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Generation of arbitrary lithographic patterns using Bose-Einstein-condensate interferometry
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We propose an arbitrary pattern lithography process using interference of Bose-Einstein condensates (BECs). A
symmetric three-pulse Raman atom interferometer (AI) is used to implement the system. The pattern information,
in the form of a phase-only mask, is optically encoded into the BEC order parameter in one of the AI arms.
The lithographic pattern is represented by a two-dimensional intensity variation, and is transformed into a
two-dimensional phase variation in the BEC order parameter via the use of ac-Stark shift induced by a pulsed
laser field. The BEC probability distribution of the interference result at the end of the AI is proportional to the
required pattern. In order to produce features smaller than the diffraction limit for the used optical elements, we
employ a three-dimensional atomic lens system to scale down the resulting pattern. The operating conditions for
this lens structure are investigated in order to identify practical constraints. Simulations of the overall system
using the parameters of 87Rb BEC were performed to illustrate its functionality. The proposed process, while
perhaps not suitable for general purpose usage, may enable the creation of special purpose patterns on a very
small scale, with features as small as a few nanometers.
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I. INTRODUCTION

Recent years have witnessed extensive research for new
lithographic processes. The current industrial lithography
systems are expected to be unable to address future challenges.
The electronics industry is looking for parallel lithography
techniques that are capable of generating patterns with the
length scale of a few nanometers. Current optical lithography
systems cannot reach this length scale because of the diffrac-
tion limit.

Multiple approaches have been pursued to go beyond these
limits by using atoms for lithography. One of the earliest
works in this field [1] made use of the intensity-dependent
force exerted by nearly resonant light on neutral two-level
atoms to generate submicron lithographic patterns. In this
work, a standing wave was used to manipulate a sodium
atomic beam to create a grating with period equal to half
the wavelength of the standing light wave. This approach
was later extended to create parallel lines of chromium
on a silicon substrate [2]. Generation of two-dimensional
patterns followed [3,4] by using multiple standing waves
to create two-dimensional grating patterns. Multiple efforts
targeted the minimization of the feature size obtained by
this approach [5,6]. Although the spacing between features is
generally set by half the wavelength of the standing wave, some
efforts show that it is possible to go beyond that limit [6,7].
Unfortunately, this approach does not allow the generation of
arbitrary two-dimensional patterns. The work in [8] suggested
an approach for circumventing this constraint by frequency
encoding the pattern information in the light mask instead
of using intensity encoding. The resolution obtained by this
technique was barely below the single-micrometer scale.

In this paper, we propose an arbitrary pattern nanolithogra-
phy system using interferometry of Bose-Einstein condensates
(BECs). Atomic interferometry using BEC has been demon-
strated under various configurations [9–11], thus paving the
way for the feasibility of the concept being proposed here. We
had previously proposed an arbitrary pattern nanolithography

system [12] based primarily on the interference of individual
atoms. This proposal had several limitations. First, while it
alluded to the need for using a BEC to achieve a significant
speedup in the writing process, no details were presented
on how the architecture and components would have to be
modified for the BEC version. Second, the simulations were
based on two-dimensional wave packets, ignoring the effect of
the finite spatial extent in the third dimension. The analysis
presented here addresses these two aspects in significant
detail. Specifically, instead of using the linear Schrödinger
equation—as was done in Ref. [12]—we use the nonlinear
Gross-Pitaevskii equation (GPE) as needed for modeling the
evolution of a BEC order parameter. Second, we take into
account the fact that the spatial extent of the BEC order
parameter has a finite size in all three dimensions. We find
that these considerations pose significant constraints on the
design proposed in Ref. [12], leading to major modifications
of the overall scheme. We also investigate the effect of various
parameters on the fidelity of the lithographic reproduction
process. In particular, we show that a very small scattering
length, achievable possibly by the use of Feshbach resonance,
is necessary for high-quality reproduction of a desired pattern.
We also show how the number of atoms in the condensate
as well as the initial size of the order parameter affect the
performance of the lithography system.

II. SYSTEM STRUCTURE

The basic tool for the proposed atom lithography system
is the three-pulse atom interferometer (AI) which was first
theoretically proposed by Borde [13] and experimentally
demonstrated by Kasevich and Chu [14]. In our proposed
system, we use a symmetric Mach-Zehnder AI [15,16]. In this
structure—shown in Fig. 1—a BEC is prepared in the ground
state |1〉 and is moving in the z direction. When it encounters
the π/2 pulse, it splits mainly into two components: state
|1〉 and state |3〉. The later state has additional momentum in
the y direction which causes it to split from state |1〉. Both
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FIG. 1. Architecture of two-dimensional (2D) lithography system
using BEC. See text for details.

components then encounter the π pulse which causes each
packet to change its direction. The component in the AI upper
arm is then modified by adding a spatially varying phase
φ(x,y) which contains the lithographic pattern information.
This process is performed using a detuned pulse of light
with spatially varying intensity. The details of the phase
modification process are discussed later.

After phase imprinting, a lens system—also realized by a
detuned pulse of light—can be used to suppress the spreading
of the BEC packet as well as to reduce its spatial extent. To keep
the BEC components in both AI arms in spatial proportion, the
lens system is replicated on the lower arm.

At the end of the AI, a final π/2 pulse is used to merge
the BEC components from both arms. Due to the phase
modification of the upper arm, the interference result will
be proportional to the required lithographic pattern. The
resulting interference result goes through another lens system
to suppress distortion and is then deposited onto a substrate to
realize the pattern.

III. MATHEMATICAL ANALYSIS OF THE SYSTEM

In this work, we only consider the case when the interaction
between the atoms in the BEC is very small. The dynamics
of the BEC can then be described by the time-dependent
GPE [17],

i�
∂ψ(�r,t)

∂t
=

[
− �

2

2m
∇2 + V (�r,t) + U0N |ψ(�r,t)|2

]
ψ(�r,t).

(1)

Here ψ(�r,t) is the order parameter, �r is the coordinate of
the center of mass of the condensate, m is the mass of a single
atom, V (�r,t) is the external potential, N is the number of BEC
atoms, and U0 represents the interaction between the atoms,
given by

U0 = 4π�
2as

m
, (2)

where as is the scattering length.
In this system we assume that the condensate will propagate

through the three-zone atomic interferometer without confine-
ment. Hence during the Raman interaction the potential V (�r,t)
is only due to the electric dipole interaction with the light field.
During the dark zones, the condensate will propagate in free
space with V (�r,t) = 0, except when it encounters the light
pulses that represent the pattern and the lenses.

′

FIG. 2. Three-level system used by the atom interferometer. See
text for details.

At the beginning of the AI, we assume that the BEC is in
the ground state. We assume that the BEC source is prepared
to have a low interaction energy compared to the BEC kinetic
energy, as in [18]. In this case, it is appropriate to express the
BEC ground-state order parameter to have a Gaussian profile
in the x, y, and z directions [19–22].

ψ1(�r,t = 0) = 1√
σxσyσz

√
π3

exp

(
− x2

2σ 2
x

)
exp

(
− y2

2σ 2
y

)

× exp

(
− z2

2σ 2
z

)
. (3)

The internal states of the atoms composing the condensate
play a critical role in the splitting, redirecting, and merging
of the BEC packets inside the AI. The atoms are modeled
as a three-level � system as shown in Fig. 2. Considering
the internal atomic states, the BEC order parameter can be
expressed as

ψ(�r,t) = C1(t)|ψ1(�r,t)〉|1〉 + C2(t)|ψ2(�r,t)〉|2〉
+C3(t)|ψ3(�r,t)〉|3〉

= c̃1(r,t)|1〉 + c̃2(r,t)|2〉 + c̃3(r,t)|3〉. (4)

Here C1(t),C2(t), and C3(t) represent the fraction of the
BEC atoms in each internal state. The normalization condition
of the order parameter requires that

3∑
i=1

|Ci(t)|2 =
3∑

i=1

|c̃i(�r,t)|2 = 1. (5)

For 87Rb atoms, we chose state |1〉 to correspond to level
5 2S1/2 with (F = 1,mF = 1), state |2〉 to correspond to level
5 2P1/2 with (F

′ = 2,mF = 0), and state |3〉 to correspond to
level 5 2S1/2 with (F = 2,mF = −1).

Initially, all atoms are assumed to be in state |1〉. Hence
C1(t = 0) = 1,C2(t = 0) = 0,C3(t = 0) = 0.

A. Free space propagation of BEC

Due to the nonlinear term in the GPE, it is difficult to
study the BEC time evolution analytically. As such, we use
numerical methods to calculate the condensate time evolution.
In our simulation, explicit finite difference method is used to

063644-2



GENERATION OF ARBITRARY LITHOGRAPHIC PATTERNS . . . PHYSICAL REVIEW A 94, 063644 (2016)

calculate time evolution. Forward difference is used for the
time derivatives and central difference is used for the spatial
derivatives.

∂ψ

∂t
→ ψ

x,y,z

t+�t − ψ
x,y,z
t

�t
,

∂2ψ

∂x2
→ ψ

x+�x,y,z
t − 2ψ

x,y,z
t + ψ

x−�x,y,z
t

(�x)2 ,

∂2ψ

∂y2
→ ψ

x,y+�y,z
t − 2ψ

x,y,z
t + ψ

x,y−�y,z
t

(�y)2 ,

∂2ψ

∂z2
→ ψ

x,y,z−�z
t − 2ψ

x,y,z
t + ψ

x,y,z+�z
t

(�z)2 . (6)

Here �x, �y, and �z are the numerical grid resolution
in the three spatial coordinates and �t is the time step used.
Using these approximations in Eq. (1) while setting V (�r,t) =
0, an iterative algorithm is implemented to calculate the time
evolution of the BEC order parameter.

B. Interaction of BEC with the AI π and π /2 pulses

For the three-zone Raman AI, light field interaction is the
mechanism to split the condensate into two separate paths,
redirect the separated components, and merge them at the
end of the AI. Light interaction changes the internal state
of the wave packet. In this section, we study how the BEC
order parameter interacts with the AI light fields. The goal
here is to reach a mathematical form that can be used for
the simulation of the electromagnetic interaction in the spatial
domain. The details of the mathematical derivation are shown
in Appendix A. The time evolution of the BEC internal states
during laser field interaction is given by

i�
∂

∂t
c1(r,t) =

[
− �

2

2m
∇2 + U0N |c1(r,t)|2

]
c1(r,t)

+ �	A

2
e−ikAyc2(r,t),

i�
∂

∂t
c2(r,t) =

[
− �

2

2m
∇2 + U0N |c2(r,t)|2 − �δ1

]
c2(r,t)

+ �	A

2
eikAyc1(r,t) + �	B

2
e−ikByc3(r,t),

i�
∂

∂t
c3(r,t) =

[
− �

2

2m
∇2 + U0N |c3(r,t)|2 + �(δ2 − δ1)

]
c3(r,t)

+ �	B

2
eikByc2(r,t). (7)

With the ability to calculate the time evolution in free space
and the ability to calculate the order parameter interaction
with light fields, the evolution through the AI can be modeled
numerically.

C. Imprinting a spatially varying phase shift

Ac-Stark shift—which is also called light shift—is used
to imprint the lithographic pattern information on the BEC
wave packet. This technique of quantum phase engineering
has been demonstrated for BEC [23,24]. Ac-Stark shift is due
to a detuned light-matter interaction. For an atom in state |1〉,

FIG. 3. The proposed technique to imprint spatially varying phase
pattern to a BEC. See text for details.

an ac field that couples states |1〉 ↔ |2〉 will cause an energy
shift of state |1〉. This energy shift is given by �	2/4δ [25],
where 	 is the Rabi frequency and δ is the detuning. The
energy shift leads to a phase shift given by

∫ τ

0 (	2/4δ)dτ ,
where τ is the interaction time. For nearly constant values of
	 and δ, the phase shift can be approximated as (	2/4δ)τ .
As the Rabi frequency 	 is proportional to the electric field
of the interacting light, the added phase is proportional to the
intensity thereof. By controlling this intensity, it is possible to
introduce any required phase shift to the BEC order parameter.
The intensity of the phase modulating light pulse can be
controlled by using a spatial light modulator (SLM), for
example, as shown in Fig. 3.

In order to determine the required intensity modulation
to generate a specific lithographic pattern, we can consider
a simple case where the BEC is split into two identi-
cal components. If a spatially varying phase shift φ(r̄)
is added to only one of these components, the interfer-
ence result can be expressed as ψf (�r) = ψ1(�r) + ψ2(�r) =
ψ(�r){1 + exp[−iφ(�r)]} = 2ψ(�r) exp[−iφ(�r)/2] cos[φ(�r)/2].
The corresponding probability distribution can be written as
Pf (�r) = |ψf (�r)|2 = 2|ψ(�r)|2{1 + cos[φ(�r)]}. To ensure that
the final interference result is proportional to the required
lithographic pattern F (�r), the phase φ(r̄) is chosen to be
φ(�r) = cos−1[F (�r) − 1], where F (�r) is scaled to have a peak
value of 2 and a minimum value of zero.

From this discussion, we can see that the intensity of the
phase modulating light pulse should be proportional to the
inverse cosine of the required lithographic pattern. This, in
turn, implies that the intensities of the phase modulating light
should be I (�r) = I0cos−1[F (�r) − 1], where I0 is a constant.

D. Lens system

In the previous section, it was shown that the phase
modulation required to generate the lithographic pattern is
performed using optical intensity variation. Light diffraction
limits the resolution of this intensity variation to the scale of
hundreds of nanometers. In our proposed atomic lithography
system, we aim to achieve lithography in the single-nanometer
scale. Hence an atomic lens system is required to shrink the
wave packet to the desired scale after pattern phase imprinting.
The lens system also plays a crucial role in suppressing
wave-packet distortion after phase imprinting. The phase
imprinting step changes the momentum profile of the BEC
order parameter. Free space propagation after this step will lead
to distortion and loss of the lithographic pattern information. A
lens system is required to perform imaging of the wave packet
until the pattern is deposited on the substrate.
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Previously [12], we developed a quantum mechanical
wave-function diffraction theory using a linear Schrödinger
equation and assuming the wave function of an atom to be two
dimensional only. This theory was then used to develop an
analytic transfer function for free space propagation, as well
as for propagation through a lens realized via light shift. The
transfer function was then used to design a Fourier transform
system that consists of two lenses separated by free space
propagation. Here we first extend this model to the case
where the spatial variation of the wave function along the
direction of propagation is also taken into account. This model
is used to produce the design for the lithographic system.
However, since the GPE is nonlinear, the actual behavior of the
BEC order parameter is, obviously, expected to deviate from
the ideal behavior. Numerical simulations of the evolution
of the BEC order parameter were carried out. When discussing
the results of these simulations, we will point out the extent
to which the behavior of the BEC based system deviates from
the linear diffraction theory.

To develop the transfer function of the free space propaga-
tion of a three-dimensional (3D) wave function we start with
the 3D Schrödinger equation,

i�
∂�(�r,t)

∂t
= − �

2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
�(�r,t). (8)

All solutions of this equations can be expressed
as a linear superposition of the plane wave solution
A exp[i�k · �r − i(�/2m)|k|2t], where A is some constant. After
a free space propagation of time T , the Fourier domain
expression of the wave function can be expressed as


(�k,T ) =
∫

�(�r,T )e−i�k·�rd�r

=
∫

�(�r,0)e−i(�/2m)|k|2T e−i�k·�rd�r

= 
(�k,0)e−i(�/2m)|k|2T . (9)

Hence the transfer function for a free space propagation

of time T is given by H (�k) = exp[−i(�/2m)|�k|2T ].
The corresponding impulse response is h(�r) =
(−im/2π�T )3/2 exp(im|�r|2/2�T ). Consequently, for an
arbitrary wave function �in(�r) at time t = 0, the wave-function
expression at t = T can be calculated via convolution to give

�out(�r) = (−im/2π�T )3/2eim|�r|2/2�T

×
∫

�in(�r ′)ei(m/2�T )|�r ′|2e−i(m/�T )�r·�r ′
d�r ′, (10)

which is analogous to the Fresnel diffraction integral from
classical optics. Guided by this expression, a Fourier transform
lens system can be achieved by using two instances of light
shift induced phase modification separated by a free space
propagation of time Tlens. The first phase shift modification
process will add a phase of (−m/2�Tlens)|�r|2 to the wave
function �in(�r). After a free space propagation of time Tlens,
the wave function is expressed as

�(�r) = (−im/2π�Tlens)
3/2ei(m/2�Tlens)|�r|2

×
∫

�in(�r ′)e−i(m/�Tlens)�r·�r ′
d�r ′. (11)

FIG. 4. (a) Fourier transform atomic lens scheme. (b) Proposed
implementation to create three-dimensional phase shift. See text for
details.

We design the second phase modification to add a phase
of −(m/2�Tlens)|�r|2 + 3π/4. The resulting wave function is
�(�r) = (m/2π�Tlens)3/2

∫
�in(�r ′)e−i(m/�Tlens)�r·�r ′

d�r ′.
This analysis shows that the resulting wave function after

the lens system is a scaled Fourier transform (FT) of the input
wave function

|�out(�r)〉 =
(

m

2π�Tlens

)3/2∣∣∣∣
in

(
m

�Tlens
�r
)〉

. (12)

This concept of creating a FT lens pair is illustrated
schematically in Fig. 4(a). In Fig. 4(b) we illustrate the
fact that light pulses applied in the orthogonal direction are
necessary in order to ensure the FT process occurs in all three
dimensions. One of these pulses is launched in the positive
z direction along the direction of motion of the wave packet.
The other is launched in the positive x direction. Each of
the two pulses goes through a spatial light modulator (SLM)
to produce two-dimensional intensity variation in the plane
normal to the pulse direction. For instance, to generate the
light shift corresponding to the first of the two FT lenses, each
point (x, y, z) of the wave packet should have an additional
phase shift of −(m/2�Tlens)(x2 + y2 + z2). To create this phase
shift, the SLM for the pulse moving in the z direction can
be used to modify the pulse intensity in the x − y plane
by I1(x,y) = I1/0(x2 + 0.5y2) which adds a phase shift of
α1(x2 + 0.5y2), where α1 ∝ (I1/0/4δ)τ , as discussed earlier.
Similarly, the SLM for the pulse moving in the x direction can
be used to add a phase shift of α2(z2 + 0.5y2). Engineering
α1 and α2 to be both equal to −(m/2�Tlens) will result in
the required phase shift of −(m/2�Tlens)(x2 + y2 + z2). The
timing of the pulses is controlled such that they intersect at
the position of the wave packet, hence generating the required
three-dimensional intensity variation.

It is obvious from the derivation shown above that the
nonlinearity of the GPE would cause significant deviation in
the behavior of the order parameter as it moves through free
space and lenses. The model we just derived is, therefore,
only used as a guideline for designing the system. The actual
behavior of the system will be determined via numerical
simulation which takes into account the nonlinearity of the
GPE.

In Fig. 5, we show an expanded version of the lithography
system, now including lenses used for demagnification. Fol-
lowing the imprinting of the pattern phase, indicated as 
p in
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FIG. 5. Atom lithography system with the implementation of the
lenses shown explicitly. 
p is the pattern phase shift. See text for
details.

the upper arm of the AI, we apply two successive FT lens pairs,
indicated by 
1 and 
2 for the first pair, and 
3 and 
4 for
the second pair. It follows from Eq. (12) that the wave function
after 
4 is a scaled down version of the wave function before

1 by a factor of Tb/Ta (Tb < Ta), where Ta (Tb) is the time
difference between 
1 and 
2 (
3 and 
4). For the lower arm
of the AI, a lens system identical to the one used for the upper
arm is used.

The last π /2 pulse causes the two arms of the AI to interfere.
The output after this pulse is split into two components. The
component parallel to the z direction is used for lithography.
Since the substrate on which the pattern is to be deposited
cannot be placed at the location right after this π /2 pulse, it
is necessary to employ two more FT lens pairs, indicated by

5 and 
6 for the first pair, and 
7 and 
8 for the second
pair. Note that the final pattern on the substrate will be a scaled
version of the pattern produced immediately after the last π /2
pulse, the scale factor being T ′

b/T
′
a .

The shown phase shifts in Fig. 5 are given by 
1 = −m|�r|2/
2�Ta , 
2 = −m|�r|2/2�Ta + 3π/4, 
3 = −m|�r|2/2�Tb,

4 = −m|�r|2/2�Tb + 3π/4, 
5 = −m|�r|2/2�T ′

a ,

6 = −m|�r|2/2�T ′

a + 3π
4 , 
7 = −m|�r|2/2�T ′

b, and

8 = −m|�r|2/2�T ′

b + 3π
4 . To ensure symmetric operation of

the AI, the time separation between the three pulses of the AI
should be equal. Hence Tsplitting = Tf s + Ta + Tb.

The used lens system in Fig. 5 can be further simplified
to make it more practical. The basis of this simplification

FIG. 6. Proposed simplification of the lens system. See text for
details.

is to combine consecutive light shift processes such as 
2

and 
3 into a single process. This is simply done by adding
the phase variation of the two processes. Consequently, the
intensity variation of the combined process is the addition
of the intensity variation of the individual components. To
get further simplification, the lens system can be rearranged
to increase the number of consecutive light shift processes,
for example, by replacing the phase modification process 
4

by a phase modification process 
x that occurs after 
1.
This replacement will allow combining of 
1 and 
x into
a single-phase modification process. Figure 6 illustrates the
simplification procedure where the original arrangement is
shown in set (a), the rearranged system is shown in set (b), and
finally the simplified system is shown in set (c).

The phase 
x is assumed to take the form 
x =
−m|�r|2/2�Tx + φx where Tx and φx are determined
by the requirement that the response of the rearranged system
be the same as the original system. For set (a) in Fig. 6,
assuming the wave function before 
1 is expressed as �in(�r)
and using Eq. (12), the wave function just after 
2 is given by

�12(�r) = (m/2π�Ta)3/2
∫

�in(�r ′)e−i(m/�Ta )�r·�r ′
d�r ′. (13)

Similarly, after 
4 the wave function is given by

�f (�r) = (m/2π�Tb)3/2
∫

�12(�r ′′)e−i(m/�Tb)�r·�r ′′
d�r ′′

= (m/2π�Tb)3/2
∫ [

(m/2π�Ta)3/2
∫

�in(�r ′)e−i(m/�Ta )�r ′′ ·�r ′
d�r ′

]
e−i(m/�Tb)�r·�r ′′

d�r ′′

= [m2/(2π�)2TaTb]3/2
∫ [∫

e−i(m/�)�r ′′ ·(�r ′/Ta+�r/Tb)d�r ′′
]
�in(�r ′)d�r ′

= [m2/(2π�)2TaTb]3/2
∫

[(2π�/m)δ(�r ′/Ta + �r/Tb)]�in(�r ′)d�r ′

= (m/2π�)2
(
1/TaT

3
b

)1/2
�in(−�rTa/Tb). (14)

For set (b) in Fig. 6, assuming the wave function before 
1 is �in(�r), the wave function just after 
x is given by

�1x(�r) = �in(�r) exp(−im|�r|2/2�Ta) exp(−im|�r|2/2�Tx + iφx). (15)
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Using Eq. (10), the wave function just before 
2 can be expressed as

�1x2(�r) = (−im/2π�Ta)3/2ei(m/2�Ta )|�r|2+iϕx

∫
�in(�r ′)e−i(m/2�Tx )|�r ′|2e−i(m/�Ta )�r·�r ′

d�r ′. (16)

Therefore, after 
3 the wave function is given by

�1x23(�r) = (m/2π�Ta)3/2e−i(m/2�Tb)|�r|2+iϕx

∫
�in(�r ′)e−i(m/2�Tx )|�r ′|2e−i(m/�Ta )�r·�r ′

d�r ′. (17)

After free space propagation of time Tb the wave function is given by

�̃f (�r) = (−im/2π�Tb)3/2ei(m/2�Tb)|�r|2
∫

�1x23(�r ′′)ei(m/2�Tb)|�r ′′|2e−i(m/�Tb)�r·�r ′′
d�r ′′

= [−im2/(2π�)2TaTb]3/2ei(m/2�Tb)|�r|2+iϕx

∫ ∫
�in(�r ′)e−i(m/2�Tx )|�r ′|2e−i(m/�Ta )�r ′′ ·�r ′

d�r ′e−i(m/�Tb)�r·�r ′′
d�r ′′

= [−im2/(2π�)2TaTb]3/2ei(m/2�Tb)|�r|2+iϕx

∫ [∫
e−i(m/�)�r ′′ ·(�r ′/Ta+�r/Tb)d�r ′′

]
�in(�r ′)e−i(m/2�Tx )|�r ′|2d�r ′

= [−im2/(2π�)2TaTb]3/2ei(m/2�Tb)|�r|2+iϕx

∫
[(2π�/m)δ(�r ′/Ta + �r/Tb)]�in(�r ′)e−i(m/2�Tx )|�r ′|2d�r ′

= (−i)3/2(m/2π�)2
(
1/TaT

3
b

)1/2
�in(−�rTa/Tb)eim|�r|2(1/Tb−T 2

a /TxT
2
b )/2�+iϕx . (18)

By choosing Tx to have the form Tx = T 2
a /Tb and setting

φx = 3π/4, we see that �̃f (�r) = �f (�r), so that set (b) is
equivalent to set (a). Finally, set (c) is the result of combining
consecutive phase modification processes such that 
1n =

1 + 
x and 
2n = 
2 + 
3.

The same simplification procedure can be applied to the
lens system used after the last π/2 pulse of the AI by
replacing the phase 
8 by a phase 
x ′ that occurs directly
after 
5. By a similar derivation 
x ′ takes the form 
x ′ =
−m|�r|2/2�Tx ′ + 3π/4, where Tx ′ = T ′2

a /T ′
b . Simplifying the

structure by combining consecutive phase modification pro-
cesses creates 
3n = 
5 + 
x ′ and 
4n = 
6 + 
7. Figure 7
shows the simplified version of the atom lithography system. In
the simplified system, the pattern phase modification process
is combined with the phase modification process 
1n to create
a phase 
1p = 
p + 
1n.

IV. PRACTICAL CONSIDERATIONS

For possible practical implementation of this lithography
system, we propose the use of 87Rb BEC. Consider first the
excitations process for the AI, which can be implemented using
the D1 line transitions [26]. The Raman transition consists
of states |1〉 ≡ 5 2S1/2(F = 1,mF = 1), |2〉 ≡ 5 2P1/2(F ′ =

FIG. 7. Simplified atom lithography system. See text for details.

2,mF = 0), and |3〉 ≡ 5 2S1/2 with (F = 2,mF = −1), with
the quantization axis chosen to be in the ŷ direction. These
levels are shown in Fig. 8(a). The energy difference between
states |1〉 and |3〉 is ω13 = 2π × 6.8 × 109 s−1. The |1〉 ↔ |2〉
and |2〉 ↔ |3〉 transitions are excited by applying σ− and σ+
polarized fields, respectively. Here we assume the detuning and
the Rabi frequencies—denoted as δ and 	, respectively—to
be the same for both Raman transitions. In order to suppress
the effect of spontaneous emission, we have to satisfy the
condition

(	/δ)2�τ � 1, (19)

for all transitions, where τ is the interaction time and � =
3.61 × 107 s−1 is the decay rate of |2〉. We also need to ensure
that, for example, the σ+ polarized field for the |2〉 ↔ |3〉
transition does not produce a significant transition between the
|1〉 and |3〉 states. This requires that δ � ω13. Hence we choose
δ = ω13/10 = 118.35 �. For the Raman interaction pulses,
the longest interaction is required for the π pulse. For that
interaction, 	Rτ = π should be satisfied, where 	R = 	2/2δ

is the Raman Rabi frequency. Setting the longest interaction

FIG. 8. Laser interactions required for the proposed atom lithog-
raphy system. (a) Laser interactions required for the Raman AI (solid
lines). (b) Ac-Stark interactions required to implement the lens system
for both AI arms (dashed lines). See text for details.
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time to be τ = 1 μs = 36.1 �−1 s, the Rabi frequency is
	 = 4.54 � which satisfies Eq. (19). The value of 	 for each
transition is related to the intensity I of the beam applied
to this transition by the relation 	2 = (I/Isat)�2/2, where
Isat is the saturation intensity. For the |3〉 ↔ |2〉 transition
the saturation intensity is Isat = 3.34 mW/cm2 and for the
|1〉 ↔ |2〉 transition Isat = 3 × 3.34 mW/cm2 [26]. Hence, in
order to have the same Rabi frequency for both transitions,
the intensity of the field applied to the |1〉 ↔ |2〉 transition
has to be a factor of 3 larger than the intensity of the
field applied to the |3〉 ↔ |2〉 transition. Consequently, for
	 = 4.54 �, the required intensities are I = 137.7 mW/cm2

for the |3〉 ↔ |2〉 transition and I = 413.1 mW/cm2 for the
|1〉 ↔ |2〉 transition.

Consider next the process for producing the ac-Stark shift
needed for the phase mask as well as the lenses. As we
have described earlier, the beams used for producing these
shifts will propagate in the x̂ and the ẑ directions, both being
perpendicular to the quantization direction ŷ chosen to be
parallel to the direction of propagation of the AI beams. Thus
the ac-Stark shift fields must be π polarized. For the upper
arm, we can use the π -transition coupling state |1〉 to the
F ′ = 2,mF = 1 excited state. The saturation intensity for this
transition is Isat = 3.34 mW/cm2. For the lower arm, we can
use the π -transition coupling state |3〉 to the F ′ = 2,mF = −1
excited state. The saturation intensity for this transition is
Isat = 3 × 3.34 mW/cm2. These transitions are illustrated in
Fig. 8(b). As discussed earlier, the phase shift produced for a
given combination of Rabi frequency, detuning, and interaction
time is given by (	2/4δ)τ . Since any phase shift is equivalent
to any other phase shift differing by integer multiples of 2π ,
the maximum useful value of the Rabi frequency for a given
detuning and interaction time is given by (	2

max/4δ)τ = 2π .
As an example, we consider the case where the value of δ for
each of the ac-Stark shift fields is the same as that employed
for the AI beams. This is an experimentally convenient choice,
allowing the beams to be generated from the same laser used
for producing the AI. Furthermore, it ensures that the effect of
the π polarized field used for one AI arm has minimal effect
on the π transition for the other arm. In order to suppress the
effect of spontaneous emissions, we must also satisfy Eq. (19)
for these beams. Keeping this in mind, we choose the values
of 	max to be the same as the values used for the AI (i.e.,
	max = 4.54 �). The corresponding value of τ is then found
to be τ = 4 μs.

It is easy to verify that Eq. (19) is satisfied for this
combination of parameters. Finally, for the saturation inten-
sities noted above for the π transitions, producing a value
of 	max = 4.54 � requires the intensity for the upper arm
to be I = 137.7 mW/cm2 and that for the lower arm to be
I = 413.1 mW/cm2.

Another practical consideration is the effect of gravity, and
resulting constraints on the physical dimension of the AI. A
terrestrial implementation of the system can be realized by
choosing the z axis to be the downward vertical direction, and
releasing the BEC downward under the effect of gravity. In
this case, using a separation time of 1 s between the AI Raman
pulses will require a height of ∼10 m. However, such a long
separation time is not necessary in practice. The minimum
value of the separation time is dictated by the need to ensure

clear separation between the spatial extents of the BEC order
parameters in the two arms of the AI. For the simulations
we have reported here, the width of the order parameter at
the onset of the AI process is 0.1 mm (full width at half
maximum). The recoil velocity of 87Rb for the D1 transition
being ∼0.6 cm/s, a clear spatial separation can be achieved
for a separation time of ∼50 ms. In order to accommodate the
optical pulses that act as the lens system, a greater separation
is useful. Use of a separation time of ∼100 ms would satisfy
this requirement. For this choice, the height required for the AI
would be ∼10 cm. It should also be noted that the trajectories
of the split components will not be linear. However, the ballistic
trajectories will not affect the behavior of the lithographic
system if the time separation between the first π /2 pulse and
the π pulse is the same as that between the π pulse and the
second π /2 pulse.

V. NUMERICAL SIMULATIONS

In numerical simulations, BEC order parameters are repre-
sented by three-dimensional finite grids. The grid limit in each
direction was chosen to be large enough such that the order
parameter values at the edges of the grid are negligible. The
grid resolution is selected to guarantee both the convergence
of the numerical algorithms and the ability to show the fine
details of the simulated lithographic patterns. To handle the
computational complexity, parallel computing was used by
utilizing the concept of domain decomposition. All simulations
were performed in the spatial domain in order to include the
effect of the nonlinear term in the GPE.

As discussed in Sec. III, the initial condition of the BEC
order parameter was taken to be in the ground state |1〉 with
Gaussian profiles in all directions, as described in Eq. (3).
The Gaussian profile width is taken to be equal in each
direction: δx = δy = δz. A typical practical value of this width
is 30 μm [18,27]. The other parameters of the GPE correspond
to a condensate of 87Rb [26]. For the AI, we assume that the
time delay between the first π /2 pulse and the π pulse is the
same as that between the π pulse and the second π /2 pulse. We
take this time to be 1 s, which is enough to ensure complete
spatial separation of the different BEC components. Free space
propagation anywhere in the system is simulated using the
GPE with the finite difference approximations of Eq. (6)
while setting the external potential term to zero. Atom-light
interaction is simulated using Eq. (7) under the same finite
difference approximations.

The atom lithography system can be used without the lens
system when scaling of the pattern is not needed. In this case,
the pattern phase imprinting should occur immediately before
the last π /2 pulse to avoid distortion of the pattern. Figure 9
shows a three-dimensional image of the interference result
using a pattern that has the shape of a plus sign.

For producing scaled versions of the pattern, it is necessary
to use the lens system. We recall that the lens system derived
in Sec. III D is based on the Schrödinger equations (SEs)
for a single atom. In contrast, the evolution of the BEC
order parameter follows the nonlinear GPE. As such, the
input-output relation for the lens system, when applied to the
BEC order parameter, is expected to deviate to some extent
from the ideal result stated in Sec. III D. We first compare
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FIG. 9. (a) The required lithographic pattern. (b) The resulting distribution of the order parameter after the atomic interferometer.

the behavior of a single atom with the performance of BECs
with a different number of atoms. This comparison will prove
useful in determining the constraints under which the proposed
lens system can be used for BEC wave packets. Specifically,
we start with a system that has a Gaussian distribution of
probability in the x, y, and z directions. We then study the
evolution of this distribution under several different scenarios.
First, we treat the system as the wave function of a single atom.
In this case, we use SE to determine the amplitude distribution
of the wave function after evolution for a characteristic time
scale. We choose this time scale to be 1 s since that is the
duration of the dark zone in our scheme. Next, we use the same
distribution for the BEC order parameter of a condensate of N

atoms, and determine the amplitude distribution of the order
parameter after evolution for the same characteristic time. We
consider three different values of N : 103,104, and 105. These
results are illustrated in Fig. 10. As can be seen from these
results, the deviation from the single-atom case increases with

FIG. 10. Comparison between the x cross section of the single-
atom wave function and the BEC order parameter after a free space
propagation of 1 s.

increasing values of N . This is consistent with the fact that,
for a given volume, the importance of the nonlinear term of
the GPE increases with N . The simulation results also agree
with the experimental results of [18,28], which show that a
BEC with a large number of atoms undergoes a significant
size expansion due to the interaction of atoms in the BEC.

From Fig. 10, it is reasonable to assume that the behavior
of a BEC with N = 103 is close to that of a single atom. For
the parameters considered here, this corresponds to a density
of 1 × 1010cm−3. According to [27], such a low density can be
achieved by adiabatically cooling the condensate. A different
scenario for achieving a single-atom behavior is to use a BEC
with a higher number of atoms (higher density) while reducing
the condensate scattering length as . According to the GPE,
an order of magnitude reduction of the scattering length as

allows for an order of magnitude increase in N while keeping

FIG. 11. Cross section of the BEC order parameter after different
configurations of the lens system.
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the nonlinear term unchanged. The scattering length of a 87Rb
BEC can be controlled by using Feshbach resonance [29]. In
our simulations, we choose to use the parameters of 87Rb BEC
with 1000 atoms for the naturally occurring value of as .

Figure 11 shows the performance of the original and
rearranged lens systems on a BEC wave packet of the selected
parameters. The figure shows that for both lens configurations,
the BEC wave packet after the lens system is almost identical
to that before the lens system when Ta = Tb. We get a
demagnification ratio of 2 when Ta = 2Tb. These numerical
results show that selecting the parameters of the BEC wave
packet to be within the proper constraints allows the use of the
lens system that was designed using the Schrödinger equation
without a significant loss of performance.

In the rest of this section, we show the simulation results
of the BEC lithography system. In order to evaluate the
effect of the propagating BEC interference result on the
substrate, the probability distribution of the order parameter
is integrated over the propagation direction to calculate the
equivalent two-dimensional effect. To test the properties of

the lithography system, multiple patterns have been used,
ranging from intersecting straight lines to circles. In these
simulations, both the original lens arrangement and the
modified lens arrangement were tested in order to establish
that lens rearrangement does not affect the functionality of
the system significantly. Figure 12 shows the result of the
lithography system for a pattern that takes the shape of a plus
sign using the rearranged and simplified lens system illustrated
in Fig. 7. The interference results are shown for three different
cases: when no scaling is used, scaling with a ratio of 0.8, and
scaling with a ratio of 2/3. Figure 13 shows the results for the
same pattern using the original arrangement of the lens system
illustrated in Fig. 5. The case without pattern scaling is shown
in Fig. 13(a), while Fig. 13(b) shows the result when a scaling
ratio of 0.8 is used. Comparison of these results shows that the
two proposed lens systems are essentially equivalent. Figure 14
shows the lithography system results for a circular pattern with
a radius of 30 μm using the modified lens arrangement for the
no scaling, 0.8 and 2/3 scaling scenarios. Figure 15 shows
the results for the same circular pattern using the original lens

FIG. 12. Result of the lithography system using the simplified lens configuration. (a) Required lithographic pattern. (b) Normalized effective
2D probability distribution for unity scaling (c) for a scaling ratio of 0.8 and (d) for a scaling ratio of 2/3.
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FIG. 13. Normalized effective 2D probability distribution for a plus sign pattern using the original lens system (a) with unity scaling and
(b) with a scaling ratio of 0.8.

FIG. 14. Results of the lithography system for a circular pattern using the simplified lens system; (a) the desired circular pattern. (b)
Normalized effective 2D probability distribution for the unity scaling case. (c) Result for a scaling ratio of 0.8. (d) Result for a scaling ratio
of 2/3.
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FIG. 15. Results of the lithography system for a circular pattern using the original lens arrangement. (a) Normalized effective 2D probability
distribution for unity scaling and (b) for a scaling ratio of 0.8.

FIG. 16. Results of the lithography system for a letter n pattern using the modified lens arrangement. (a) The desired letter n pattern. (b)
Normalized effective 2D probability distribution for the unity scaling case. (c) Result with a scaling ratio of 0.8. (d) Result with a scaling ratio
of 2/3.
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FIG. 17. Results of the lithography system for a circular pattern for two different numerical simulation resolutions: (a) the spatial step
size = 0.05σ and (b) the spatial step size = 0.0625σ , where σ is the standard deviation of the initial order parameter Gaussian distribution.

system and using two different scaling ratios. Figure 16 shows
the simulation results using a letter n pattern for different
scaling ratios. This figure illustrates the fact that the output is
a mirrored version of the used pattern.

The simulation results indicate that the system can be used
for arbitrary patterns. However, as can be seen in the previous
figures, the interference results have some distortion. These
errors result from limited spatial grid resolution. This explains
why the distortion is larger for smaller lithographic patterns or
when using a large scaling ratio as in the case in Fig. 16(d).
These errors can be improved by using a finer spatial grid
resolution. However, using a finer resolution will increase the
computational complexity in a cubic manner because of the
use of three-dimensional grids. The current simulations were
performed using a custom developed explicit finite difference
code running on MATLAB. Using domain decomposition, it
was possible to perform parallel processing on four cores of
an Intel E5-2680 processor. Increasing the number of cores
beyond four did not yield significant advantage because of
the involved communication overhead between cores. Using
a spatial resolution step of 0.05σ—where σ = 30 μm is the
standard deviation of the initial order parameter Gaussian
distribution—the time required for the simulation of the whole
AI system is about 2 weeks. Using a smaller spatial resolution
would result in larger spatial grids and require much smaller
simulation time steps leading to a much longer simulation time.
In order to illustrate the effect of spatial resolution, in Fig. 17
we compare the simulation results for the circular pattern
shown in Fig. 14(a) using two different spatial resolutions. It
is clear that when a larger resolution is used, larger simulation
errors and distortion occur.

VI. SUMMARY AND CONCLUSION

In this paper, we have proposed an arbitrary pattern lithogra-
phy system using the interference of BEC. A symmetric three-
pulse Raman atom interferometer (AI) is used to implement

the system. The lithographic pattern is represented by a
two-dimensional intensity variation, and is transformed into a
two-dimensional phase variation in the BEC order parameter
via the use of ac-Stark shift induced by a pulsed laser field
applied in one of the AI arms. The BEC probability distribution
of the interference result at the end of the AI is proportional to
the required pattern. In order to produce features smaller than
the diffraction limit for the used optical system, we employ
a three-dimensional atomic lens system to scale down the
resulting pattern, in analogy with the demagnification process
employed in conventional optical lithography. The operating
conditions for this lens system are investigated in detail, taking
into account practical constraints, in order to identify realistic
parameters. Simulations of the system using the parameters
corresponding to 87Rb BEC have been carried out in order to
illustrate the system functionality. With the various patterns
used in the simulations, we have shown that the system is
indeed capable of generating arbitrary lithography patterns.
The proposed lens system has the advantage of flexible control
of the pattern demagnification ratio simply by changing the
timing of the lens system optical pulses. While the system
proposed here is not likely to be used for general purpose
lithography, it may enable one to create special purpose
patterns on a very small scale, with features as small as a
few nanometers.
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APPENDIX

The external potential V (�r) in the GPE (1) results from the
interaction with the electromagnetic fields. Each of the π and
π /2 pulses in Fig. 1 is composed of two counterpropagating
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laser fields parallel to the y axis. We call the field propagating
in the +y direction �EA and the field propagating in the −y

direction �EB . Using a semiclassical model, the fields are
expressed as

�EA = �EA0 cos (ωAt − kAy + φA)

=
�EA0

2
{exp[i(ωAt − kAy + φA)]

+ exp[−i(ωAt − kAy + φA)]}, (A1)

and

�EB = �EB0 cos (ωBt + kBy + φB)

=
�EB0

2
{exp[i(ωBt + kBy + φB)]

+ exp[−i(ωBt + kBy + φB)]}, (A2)

where �EA0 and �EB0 express the magnitude and polar-
ization of the corresponding fields. The Hamiltonian Ĥ

in this case has two parts: Ĥ = Ĥ0 + ĤI . Ĥ0 represents
the internal energy of the condensate and ĤI represents
the interaction energy. Using the electric dipole approxi-
mation, the interaction Hamiltonian can be expressed as

ĤI = ĤI1 + ĤI2

= −e0�ε.
�EA0

2
{exp [i(ωAt − kAy + φA)]

+ exp[−i(ωAt − kAy + φA)]}

− e0�ε.
�EB0

2
{exp[i(ωBt + kBy + φB)]

+ exp[−i(ωBt + kBy + φB)]}, (A3)

where e0 is the electron charge and �ε is the electron position
vector for each atom in the condensate. Applying the inter-
action Hamiltonian to the complete BEC wave function (4)
yields

ĤI |ψ(r,t)〉 = ĤI [c̃1(r,t)|1〉 + c̃2(r,t)|2〉 + c̃3(r,t)|3〉].
(A4)

To calculate the interaction Hamiltonian matrix, we note
first that 〈n|ĤI |n〉 = 0, where n is the internal state. Moreover,
assuming that �EA affects only the |1〉 ↔ |2〉 transition and �EB

affects only the |2〉 ↔ |3〉 transition, we get 〈2|ĤI1 |3〉 = 0,
〈2|ĤI2 |1〉 = 0, and 〈1|ĤI |3〉 = 0.

The interaction Hamiltonian can thus be expressed as

ĤI = �	A

2
(|1〉〈2| + |2〉〈1|){exp[i(ωAt − kAy + φA)]

+ exp[−i(ωAt − kAy + φA)]}

+ �	B

2
(|2〉〈3| + |3〉〈2|){exp[i(ωBt + kBy + φB)]

+ exp[−i(ωBt + kBy + φB)]}, (A5)

where the Rabi Frequencies 	 are defined as

�	A = −e0〈1|�ε · �EA0|2〉 = −e0〈2|�ε · �EA0|1〉,
�	B = −e0〈2|�ε · �EB0|3〉 = −e0〈3|�ε · �EB0|2〉. (A6)

Using the rotating wave approximation [30], Eq. (A5) is
simplified to

ĤI = �	A

2
exp [i(ωAt − kAy + φA)]|1〉〈2| + �	A

2
exp [−i(ωAt − kAy + φA)]|2〉〈1|

+ �	B

2
exp [−i(ωBt + kBy + φB)]|2〉〈3| + �	B

2
exp [i(ωBt + kBy + φB)]|3〉〈2| (A7)

Using Eq. (A7), Eq. (A4) can be written as

ĤI |ψ(r,t)〉 = �	A

2
exp [i(ωAt − kAy + φA)]c̃2(r,t)|1〉 +

{
�	A

2
exp [−i(ωAt − kAy + φA)]c̃1(r,t)

+�	B

2
exp [−i(ωBt + kBy + φB)]c̃3(r,t)

}
|2〉 + �	B

2
exp [i(ωBt + kBy + φB)]c̃2(r,t)|3〉. (A8)

During interaction with the light fields, we have a three-component condensate. Each component occupies an independent
atomic state. Assuming that the condensate atoms interact only with the atoms in the same state, the complete GPE can be written as

i�
∂

∂t
ψ(r,t) =

3∑
n=1

[
− �

2

2m
∇2 + U0N |c̃n(r,t)|2 + �ωn

]
c̃n(r,t)|n〉 + ĤIψ(r,t). (A9)

From Eq. (A9) the dynamics of each internal state can be expressed separately as

i�
∂

∂t
c̃1(r,t) =

[
− �

2

2m
∇2 + U0N |c̃1(r,t)|2 + �ω1

]
c̃1(r,t) + �	A

2
ei(ωAt−kAy+φA)c̃2(r,t),

i�
∂

∂t
c̃2(r,t) =

[
− �

2

2m
∇2 + U0N |c̃2(r,t)|2 + �ω2

]
c̃2(r,t) + �	A

2
e−i(ωAt−kAy+φA)c̃1(r,t) + �	B

2
e−i(ωBt+kBy+φB )c̃3(r,t),

i�
∂

∂t
c̃3(r,t) =

[
− �

2

2m
∇2 + U0N |c̃3(r,t)|2 + �ω3

]
c̃3(r,t) + �	B

2
ei(ωBt+kBy+φB )c̃2(r,t). (A10)
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In order to simplify Eq. (A10), the time independence is removed by using the following state transformation:⎡
⎣c1

c2

c3

⎤
⎦ = Q

⎡
⎣c̃1

c̃2

c̃3

⎤
⎦, Q =

⎡
⎣ei(θ1t+φ1) 0 0

0 ei(θ2t+φ2) 0
0 0 ei(θ3t+φ2)

⎤
⎦. (A11)

Applying this transformation to Eq. (A10), we have

i�e−i(θ1t+φ1)

[
∂

∂t
c1(r,t) − iθ1c1(r,t)

]
=

[
− �

2

2m
∇2 + U0N |c1(r,t)|2 + �ω1

]
e−i(θ1t+φ1)c1(r,t)

+ �	A

2
ei(ωAt−kAy+φA)e−i(θ2t+φ2)c2(r,t), (A12a)

i�e−i(θ2t+φ2)

[
∂

∂t
c2(r,t) − iθ2c2(r,t)

]
=

[
− �

2

2m
∇2 + U0N |c2(r,t)|2 + �ω2

]
e−i(θ2t+φ2)c2(r,t)

+ �	A

2
e−i(ωAt−kAy+φA)e−i(θ1t+φ1)c1(r,t) + �	B

2
e−i(ωBt+kBy+φB )e−i(θ3t+φ3)c3(r,t),

(A12b)

i�e−i(θ3t+φ3)

[
∂

∂t
c3(r,t) − iθ3c3(r,t)

]
=

[
− �

2

2m
∇2 + U0N |c3(r,t)|2 + �ω3

]
e−i(θ3t+φ3)c3(r,t)

+ �	B

2
ei(ωBt+kBy+φB )e−i(θ2t+φ2)c2(r,t). (A12c)

Simplifying Eq. (A12) we get

i�
∂

∂t
c1(r,t) =

[
− �

2

2m
∇2 + U0N |c1(r,t)|2 + �ω1 − �θ1

]
c1(r,t) + �	A

2
ei[(ωA+θ1−θ2)t−kAy+φ1−φ2+φA]c2(r,t),

i�
∂

∂t
c2(r,t) =

[
− �

2

2m
∇2 + U0N |c2(r,t)|2 + �ω2 − �θ2

]
c2(r,t) + �	A

2
e−i[(ωA+θ1−θ2)t−kAy+φ1−φ2+φA]c1(r,t)

+ �	B

2
e−i[(ωB+θ3−θ2)t+kBy+φ3−φ2+φB ]c3(r,t),

i�
∂

∂t
c3(r,t) =

[
− �

2

2m
∇2 + U0N |c3(r,t)|2 + �ω3 − �θ3

]
c3(r,t) + �	B

2
ei[(ωB+θ3−θ2)t+kBy+φ3−φ2+φB ]c2(r,t). (A13)

Eliminating the time dependence requires ωA + θ1 − θ2 = ωB + θ3 − θ2 = 0. A convenient option is to choose θ1 = ω1, which
leads to θ2 = ωA + θ1 = ωA + ω1 = ω2 + δ1 and θ3 = θ2 − ωB = ω2 + δ1 − ωB . Moreover, we can choose φA + φ1 − φ2 =
φB + φ3 − φ2 = 0. Consequently Eq. (A13) can be written as

i�
∂

∂t
c1(r,t) =

[
− �

2

2m
∇2 + U0N |c1(r,t)|2

]
c1(r,t) + �	A

2
e−ikAyc2(r,t),

i�
∂

∂t
c2(r,t) =

[
− �

2

2m
∇2 + U0N |c2(r,t)|2 − �δ1

]
c2(r,t) + �	A

2
eikAyc1(r,t) + �	B

2
e−ikByc3(r,t),

i�
∂

∂t
c3(r,t) =

[
− �

2

2m
∇2 + U0N |c3(r,t)|2 + �(δ2 − δ1)

]
c3(r,t) + �	B

2
eikByc2(r,t). (A14)

Equation (A14) is used to simulate the interaction with laser fields in the spatial domain. The explicit finite difference method
is used to discretize the equations for simulation purposes.
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