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Slow relaxation and sensitivity to disorder in trapped lattice fermions after a quench
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We consider a system of noninteracting fermions in one dimension subject to a single-particle potential
consisting of (a) a strong optical lattice, (b) a harmonic trap, and (c) uncorrelated on-site disorder. After a quench,
in which the center of the harmonic trap is displaced, we study the occupation function of the fermions and
the time evolution of experimental observables. Specifically, we present numerical and analytical results for the
postquench occupation function of the fermions, and analyze the time evolution of the real-space density profile.
Unsurprisingly for a noninteracting (and therefore integrable) system, the infinite-time limit of the density profile
is nonthermal. However, due to Bragg localization of the higher-energy single-particle states, the approach to
even this nonthermal state is extremely slow. We quantify this statement, and show that it implies a sensitivity to
disorder parametrically stronger than that expected from Anderson localization.
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I. INTRODUCTION

In the past 12 years or so there has been a significant
increase in the level of theoretical activity on questions of
thermalization, especially for isolated quantum systems [1–7].
There are several reasons for this. One is the growing avail-
ability of experimental realizations, for example, in cold-atom
systems [8–12] and in the nuclear spins of solid-state dopants
[13]. Another is the growing theoretical understanding of how
quantum-mechanical systems approach thermal equilibrium.

The key concept in the classical statistical mechanics of
isolated systems is ergodicity, which essentially depends on
chaos. For quantum systems, it has been conjectured that
a single typical many-body eigenstate of energy E already
matches the microcanonical ensemble in the expectation
values it gives for local observables. This claim, related
to Berry’s conjecture [14], is referred to as the eigenstate
thermalization hypothesis [3,15,16].

For this hypothesis to be true, nearby states in the
many-body spectrum must have similar values of all local
observables. However, one can easily think of examples in
which this is not the case. One class of these occurs in
disordered systems, where the single-particle eigenfunctions
are localized, and hence small changes in the total energy may
lead to dramatic rearrangements of the spatial density profile.
It has been discovered more recently that this idea extends to
the case of interacting particles, where it goes by the name of
many-body localization [1,2,4–7,17–23].

A second class occurs in integrable systems, where the
number of conserved quantities is so large that neighboring
states in the many-body spectrum are very likely to have
different values of many of them, and thus disagree on many of
their local observables. It is believed that this can be addressed
by restricting the microcanonical ensemble to a distribution in
which additional temperaturelike parameters are introduced to
constrain the values of these conserved quantities: the so-called
generalized Gibbs ensemble [24–30]. That said, it is not always
clear how to properly enumerate the conserved quantities that
should be included in such a modified ensemble.

The vast majority of work in this area considers sys-
tems with (continuum- or lattice-)translationally invariant

Hamiltonians. However, the most popular experimental real-
izations, using cold atomic gases, generally involve a spatially
inhomogeneous trapping potential. This suggests that it would
be worth considering the influence of such a potential—clean
or disordered—on the relaxation of a many-fermion system
after a quench. This question is theoretically interesting
because it concerns a quantum system relaxing under the
influence of bulk but inhomogeneous forces. It is also of
interest because of its direct relevance to experiment: indeed,
reports of experiments exhibiting two or even all three of these
ingredients (lattice, trap, disorder) may already be found in the
literature [9,31–36].

In this work, we consider a global quantum quench ap-
plied to a one-dimensional system of spinless, noninteracting
fermions in a potential consisting of a strong optical lattice, a
harmonic trap, and sometimes also uncorrelated site disorder.
The quench protocol consists of letting the system equilibrate,
and then, at the moment of the quench, suddenly displacing
the center of the harmonic trapping potential from its initial
position by �j lattice sites. Such quenches were first studied
experimentally over a decade ago [37–39]. We investigate
the representation of the prequench state in the postquench
eigenbasis, which is the initial condition for all subsequent
time evolution. We also analyze how that time evolution affects
the values of observables such as the moments of the fermions’
spatial density profile.

Since our fermions are noninteracting, the population of
each postquench single-particle eigenstate is a constant of
motion, and the system is trivially integrable. Nonetheless,
as we change the trap-jump distance �j and the strength
of the disorder W we observe considerable variation in the
time scales on which different observables relax to their time-
averaged values, and in the extent to which those time-averaged
values agree with equilibrium predictions. A precise definition
of the time-averaged density is given in Sec. IV.

For example, for large enough trap jumps, even when
the disorder is extremely weak, we find that the violation
of parity present in the initial conditions is preserved in
the infinite-time (t → ∞) density profile. This represents a
dramatic failure to match the form predicted by equilibrium
statistical mechanics (see Fig. 1). This is not due to Anderson
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FIG. 1. Main panel: We compare the real-space time-averaged
density profile of the fermions without disorder (blue curve with
triangles) and in the case of very weak disorder (green curve with
squares) to the equilibrium prediction for a system with the same
number of particles and the same total energy (red curve with
circles). Note that even the center of mass of the weakly disordered
time-averaged profile (solid green line) does not coincide with
the equilibrium or clean case prediction (solid blue line). Inset:
The occupation function of the postquench states ordered by their
energy in the weakly disordered (green) and clean (blue) cases.
Note the occupation of states with energies E > 2J : these states
are Bragg localized. Parameters: number of lattice sites L = 241;
trap spring constant κ = 0.0025; hopping integral J = 1; chemical
potential μ = 0; prequench trap center j0 = 96; postquench trap
center j1 = 121; disorder strength W = {0,10−5}.

localization. Rather, it is associated with the extreme disorder
sensitivity of the Bragg-localized states in the upper part of the
single-particle spectrum. For clarity, we note in passing that
Bragg localization and Anderson localization are conceptually
quite distinct. While the latter is defined as the absence of
diffusion in the presence of randomness, the former occurs in
a setting here where such a definition is not natural, because
the unbounded trap potential in any case eventually prevents
diffusion. A natural description of Bragg localization is rather
that there are high-lying eigenstates that are exponentially
localized on a shorter length scale than the classically allowed
region set by the trap. While we use uncorrelated on-site
disorder for simplicity, any term in the Hamiltonian that breaks
the parity symmetry, e.g., an Aubry-André potential or even a
noninteger postquench trap position j1, would yield analogous
effects.

In the complete absence of disorder, parity is eventually
restored by the dephasing of these Bragg-localized states, but
the time scale on which this occurs is extremely long. Thus
on experimentally relevant time scales the clean case is not
actually materially different from the disordered one. In both,
for example, the center of mass oscillates not about the new
center of the trap, but about a point between the pre- and
postquench trap centers (see Fig. 2). The question whether the
center of mass reaches the new trap center, and in particular

FIG. 2. (a) Center of mass x1 (blue curve with circles, left-hand
scale) and skewness x3 (red dashed curve, right-hand scale) as
functions of time, for a quench with trap-jump size �j = 10. The
center of mass oscillates around the postquench trap center (solid
black line). (b) The same, but for a larger trap-jump size �j = 25.
Again, the postquench trap center is indicated by the solid black line;
but now, even though there is no disorder, on observable time scales
the center of mass instead oscillates around a different point, between
pre- and postquench trap centers. Parameters: number of lattice sites
L = 241; trap spring constant κ = 0.0025; hopping integral J = 1;
chemical potential μ = 0; postquench trap center j1 = 120; disorder
strength W = 0.

the role of Bragg-localized states [40] and the existence of
parity doublets [41], was already raised following the original
experiment [39].

The plan of the remainder of this paper is as follows.
In Sec. II, we introduce the model and discuss the quench
protocol. In Sec. III, we analyze the representation of the
prequench state in the postquench basis—the initial condition
for the postquench time evolution—for a range of trap-jump
sizes �j . Section IV provides an analysis of the time evolution
of the moments of the density and investigates the short- and
long-time properties of the density itself. We also include the
influence of disorder on the dynamics, elucidating the com-
petition between the two forms of localization in the system.
We conclude with Sec. V, in which we briefly summarize
our results, and also discuss possible future developments,
especially the introduction of atom-atom interactions and the
associated questions of many-body localization.

II. MODEL AND QUENCH PROTOCOL

We consider spinless fermions moving in one dimension
on a lattice of L sites with open boundary conditions. The
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Hamiltonian reads

Ĥi = −J

L−1∑
j=1

(c†j cj+1 + c
†
j+1cj )

+
L∑

j=1

[
1

2
κa2(j − j0)2 + εj

]
c
†
j cj . (1)

Here the operator c
†
j creates a fermion on site j , and J is the

hopping matrix element between neighboring sites. The on-site
energy consists of a harmonic trapping potential of spring
constant κ centered at j0 plus additional uncorrelated on-site
disorder taken from a uniform box distribution: εj ∈ [−W,W ].
For convenience we shall henceforth set both � and the lattice
constant a to unity. We find the single-particle eigenstates {αk}
of Ĥi and populate the lowest N of them to obtain the initial
ground state of the N -fermion problem. Alternatively we can
choose a chemical potential μ and populate all single-particle
eigenstates for which the eigenenergy E

(i)
k is smaller than μ.

In this paper, we study the nonequilibrium dynamics of this
model that arise from a particular spatially inhomogeneous
global quench. At time t = 0 the center of the harmonic
trapping potential is displaced from site j0 to site j1, while
the disorder potential is left unchanged. Thus the postquench
Hamiltonian Ĥ is exactly the same as Eq. (1) but with j0 → j1.
This Hamiltonian has a set of single-particle eigenstates {βk}
with eigenenergies Ek . We define the “jump size” �j as
|j1 − j0|.

The subsequent time evolution of the many-body state
of the system can be understood as a dephasing of the
contributions of the individual postquench eigenstates, due to
their different eigenenergies. The prequench state, represented
in the postquench basis, serves as the initial condition for this
time evolution. In the coming sections, we study further the
nature of this initial condition, and of the subsequent time
evolution of physical observables such as the center of mass
of the atom cloud.

III. THE POSTQUENCH OCCUPATION FUNCTION

In order to study the time evolution of the system for
times t > 0, we need to know the state at time t = 0, i.e., we
need to represent the prequench state in the postquench basis.
This will consist of a superposition of many different Slater
determinants, each corresponding to a different assignment of
the N fermions to the L postquench single-particle eigenstates.
A simple function that captures its essence, however, is
the expectation value of the occupation of each postquench
single-particle eigenstate, n

(β)
k . Here k = 1,2, . . . ,L labels the

postquench single-particle eigenfunctions.
Since the fermions are noninteracting, each n

(β)
k is a

constant of the motion. This trivially prevents the system
from thermalizing; nonetheless, particular observables, e.g.,
the center of mass of the atom cloud, may still relax to their
thermal equilibrium values.

In order to determine n
(β)
k we express the prequench ground

state |ψ (N)
0 〉 for N particles as

∣∣ψ (N)
0

〉 = α
†
Nα

†
N−1 . . . α

†
2α

†
1|0〉, (2)

FIG. 3. The postquench occupation function n(E) (green, circles)
for four different jump sizes �j . For comparison we also plot the
continuum result (blue, solid line) and the result for a thermal state
with the same total energy and particle number (red, dashed line).
For small �j [panels (a) and (b)], the continuum approximation is a
good one. As soon as we start populating states above E = 2J , i.e.,
Bragg-localized states, the continuum approximation fails [panels
(c) and (d)]. Parameters: number of lattice sites L = 241; trap spring
constant κ = 0.0025; hopping integral J = 1; chemical potential μ =
0; postquench trap center j1 = 121; disorder strength W = 0.

where the operator α
†
k creates a fermion in prequench single-

particle eigenstate αk , and |0〉 is the fermionic vacuum. The
postquench occupation function is then defined as

n
(β)
k ≡ 〈

ψ
(N)
0

∣∣β†
kβk

∣∣ψ (N)
0

〉 =
N∑

q=1

|Oqk(�j )|2, (3)

where β
†
k creates a fermion in postquench single-particle

eigenstate βk , and the overlap matrix Oqk(�j ) is defined as

Oqk(�j ) ≡ 〈αq |βk〉. (4)

Since there is a one-to-one mapping between the eigenstate
quantum numbers k and the eigenenergies Ek , we may
equivalently represent the occupation function as n(E), which
we sample at the points E = Ek .

In Fig. 3 we plot this postquench occupation function
for four different jump sizes. For comparison, we show also
the occupation function calculated in the continuum, and the
thermal occupation function for the same total energy and
particle number.

The postquench occupation function exhibits a remarkable
amount of structure. Unlike the thermal distribution, it has
a very steep slope when departing from zero and unity. For
a wide range of small jump sizes it also shows an almost
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linear structure around the Fermi energy EF = 0 that has a
plateaulike substructure.

The continuum approximation works better for small trap
jumps than for larger ones. The reason is that small jumps
mainly occupy low-lying single-particle eigenstates of the
postquench Hamiltonian. These resemble the eigenstates of
a continuum harmonic oscillator [42]. Thus the “athermal”
structure of the occupation function in these cases arises from
the harmonic-oscillator nature of the eigenstates, rather than
from the influence of the lattice.

For larger jump sizes, where the quench populates
the higher-lying single-particle eigenstates, the continuum
approximation becomes worse. In particular, for energies
E � 2J the true occupation function and the continuum
approximation to it disagree sharply. This is because the
single-particle eigenstates with energies E � 2J are (to use
the terminology of [42]) Bragg localized: instead of extending
between the two classical turning points, they go only as far
as the atom can propagate before being Bragg reflected from
the optical lattice.

In the remainder of this section we expand on these
observations, providing an exact-diagonalization study of the
single-particle eigenstates, a detailed explanation of Bragg
localization, and a derivation of the continuum approximation
to the occupation function. We shall focus on the dependence
of the occupation function on the jump size �j ; the influence of
the hopping strength J and the disorder strength W is discussed
in Appendices A and B.

A. Postquench single-particle eigenstates

Figure 4 shows some of the postquench single-particle
eigenstates, obtained by numerical exact diagonalization [43].
The nature of these eigenstates was first discussed in [40,42];
here we briefly summarize their properties.

In the clean case, and in the absence of the harmonic trap,
i.e., when κ = W = 0, our model is just a tight-binding model
with a band dispersion E(k) = −2J cos k, where k is the wave
number. In this limit the density of states is only nonzero for
|E| � 2J , the region which we call the band. We will use
the terminology of the band, especially “top” and “bottom” to
refer to E = ±2J respectively, even when κ �= 0.

Adding a harmonic trap, i.e., setting κ �= 0, imposes a
finite spatial extent on the eigenfunctions. As discussed in
[42], this may be determined semiclassically by considering
the orbit of a particle the total energy of which is given by
E = −2J cos k + κx2/2. For E < 2J , the orbit has only the
conventional classical turning points, where k = 0:

j = j1 ± jc, jc =
√

2E + 4J

κ
. (5)

By contrast, for energies E � 2J the orbit acquires in addition
two Bragg turning points, where k = ±π :

j = j1 ± jb, jb =
√

2E − 4J

κ
. (6)

Bragg reflection exponentially suppresses the wave function
in the region between the two Bragg turning points. We call
this region “Bragg-forbidden” and the states that exhibit such
suppression “Bragg localized.” As can be seen in Fig. 4, these

FIG. 4. Selected postquench single-particle eigenfunctions, de-
termined by exact diagonalization. Each eigenfunction is offset
vertically by its eigenenergy. The highest-lying eigenfunction is
shown together with its almost degenerate partner. The outer
parabola shows the classical turning points as a function of energy
while the inner parabola shows the Bragg turning points. Upper
panel: clean case (W = 0). Lower panel: very weak disorder (W =
10−5). Parameters: number of lattice sites L = 241; trap spring
constant κ = 0.0025; hopping integral J = 1; postquench trap center
j1 = 121.

turning points provide a good description of the spatial extent
of the numerically determined eigenfunctions.

How are these eigenstates affected by the addition of
disorder? In the clean (W = 0) case, the Hamiltonian H is
symmetric under a reflection about the trap center j1. Hence
each eigenstate is either odd or even under such a reflection. For
energies E well above 2J , i.e., well into the Bragg-localized
regime, each even eigenstate has an odd partner with almost
the same energy. These may be thought of as bonding and
antibonding combinations of a left Bragg-localized and a right
Bragg-localized state. In the E → ∞ limit, the energy splitting
between the bonding and antibonding states tends to zero, and
the left- and right-localized states become exact eigenstates of
the problem. But for any finite eigenenergy they are hybridized
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by a nonzero tunneling matrix element T :

T ≈ e−jb(E)/ξ (E), (7)

where the decay length ξ (E) is given approximately by

ξ (E) = − 1

ln
(

E
2J

−
√(

E
2J

)2 − 1
) . (8)

(For details of the derivation of Eqs. (7) and (8), see
Appendix C.)

However, the introduction of very weak disorder, W ∼ T ,
is sufficient to suppress this hybridization, thus making the
left- and right-localized states the true eigenstates of the
problem. This phenomenon is illustrated in Fig. 4. The two
highest-energy eigenfunctions in the upper panel are the
hybridization-split bonding and antibonding states; the two
highest-energy eigenfunctions in the lower panel are the left-
and right-localized states. The hybridization between them
has been suppressed even though the disorder strength is more
than five orders of magnitude smaller than the bandwidth.
This implies that the postquench time evolution is sensitively
dependent on even very weak disorder. Some examples of this
will be shown in Sec. IV.

B. The continuum approximation to the postquench
occupation function

In order to tell which features of the postquench occupation
function are due to the structure of the underlying lattice and
which, by contrast, are present also in a continuum treatment,
we calculate the overlap Oqk(�j ) for harmonic oscillator wave
functions in the continuum; i.e., we compute the overlap of two
harmonic oscillator eigenfunctions corresponding to the trap
potential, one of which is displaced with respect to the other
by �j . Some results on this continuum limit have already been
obtained in [44].

For convenience, we center the two eigenfunctions, respec-
tively, at x = ±x0. The overlap is given by

Ocont.
qk (x0) ≡

∫ ∞

−∞
ψ∗

q (x + x0) ψk(x − x0) dx, (9)

where the normalized harmonic oscillator eigenfunction is
given by

ψk(x) = 1√
2kk!

π−1/4e−x2/2Hk(x). (10)

Here Hk(x) denotes the kth (physicists’) Hermite polynomial,
and we have chosen units in which � = m = ω = 1. Using
Eq. (7.377) in [45], one finds

Ocont.
qk (x0) =

√
2αβ!

2βα!
(−1)max(k−q,0) e−x2

0 x
α−β

0 L
α−β

β

(
2x2

0

)
,

(11)

where α ≡ max(k,q), β ≡ min(k,q), and Lk
n(x) are the asso-

ciated Laguerre polynomials.
To complete our derivation we must relate the continuum

shift of the eigenfunctions x0 to the displacement of the
harmonic trap in lattice units �j . The natural length scale of
the continuum quantum harmonic oscillator is ζ = 1/

√
mω.

For the lattice problem, we may obtain expressions for m and

ω by Taylor expanding the lattice kinetic energy −2J cos k

around k = 0. This gives for the effective mass

m∗ = 1

2J
, (12)

while the effective frequency is given by

ω∗ =
√

κ

m∗ =
√

2κJ . (13)

The result is ζ = (2t/κ)1/4. We thus find that 2x0 = �j/ζ .

IV. TIME EVOLUTION OF EXPERIMENTAL
OBSERVABLES

The occupation function analyzed in the previous section
is the initial condition for the postquench time evolution of
the atom cloud. We now turn to the question of how this
initial condition translates into the time evolution of the cloud’s
spatial density profile.

The density of atoms at lattice site j is given by the diagonal
elements of the following equal-time Green’s function:

Cij (t) ≡ 〈c†i (t)cj (t)〉. (14)

With a little algebra (see Appendix D), we may write this
in terms of the single-particle postquench eigenfunctions and
their eigenenergies. This allows us to obtain the density profile
at any time t > 0:

ρj (t) =
N∑

l=1

∣∣∣∣∣
L∑

a=1

Oale
−iEatψaj

∣∣∣∣∣
2

. (15)

Here Ea is the eigenenergy of postquench eigenstate βa , and
ψaj is its (lattice) wave function.

The contributions of single-particle eigenstates βa and βb

to postquench observables dephase on a time scale τab ∼
1/(Ea − Eb). This is largest for neighboring energy levels,
Ea and Ea+1. This dephasing does not, of course, imply that
the observables actually become time independent, even at
long times. However, if we examine an observable—such as
the density profile—averaged over a time interval τav,

ρ̄j (τav) ≡ 1

τav

∫ τav

0
ρj (t)dt, (16)

we find that this tends to a limiting form as τav → ∞:

ρ̄j ≡ lim
τav→∞(ρ̄j (τav)) =

L∑
a=1

na|ψaj |2. (17)

Following Deutsch [15], we call ρ̄j the time-averaged density.
In the clean system (see Fig. 4, upper panel), the den-

sity profile of every postquench single-particle eigenstate
is symmetric about the postquench trap center j1. Hence
the time-averaged density (17) will be centered at j1 as
well. However, because the eigenenergies of the bonding and
antibonding Bragg-localized states are very nearly degenerate,
the restoration of this symmetry about j = j1 occurs very
slowly. This is demonstrated in Fig. 2, where the cloud’s
center of mass seemingly equilibrates at a position between
the original trap center j0 and the new trap center j1. In reality,
though, a very slow drift—not visible on experimental time
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FIG. 5. The density profile of the atom cloud at various times after
the quench (blue dashed curve), showing the contributions of selected
individual prequench single-particle eigenstates (solid curves, various
colors). The skewness oscillations are caused by the mobile “bump”
in the profile, which lags behind the center-of-mass oscillations, and
which appears to be due principally to the highest-lying occupied
eigenfunction φF (j ). Parameters: number of lattice sites L = 241;
trap spring constant κ = 0.0025; hopping integral J = 1; chemical
potential μ = 0; prequench trap center j0 = 106; postquench trap
center j1 = 121; disorder strength W = 0.

scales—will eventually restore the center of mass to j = j1

(see Fig. 7).
However, this symmetry-restoring drift ceases to occur

as soon as the disorder is able to disrupt the hybridization
between the left- and right-localized states. As discussed
above, this occurs for any W � T , where T —given in (7)—
is exponentially small in 2jb(E), the width of the Bragg-
forbidden region. Therefore, even for such weak disorder,
the parity breaking imposed by the initial conditions remains
visible in the infinite-time density profile (see Fig. 1). This
is a localization mechanism for the atom cloud which is
conceptually quite distinct from Anderson localization.

As a diagnostic for this we define the jump efficiency, which
expresses the postquench displacement of the center of mass
as a fraction of the jump size �j . Figure 8 shows a plot of the
jump efficiency as a function of jump size for various disorder
strengths. This clearly demonstrates the distinction between
Bragg and Anderson localization.

In the remainder of this section we will study two facets of
the postquench density profile—its early-time behavior and its
time-averaged value—in more detail. The early-time behavior,
analyzed in Sec. IV A, is similar for the clean and weakly
disordered cases. The time-averaged state, however, is not;
therefore, we analyze the clean case in Sec. IV B, and then the
disordered cases in Sec. IV C.

A. Early-time behavior

To characterize the time evolution of the density (15) shortly
after the quench, we consider in particular two of its moments:
the first moment, x1, which corresponds to the atom cloud’s
center of mass, and the third (standardized) moment, x3, which
corresponds to its skewness. These are defined, respectively,
as

x1(t) ≡ 1

N

L∑
j=1

j ρj (t) (18)

and

x3(t) ≡
1
N

∑
j [j − x1(t)]3ρj (t){

1
N

∑
j [j − x1(t)]2ρj (t)

}3/2 . (19)

We plot them as functions of time in Fig. 2, for two different
jump sizes.

The dominant effect is clearly the oscillation of the center
of mass, the frequency of which may be accurately predicted
by a classical oscillator calculation using the band mass as
the mass of the particle [see Eq. (13)]. In this case, a spring
constant of κ = 0.0025 and a hopping integral of J = 1 yield
a frequency of f/J = 0.01125, which matches the oscillation
frequency of x1 in Fig. 2.

For the smaller jump size, this oscillation occurs about
the postquench trap center, j1, which is shown by the solid
horizontal (black) line. For the larger jump size, however, it
appears to occur around a different point, somewhere between
j0 and j1. As discussed above, this is because the quench with
the larger jump size populates some of the left Bragg-localized
states, which on the time scales shown have not yet tunneled
across to their partners on the right.

The oscillations in the skewness are much smaller scale
than those of the center of mass. In Fig. 5, we elucidate
their origin by plotting the contributions of selected individual
single-particle eigenfunctions to the overall density profile.
This decomposition of the density strongly suggests that the
skewness oscillation is a finite-size effect. This is supported
by exact diagonalization for larger values of the chemical
potential, which suggests that the skewness oscillations are
suppressed as N increases, and also by the solution of the
fermionic Gross-Pitaevskii equation [46], which suggests
that they are absent in the continuum. Nonetheless, for
typical experimental setups, in which one may have N ∼ 100
atoms per quasi-one-dimensional tube, they may well be
observable.

B. Time-averaged state (clean case)

As emphasized above, in the clean case all single-particle
eigenstates have densities symmetric about the postquench trap
center, which means that the time-averaged density profile will
have this symmetry too. Therefore, we should be able to see in
the power spectrum of the center-of-mass oscillations the slow
modes that restore this symmetry at long times. As shown in
Fig. 6, indeed we can. Panel (a) shows the frequencies present
in the power spectrum, with an inset concentrating on the low-
frequency spectrum. Panel (b) is a histogram of the frequencies
obtained from the gaps between neighboring postquench
single-particle energy levels. The quantitative match between
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FIG. 6. The correspondence between the long-time part of the
center-of-mass oscillations and the dephasing of nearly degenerate
Bragg-localized states. (a) The power spectrum of the center-of-mass
oscillations of the atom cloud. (b) Energy differences of neighboring
single-particle energy levels converted to frequencies (horizontal
axis) for a pair of single-particle states near energy E (vertical
axis). Insets: a zoomed-in version of the same, showing the first two
Bragg-localized states. Note the excellent quantitative match between
the frequency content of the upper and lower panels. Parameters:
number of lattice sites L = 241; trap spring constant κ = 0.0025;
hopping integral J = 1; chemical potential μ = 0; prequench trap
center j0 = 105; postquench trap center j1 = 121; disorder strength
W = 0.

these graphs is striking. Furthermore, the oscillation frequency
calculated above (f/J = 0.01125) provides an upper bound
to the frequency spectrum.

This analysis demonstrates how long a time scale one would
need to go to to see the atomic cloud oscillating about the new
trap center. This time may be estimated as the dephasing time
of the highest occupied Bragg-localized state, i.e.,

τlong ≈ 1/TF = ejb(EF )/ξ (EF ), (20)

where EF denotes the eigenenergy of that state, and the
functions jb(E) and ξ (E) are defined in Eqs. (6) and (8),
respectively. This should be compared with the time scale
associated with the center-of-mass oscillations immediately

after the quench, which is given by

τshort ≈ 1/f ∗ = 2π√
2κJ

. (21)

Only for times τav 
 τlong will a time-averaged density profile
match the symmetric prediction of Eq. (17).

While this time-averaged density has a center of mass which
matches the thermal equilibrium prediction, other moments of
the time-averaged and thermal profiles do not agree, as shown
in Fig. 7. Due to the reflection symmetry about j = j1, the
center of mass, the skewness, and in fact all odd moments of
the density do “thermalize.” However, the same is not true for
the even moments: even for small trap jumps, the two densities
are different. Related questions have also been discussed for
hard-core bosons [47].

In addition to the two densities obtained from the occupa-
tion functions, we have plotted an average density over many
consecutive time steps at very large times. This underlines
that (a) there is a long period of time over which the density
reaches a “finite-time-averaged” state, where the in-band
single-particle states have dephased but the weakly hybridized
pairs of Bragg-localized states have not, and (b) the true
time-averaged density emerges only at significantly longer
times than used in this example.

C. Time-averaged state (disordered case)

As we have already emphasized, we find that even weak
disorder, provided that it is large compared to the splitting
between symmetric and antisymmetric Bragg-localized states,
causes the time-averaged density to be significantly asymmet-
ric about the new trap center. This asymmetry, which would
be impossible in thermal equilibrium, can be seen in Fig. 1.

The reason for the asymmetry is twofold. First, an arbitrarily
weak disorder potential breaks the parity symmetry of the clean
Hamiltonian. This has the consequence, for W � T , that the
eigenstates become localized on the left or the right of the trap.
Second, as disorder is made stronger, this effect extends to the
delocalized states in the center of the trap.

To quantify the influence of disorder, we define the “jump
efficiency” η as follows:

η ≡ xt→∞
1 − xt=0

1

�j
. (22)

Here the prequench center-of-mass position of the cloud,
xt=0

1 , is calculated from the prequench distribution; the
time-averaged postquench center-of-mass position, xt→∞

1 , is
calculated from Eq. (17). Put simply, this jump efficiency
describes (as a number between zero and one) how much of
the way from the prequench trap center to the postquench trap
center the atom-cloud moves.

Figure 8 shows the jump efficiency as a function of jump
size for different disorder strengths. The most striking feature
is that, even in the limit where the jump size �j → 0, the jump
efficiency does not remain unity; rather, it has the form

ηp ≡ lim
�j→0

[η(�j )] ≈ 1 − αW 2. (23)

This may be understood as the development of a correlation
between (a) whether the disorder potential shifts the center of
mass of a particular postquench eigenfunction to the left or to
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FIG. 7. A comparison between three densities: the time-averaged density calculated from expression (17) [“time-averaged (infinite)”]; the
time-average of consecutive densities at large but finite times [“time-averaged (finite)”] [similar to Eq. (16)]; and the density of a thermal
equilibrium state with the same total energy and number of atoms (“thermal”). The finite average was taken at J t = 50 000 for 1000 consecutive
time steps separated by �t = 1/J . The vertical lines denote the position of the center of mass for the corresponding density. The time-averaged
density does not perfectly match the thermal prediction for any nonzero jump size. For larger jump sizes (bottom), as the Bragg-localized states
are populated, the approach to the time-averaged state becomes very slow. This happens because Bragg localization generates a very long
time scale, Eq. (20), below which a time average deviates strongly from the infinite-time result. This is shown by the disparity between the
time-averaged (finite) and time-averaged (infinite) curves in the lower panel. Parameters: number of lattice sites L = 241; trap spring constant
κ = 0.0025; hopping integral J = 1; chemical potential μ = 0; disorder strength W = 0.

the right and (b) whether the postquench occupation of that
eigenfunction goes up or down. Each of these effects is first
order in the disorder potential V (x), but each by itself would
average to zero. However, the development of a correlation
between them gives an effect of order W 2 that survives the
disorder average. We present in Appendix E a toy calculation
that displays this physics.

As the jump size is increased, the plateau in η(�j ) at some
point gives way to a decrease in the jump efficiency. This is
because the jump size is now large enough to populate some of
the Bragg-localized states of the postquench trapping potential.
As discussed above, these are sensitive to even weak disorder,
and once localized they effectively contribute almost nothing
to the jump efficiency. Indeed, the shape of the curves in Fig. 8
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FIG. 8. The jump efficiency η as a function of the jump size �j ,
for various disorder strengths. This graph illustrates the qualitative
distinction between Anderson and Bragg localization. For W = 0
the jump efficiency η is always unity. For the disordered cases
Bragg localization appears in the form of a �j -dependent decrease
in η. Inset: The jump efficiency η as a function of disorder
strength W/J for a fixed jump size �j = 1. Parameters: number
of lattice sites L = 241; trap spring constant κ = 0.0025; hopping
integral J = 1; chemical potential μ = 0; postquench trap center
j1 = 121. Each disorder average is performed over 10 000 disorder
realizations.

may be well approximated by the equation

η = fdηp, (24)

where fd is the fraction of the prequench atoms that are
projected into non-Bragg-localized states, and ηp is the
“plateau value” of the jump efficiency defined in Eq. (23).
As previously stated, to obtain the Bragg-localization effects
visible in Fig. 8 we require only a parity-breaking potential
while features associated with Anderson localization require
randomness.

V. CONCLUSION

We have studied a particular type of relatively simple
quantum quench: a sudden trap displacement applied to a
one-dimensional system of noninteracting lattice fermions
with disorder. The central theme of this work is to provide
an understanding of how confinement, lattice structure, and
disorder conspire to provide various dynamical regimes to
the coherent postquench time evolution. We discuss these
questions using a number of relatively straightforward real-
space observables.

Our main observation is that the disorder in this system has
two distinct localizing effects: Anderson localization, which
occurs via the same mechanism as in the untrapped system,
and Bragg localization, which arises from the presence in
the single-particle spectrum of the postquench Hamiltonian
of nearly degenerate bonding and antibonding states that are
spatially localized near the edges of the trap.

As a result of Bragg localization, the time evolution of
the density profile of the clean system after a quench shows
two regimes. In the short-time regime, the dynamics are
driven by the dephasing of the “in-band” states (those with
energies |E| < 2J ), and look like collective oscillations about
a position which may not match that of the actual postquench
trap center. In the long-time regime, the dephasing of the
Bragg-localized states causes a slow drift of the center of mass
from this position to the center of the trap.

The role of disorder in the long-time evolution is very
pronounced. Since the splitting between the symmetric and
antisymmetric combinations of the Bragg-localized states
is exponentially suppressed in their separation, extremely
weak disorder can dominate over this splitting, resulting in a
time-averaged state which magnifies the weak parity breaking
of the disorder potential into a macroscopic effect. Indeed, for
the system parameters we have studied, as seen in Fig. 8, a
disorder strength of less than a thousandth of the bandwidth of
the single-particle hopping band can reduce the jump efficiency
by a factor of more than 2.

We have assumed throughout that the Bragg-localized level
pairs form a discrete spectrum, and in that sense all of this
analysis is for a finite-size system. This is the case for which
experiments are perhaps most likely to be realized initially.
However, it is interesting to ask what would happen if we took
the thermodynamic limit. Then the disorder potential would
make one left-Bragg-localized state resonant with a different
right-Bragg-localized state. Would this still suppress the jump
efficiency from unity? If so, by what fraction?

It would also, of course, be interesting to consider the
introduction of interactions between the fermions. This would
allow us to investigate, for example, whether the logarithmic
growth of entanglement entropy seen in many-body-localized
systems also occurs when interactions are added to the
Bragg-localized case. Another related question is whether
interactions naturally counteract Bragg localization. Such an
analysis, carried out by time-evolving block decimation, is
underway [48].

Overall, we believe that this kind of quantum quench
provides an ideal platform for studying the interplay of spatial
inhomogeneity, disorder, and interactions for the dynamics in
a quantum coherent setting.
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APPENDIX A: THE ZERO-HOPPING CASE

As an aid to understanding the disorder dependence of the
prequench density ρ(t = 0) and the postquench occupation
function n

(β)
k , we discuss in this Appendix the form they
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take in the zero-hopping (J = 0) case. Without any hopping,
the pre- and postquench eigenfunctions can be chosen to
be eigenfunctions of position. However, in order to connect
smoothly to the J �= 0 case, we instead take the excited states
to be bonding and antibonding superpositions of the pair of
parity-related degenerate position eigenstates.

The left panel of Fig. 9 shows the disorder broadening of
the discrete energy levels of the harmonic trap. It permits us
to determine possible level crossings and level occupations
for given values of the chemical potential μ and the disorder
strength W . The parabolic curves show the disorder strength
at which neighboring (next-neighbor, etc.) levels first cross.
However, the only line of relevance in the continuum case is in
fact the line W = μ, which denotes the broadening of (what
was in the clean case) the single-particle ground state. This
divides the (W,μ) parameter space into two distinct regions.

The right panels illustrate the qualitative difference in the
form of the ground-state density between these two regions.
Panel (a) shows a case where W 
 μ. Here all lattice sites are
occupied with roughly equal probabilities, though the breaking
of particle-hole symmetry due to the trapping potential is still
visible. Panel (c) shows a contrasting case where W � μ.
Here the spatial density profile has a “top hat” form. Panel
(b) shows the density at the point W = μ: here the average
occupation of (what was in the clean case) the lowest-energy
site is just about to deviate from unity.

A careful analysis of Fig. 9 is necessary to understand the
occupation function obtained in the J = 0 quench problem,
some examples of which are shown in Fig. 10. Due to the
lack of hopping, in a single disorder realization the density
can only take the values zero or one. The same is true of
the occupation function—except in the clean case, where our
choice of bonding and antibonding forms of the eigenstates
allows also a value of 1/2. The disorder averaging, of course,
permits other values to emerge as weighted averages of
these.

In panels (a) and (f) we visualize the quench protocol by
showing the diagonal matrix elements (which for zero hopping
are also the eigenvalues) of Ĥi and Ĥ . The translation of the
trap explains the shape of the disorder-free occupation function
for the different jump sizes in panels (b) and (g). These are
in the case W � μ, so the real-space prequench density is
of top-hat form, i.e., just one continuous block of occupied
sites. Where the two sites corresponding to a degenerate pair
of postquench eigenstates both exist within that block, those
states get occupation 1; where only one of the sites overlaps
with the original density profile, they get occupation 1/2; and
where both sites lie outside the block, they get occupation
zero.

Adding disorder to the system allows the levels to cross,
and also leads, for a fixed chemical potential, to a change of
the total particle number. This means that disorder distorts

FIG. 9. Left panel: An illustration of the disorder broadening of the single-particle energy levels of a finite-size system. Possible level
crossings as a function of W̃ and μ̃ lie on parabolic curves showing the critical disorder strength at which neighboring (black solid line),
second-neighbor (black dashed line), third-neighbor (black dotted line), etc., levels can cross. Right panels: The disorder-averaged density
profile for three different disorder strengths. Parameters: number of lattice sites L = 241; trap spring constant κ = 0.0025; hopping integral
J = 0; trap center j0 = 121.
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FIG. 10. An illustration of the different qualitative forms of the postquench occupation function in the absence of hopping (J = 0), for
different jump sizes �j , scaled chemical potentials μ̃ ≡ 2μ/κa2, and scaled disorder strengths, W̃ = 2W/κa2. (a) The pre- and postquench
trapping potentials. In the absence of hopping and with no disorder, this is also a graph of the eigenvalues of the pre- and postquench
Hamiltonians. The black line denotes the chemical potential μ̃. (b) The postquench occupation function after a small trap jump, as a function of
eigenstate quantum number k. (c) The same as (b), but with moderate disorder. The deviation from half-unit values is mainly because changing
the disorder at fixed chemical potential changes the total particle number. (d) The same as (c), but with a choice of W̃ and μ̃ that restores
the original particle number N . Note that there are still residual deviations from half-unit values. (e) The occupation function in the case of
very large W̃ . (f)–(j) As panels (a)–(e), but for a larger jump size, �j = 10. Parameters: number of lattice sites L = 241; trap spring constant
κ = 0.0025; hopping integral J = 0; prequench trap center j0 = 121. Each disorder average is performed over 10 000 disorder realizations.

the clean postquench distribution function in two qualitatively
different ways. These are shown separately in panels (c), (d),
(h), and (i).

Panels (c) and (h) show the occupation function when μ

and W are chosen so as not to mix any neighboring levels (i.e.,
below the thick black parabola in Fig. 9). However, different
disorder realizations may still push the highest occupied level
through the chemical potential, resulting in an average total
particle number that is noninteger.

In panels (d) and (i) the disorder is strengthened, but the
chemical potential is also raised. This results in the opposite
situation: now the disorder cannot empty a previously occupied
state, but there is on the other hand a strong possibility
of the lower levels being permuted. Since the energy-level
permutation is more likely at lower energies, the departure

from the clean behavior is asymmetric, unlike in panels (c)
and (h).

Lastly, we have included the case of very strong disorder,
for comparison with Fig. 11.

APPENDIX B: THE POSTQUENCH OCCUPATION
FUNCTION WITH MODERATE DISORDER

In addition to the zero-hopping case, we have analyzed
what happens to the occupation function when we introduce
moderate disorder into the J �= 0 system. (Here “moderate”
means a disorder strength high enough to do more than just lift
the degeneracy between neighboring Bragg-localized states.)
The results of this analysis are shown in Fig. 11. In order
to have comparable results upon disorder averaging we have
chosen a fixed particle number N rather than a fixed chemical
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FIG. 11. The postquench occupation function n
(β)
k in the presence

of hopping J and moderate disorder W . For convenience we have
picked a constant particle number N = 31. Parameters: number
of lattice sites L = 241; trap spring constant κ = 0.0025; hopping
integral J = 1; prequench trap center j0 = 115, postquench trap
center j1 = 121. Each disorder-average is performed over 10 000
disorder realizations.

potential μ. We have plotted the occupation function not as
a function of energy, but rather eigenstate quantum number k

ordered by energy.
The results show that as the disorder becomes stronger,

the trap jump has an increasingly minor effect upon the
postquench occupation function. This is as expected, since the
disorder profile, unlike the trapping potential, is not displaced
at the moment of the quench. Furthermore we see that in
the case of very strong disorder the occupation functions
for the J = 0 model (see Fig. 10) and that for the J �= 0
model become qualitatively similar. This is again as it should
be, since the nearest-neighbor coherence |〈Jc

†
i ci+1〉| ≈ J 2

W
for

large disorder.

APPENDIX C: HYBRIDIZATION BETWEEN
LEFT- AND RIGHT-BRAGG-LOCALIZED STATES

In this Appendix we obtain an approximate form for the
matrix element T responsible for the hybridization of left-
and right-Bragg-localized states. The calculation is similar in
structure to that of the hopping integral in a tight-binding
model.

We first split the Hamiltonian into three parts:

H = Hkin + V0 + V1. (C1)

Here Hkin is the lattice kinetic energy,

Hkin = −2J cos(k̂a), (C2)

while the potential terms V0 and V1 are defined as follows:

V0(x) = 1
2κx2 �(−x), (C3)

V1(x) = 1
2κx2 �(x), (C4)

where �(x) is the step function. HL ≡ Hkin + V0 has only left-
localized eigenstates, while HR ≡ Hkin + V1 has only right-
localized ones. We may thus calculate the hopping integral
from the left- to the right-localized states by introducing V1 as
a perturbation to HL.

Following [42], we use a WKB approximation for the left-
localized eigenstate, i.e., an eigenstate of HL with eigenenergy
E:

φL(x) ∼ exp

(
i

∫ x

x0

k(x ′)dx ′
)

, (C5)

where the wave number k(x) is the solution to the equation

−2J cos(ka) + V0(x) = E (C6)

and x0 is an arbitrary reference point. We see that, for x > 0, k
is independent of x. The calculation is not very sensitive to the
structure of φL(x) for x < 0, so we make the following rather
crude approximation:

φL(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x � −xc;
1√

xc(E)−xb(E)+ξ (E)
−xc < x � −xb;

e−x/ξ (E)√
xc(E)−xb(E)+ξ (E)

x > −xb.

(C7)

Here xc(E) and xb(E) are, respectively, the classical and Bragg
turning points of the semiclassical orbit,

xc(E) =
√

2E + 4J

κ
, xb(E) =

√
2E − 4J

κ
, (C8)

and ξ (E) is the decay length in the Bragg-forbidden region:

ξ (E) = − a

ln
[

E
2J

−
√(

E
2J

)2 − 1
] . (C9)

Since the transformation x → −x transforms HL into HR , it
follows that the eigenstate of HR with energy E is given by
φR(x) = φL(−x).

The hopping integral is

T =
∫ ∞

−∞
φ∗

L(x) V1(x) φR(x) dx. (C10)

This integral is dominated by the region in which φR(x) is
constant; hence

T ≈ κ

2

∫ xc(E)

xb(E)

x2 e−x/ξ (E)

xc(E) − xb(E) + ξ (E)
dx. (C11)

For large energies we can Approximate this integral as

T (E) ≈ κ

2
[xb(E)]2 exp

(
−xb(E)

ξ (E)

)
, (C12)

which is the form quoted in Eq. (7).
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APPENDIX D: THE EQUAL-TIME GREEN’S FUNCTION

In this Appendix we present a general derivation of the
form of the equal-time Green’s function (14). This is useful
for our purposes because its diagonal form gives the density;
but it may also be useful in future work for calculating such
quantities as the entanglement entropy [49].

Defining the following basis transformations,

cj = φ∗
kjαk, (D1)

cj = ψ∗
kjβk, (D2)

βk = Okqαq, (D3)

we can expand Eq. (14) to

Cij (t) = 〈
ψ

(N)
0

∣∣eiHtφkiφ
∗
qjα

†
kαqe

−iH t
∣∣ψ (N)

0

〉
. (D4)

(Here and in the rest of this Appendix we use the Einstein
convention that repeated indices are summed over.) From
Blaizot’s book [50] (2.19) we get the following identity:

e
1
2 ν̃Kν+l̄ννie

− 1
2 ν̃Kν−l̄ν =

2L∑
j=1

[(e−σK )ij νj + lj σji], (D5)

where ν̃ = νT = (α1, . . . ,αL,α
†
1, . . . ,α

†
L), K is a 2L × 2L

matrix, and

σ =
(

0L×L 1L×L

1L×L 0L×L

)
.

In order to bring Eq. (D4) into the form of Eq. (D5), we write
the Hamiltonian as

H = ωsβ
†
s βs = ωsO

∗
sqOspα†

qαp ≡ Hqpα†
qαp, (D6)

where in the last step we have defined Hqp ≡ ωsO
∗
sqOsp. It

is convenient to choose K such that (K∗)T = K̄∗ = −K . To
achieve this, we symmetrize the Hamiltonian, making use of
the anticommutation properties of the fermionic operators:

eiHt = eiHqpα
†
qαpt = eiHqp( 1

2 α
†
qαp− 1

2 αpα
†
q+ 1

2 δqp)t . (D7)

In this form we have e
1
2 ν̃Kν with K = ( 0 −iH̄ t

iH t 0 ) and hence

obtain e−σK = (e
−iH t 0
0 eiH̄ t).

We now are in a position to apply Eq. (D5) to Eq. (D4),
which leaves us with the following equation:

Cij (t) = Akiqj

2L∑
m,n

(e−σK )k+L,m(e−σK )q,nQmn, (D8)

where the matrix element Qmn is defined as follows:

Qmn = 〈
ψ

(N)
0

∣∣νmνn

∣∣ψ (N)
0

〉
, (D9)

and Akiqj = φkiφ
∗
qj . The sums are restricted due to the shape

of K and the Fermi energy, limiting when Qmn is nonzero. We
therefore obtain

Cij (t) =
N∑

m=1

L∑
k=1

L∑
q=1

φkiφ
∗
qj (eiH̄ )km(e−iH )qm. (D10)

As a final step we diagonalize the Hamiltonian by reversing
Eq. (D6) using Eq. (D3), which allows us to transform the φ’s
and write the solution in the following form:

Cij (t) =
L∑

a,c=1

N∑
m=1

OamO∗
cme−i(ωa−ωc)tψciψ

∗
aj . (D11)

Setting i = j in this formula recovers the expression for the
density ρj (t) given in Eq. (15).

APPENDIX E: A TOY CALCULATION OF THE EFFECT
OF DISORDER ON THE JUMP EFFICIENCY

FOR SMALL JUMP SIZES

In this final Appendix, we present a toy calculation that
allows us to understand the 1 − αW 2 dependence of the jump
efficiency at small jump sizes.

It represents the prequench single-particle eigenfunctions
by

φ+
nj = 1√

2
(δj,j0+n + δj,j0−n), (E1)

φ−
nj = 1√

2
(δj,j0+n − δj,j0−n). (E2)

We have denoted the symmetric and antisymmetric eigenfunc-
tions separately, while the quantum number n = 1,2,3, . . .

(we ignore the n = 0 case). Essentially, this amounts to an
illustration of each harmonic oscillator eigenfunction in the
form of two peaks at its classical turning points, retaining
the information about whether the function is symmetric or
antisymmetric. We thus obtain the densities:

|φ+
nj |2 = |φ−

nj |2 = 1
2 (δj,j0+n + δj,j0−n). (E3)

We need to occupy the symmetric and antisymmetric versions
of N/2 eigenstates to get the correct particle number, i.e., we
occupy the states with 1 � n � N/2, such that the total density
becomes

ρj =
N/2∑
n=1

(δj,j0−n + δj,j0+n). (E4)

This is a “block” in real space, covering the region j0 − N/2 �
j � j0 + N/2 (with a hole at j = j0, but this causes only a
1/N effect, which we neglect).

Second, we assume that the postquench eigenfunctions in
the presence of disorder may similarly be approximated by

ψ+
nj =

√
1 + σnW

2
δj,j1+n +

√
1 − σnW

2
δj,j1−n, (E5)

ψ−
nj =

√
1 + σnW

2
δj,j1+n −

√
1 − σnW

2
δj,j1−n, (E6)

where the random variable σn = ±1 is chosen independently
for each value of n to encode the presence of disorder. Note that
for both the pre- and postquench eigenfunctions we have made
the simplifying assumption that the position of the classical
turning points is proportional to the energy of the eigenstate.
This corresponds to choosing a linear trapping potential rather
than a quadratic one.
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With the above choice of eigenfunctions we can determine
x1,n, the disorder-dependent center of mass of postquench
eigenfunction n:

x1,n =
∑

j

j |ψ+
nj |2 =

∑
j

j |ψ−
nj |2 = j1 + σnnW, (E7)

which is linear in W and independent of the symmetry of the
eigenfunction.

In order to determine the postquench occupation function
nβ , we first determine the overlap between a particular pair of
pre- and postquench eigenfunctions:

OS0S1
n0n1

≡
∑

j

φ
S0
n0j

ψ
S1
n1j

(E8)

=
√

1 + σn1W

2

(
δj0+n0,j1+n1 + S0δj0−n0,j1+n1

)

+
√

1 − σn1W

2
S1

(
δj0+n0,j1−n1 + S0δj0−n0,j1−n1

)
.

(E9)

Here S0,S1 ∈ {−1,+1} are the symmetries of the pre- and
postquench eigenfunctions, and n0 and n1 are their quantum
numbers. Assuming without loss of generality that j1 > j0,
the pure S0 term is always zero, so that we obtain as squared
overlap

∣∣OS0S1
n0n1

∣∣2 = 1 + σn1W

4
δj0+n0,j1+n1

+ 1 − σn1W

4

(
δj0+n0,j1−n1 + δj0−n0,j1−n1

)
. (E10)

The postquench occupation function then takes the form

nS1
n1

=
N/2∑
n0=1

∑
S0=±1

(
1 + σn1W

4
δj0+n0,j1+n1

+ 1 − σn1W

4

(
δj0+n0,j1−n1 + δj0−n0,j1−n1

))
. (E11)

Since n1 has to be positive, we obtain

nS1
n1

=

⎧⎪⎨
⎪⎩

1 n1 � N/2 − �;
1−σn1 W

2 N/2 − � < n1 � N/2 + �;

0 otherwise.

(E12)

Hence the postquench center of mass is

x1 = 2

N

L/2∑
n1=1

(
j1 + σn1n1W

)
ns1

n1
(E13)

= 2

N

N/2−�∑
n1=1

(
j1 + σn1n1W

)

+ 2

N

N/2+�∑
n1=N/2−�+1

(
j1 + σn1n1W

)(1 − σn1W

2

)
. (E14)

Upon disorder averaging, any term containing an odd power
of σn1 vanishes, while the average of any even power of σn1 is
unity. Hence

x1 = 1

N

[
2j1

(
N

2
− �

)
+ j1(2�)

]
− W 2

N

N/2+�∑
n1=N/2−�+1

n1

(E15)

= j1 − �W 2 N + 1

N
(E16)

≈ j1 − �W 2. (E17)

The jump efficiency is given by the difference between this
postquench center of mass and the prequench one in units of
the jump size:

η ≡ x1 − j0

�
(E18)

≈ � − �W 2

�
(E19)

= 1 − W 2. (E20)

This is the qualitative behavior that we observe for small jump
sizes in Fig. 8.
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