)
dk (δτ )e−i(n−1)εkδτ ,

Tkk′(nδτ ) = δk,k′e−inεkδτ + Pkk′(nδτ ). (A7)

Then, by taking the continuum limit and carrying out some
calculations, we obtain the time evolution of operators in the
steady state:

c̃d (t) =
∑

k

Tdk(t)c̃k, ψ̃(x,t) = ψ̃(x − ut)

− i
∑

k

J⊥(t − x/u)√
2παu2

θ (x)Tdk(t − x/u)c̃k,

Tdk(t) = −ie−iukt

1 − eiukτMdd

∫ τ

0
ds

J⊥(t − s)√
2παL

exp

[
i

∫ τ

τ−s

(h(s ′ + t) − �(s ′ + t))ds ′ + iuks

]
,

Mdd = exp

[ ∫ τ

0
(ih(t) − �(t))dt

]
, �(t) = J 2

⊥(t)

4παu
. (A8)

APPENDIX B: EFFECTIVE KONDO TEMPERATURE

The effective Kondo temperature in the steady state when
the local magnetic field is absent [h(t) = 0] can be defined by
the impurity spin susceptibility [33]. At zero temperature in
equilibrium, the imaginary part of the Fourier coefficient of
the impurity-spin susceptibility χeq(t) = iθ (t) 〈[Sz(t),Sz]〉eq
has a characteristic peak structure near ω ∼ TK reflecting the
existence of a Kondo singlet. The imaginary part of the Fourier
coefficient of the impurity spin susceptibility in equilibrium is
given by [71,72]

Imχ̃T =0
eq (ω,TK ) = 1

2π

1

1 + (πwω/TK )2/4

[
1

ω
log

(
1

+
(

πwω

TK

)2)
+ πw

TK

Arctan

(
πwω

TK

)]
.

(B1)

Substituting h(t) = 0 and J̃ (n) = J
(n)
⊥ into Eq. (32), the

following relation is obtained:

Imχ̃(ω) = �(0)

�
Imχ̃T =0

eq (ω,πw�). (B2)

Thus, in this steady state, the effective Kondo temperature
defined as T eff

K := πw� is determined by the time average of
the square of the in-plane interaction parameter (in equilibrium
state, TK = πw�). Because the prefactor is different by a
factor �(0)/�, the response to the local magnetic field is
suppressed by �(0)/�.

[1] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kastner, Nature (London) 391,
156 (1998).

[2] D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrik-
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