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In this paper, we study theoretically atomic quantum simulations of a U(1) gauge-Higgs model on a three-
dimensional (3D) spatial lattice by using an extended Bose-Hubbard model with intersite repulsions on a
3D optical lattice. Here, the phase and density fluctuations of the boson variable on each site of the optical
lattice describe the vector potential and the electric field on each link of the gauge-model lattice, respectively.
The target gauge model is different from the standard Wilson-type U(1) gauge-Higgs model because it has
plaquette and Higgs interactions with asymmetric couplings in the space-time directions. Nevertheless, the
corresponding quantum simulation is still important as it provides us with a platform to study unexplored
time-dependent phenomena characteristic of each phase in the general gauge-Higgs models. To determine the
phase diagram of the gauge-Higgs model at zero temperature, we perform Monte Carlo simulations of the
corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the confinement and Higgs phases. To
investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the
extended Bose-Hubbard model. We simulate the time evolution of an electric flux that initially is put on a straight
line connecting two external point charges. We also calculate the potential energy between this pair of charges
and obtain the string tension in the confinement phase. Finally, we propose a feasible experimental setup for the
atomic simulations of this quantum gauge-Higgs model on the 3D optical lattice. These results may serve as
theoretical guides for future experiments.
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I. INTRODUCTION

In the last several years, quantum simulation has been
one of the most actively studied subjects in physics [1].
Stimulated by the enormous progress made in experimental
ultracold atomic systems, theoretical proposals have been
made for quantum simulations of various physical systems
and associated phenomena [2,3]. One such proposal is atomic
quantum simulation of lattice gauge theories (LGTs) [4–16].
LGT was introduced by Wilson in 1974 [17] to study the
mechanism of quark confinement in strong interactions. Since
then, various models of LGT have been studied, both analyt-
ically and numerically, in various fields of physics, including
high-energy physics [18], condensed-matter physics [19,20],
neural networks [21], etc.

The phases studied so far in various models of LGT have
been classified as either confinement, Coulomb, or Higgs
phases [17,18]. These phases and the corresponding phase
transitions are crucial concepts in various scenes of physical
phenomena. For LGT models with or without bosonic matter
fields, the static equilibrium properties such as the phase
diagram can be studied by standard Monte Carlo (MC)
simulations. On the other hand, for LGTs that include a finite
density of fermions, MC simulations generally suffer from
the negative-sign problem, and no convincing methods are
available to study the static properties. The atomic quantum
simulation does not suffer from the negative-sign problem.
Therefore, the realization of quantum simulation has been
strongly desired as a way to understand LGT of fermions.
Another, and essential, advantage of quantum simulations of
LGT models (with either bosons or fermions) is their ability
to simulate the real-time dynamics (time-development) of the
system. Such simulations can help us not only to study the
dynamical properties, such as the transport phenomena, but

also to intuitively understand the characteristics of each of
these three phases. For example, the spatiotemporal images
of the electric fluxes provide a visual representation of what
happens in each phase.

The implementation of the local gauge invariance, i.e.,
the Gauss-law constraint, is a key ingredient in an atomic
quantum simulation of LGT. For the pure compact U(1) LGT,
i.e., the theory of self-interacting compact U(1) gauge fields
without matter fields, the Gauss-law constraint is expressed
by the operator identity

∑3
i=1 ∇i Êr,i = 0, where ∇i is the

lattice difference operator (∇ifr ≡ fr+î − fr ) and Êr,i is the
electric-field operator on the link [see Eq. (7) below]. Some
proposals [4,5] have appeared to implement this Gauss law
in cold atom systems. However, they must necessarily take a
particular limit expressed as “γ → 0” for the strength γ −2 of a
certain set of interactions between atoms (see Table I in Sec. II
for the definition of γ ) [22]. This limit seems hard to achieve
experimentally, but the available atomic systems without this
limit give rise to

∑
i ∇i Êr,i ∝ γ ( �= 0) and certainly break the

local gauge symmetry.
In the previous work [13], we started with the so-called

extended Bose-Hubbard model, which is given by adding off-
site interactions to the Bose-Hubbard model. In the path from
the extended Bose-Hubbard model to a would-be gauge theory,
we encountered a γ -dependent term in the Hamiltonian [see
Eq. (4)], which explicitly breaks the gauge symmetry of the
pure gauge theory as in the models discussed in Refs. [4,5].
Instead of taking the limit γ → 0 to obtain the pure gauge
theory, we introduced a complex scalar field φ(x) (Higgs field)
and regarded this term as an interaction term between the
gauge field and the Higgs field. The relation

∑
i ∇i Êr,i ∝ γ

now represents the genuine Gauss law where the right-hand
side is nothing but the charge of this Higgs field. For this
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purpose, φ(x) should appear in its trivial form φ(x) = 1, that
is, (i) in the London limit, i.e., its radial fluctuations are frozen
as φ(x) = exp[iϕ(x)] [|φ(x)| = 1], and (ii) in the particular
gauge ϕ(x) = 0 [φ(x) = |φ(x)|] which is called the unitary
gauge.

Fixing a gauge is a justified procedure because we are
interested in a U(1) gauge theory, and the expectation value
of any gauge-invariant quantity and the related quantities such
as the phase diagram are independent of the gauge that one
fixes [17]. In this way, one may study a U(1) gauge theory
with Higgs field (in the London limit) for general γ . This
argument is general and applies to models similar to the
extended Bose-Hubbard model in arbitrary dimensions.

Next, we comment on our treatment of the Higgs field
in the London limit (freezing radial fluctuations). As is well
known, the unified theories of elementary particles, such
as the Weinberg-Salam theory, are gauge theories contain-
ing elementary fermions and Higgs bosons. Since Wilson’s
introduction of LGT [17] for the strong interaction, many
gauge-Higgs models have also been formulated as LGT and
studied intensively, both with and without radial degrees
of freedom |φx | [23]. These studies have proved that the
models in the London limit are widely accepted as interesting
models, because they describe the low-energy phase dynamics
faithfully (note that the radial excitations are massive) and
exhibit interesting phase structures and gauge-field properties
such as the Anderson-Higgs mechanism. In particular, the
study of the Higgs-confinement phase transition by these LGT
models is important because such a phase transition is expected
to have taken place in the early universe.

We list the relations between the original atomic model and
the target gauge model studied in Ref. [13]. The atomic model
is the extended Bose-Hubbard model on a 3D optical lattice and
the effective gauge model at low energies is the gauge-Higgs
model on a 3D lattice (we call it the gauge lattice).

(A1) The site a of the 3D optical lattice is the midpoint of
the link (r,r + î) of the gauge lattice, where r is the site of the
gauge lattice and î (i = 1,2,3) is the unit lattice vector in the
positive ith direction (see Fig. 1 in Sec. II).

(A2) The phase θ̂a of the bosonic operator ψ̂a =
exp(iθ̂a)

√
ρ̂a for the bosons sitting on site a is identified with

the U(1) gauge field θ̂r,i on the link (r,r + î). This guarantees
the U(1) periodicity of the gauge-Higgs model (compactness)
under θ̂r,i → θ̂r,i + 2π . In LGT, the electric-field operator Êr,i

is conjugate to the vector potential θ̂r,i . The above identification
implies that Êr,i corresponds to the amplitude operator

√
ρ̂a

of atoms.
(A3) We assumed that, on an average, the density of atoms

ρ̂a has a uniform distribution, that 〈ρ̂a〉 = ρ0, and that its fluctu-
ation η̂a ≡ ρ̂a − ρ0 is small compared to ρ0, η̂a/ρ0 	 1 at low
energies. So, we neglect higher-order terms than O((η̂a/ρ0)2)
in the effective action. In practice, these conditions may
suggest ρ0 � 10, which is achieved in a relatively easy manner
in experiments (see Sec. II for details). We stress that we do not
assume the Bose-Einstein condensation (BEC) of cold atoms
a priori; rather we are interested in the transition itself from a
disordered incoherent state to a BEC, because a BEC transition
corresponds to a confinement-deconfinement transition of a
gauge theory (see Sec. III).

Then the explicit relationship between the two models is
established; the interaction parameters of the gauge-Higgs
model are given by explicit functions of the parameters of
the extended Bose-Hubbard model. In Ref. [13] we obtained
the phase diagram of the corresponding (3 + 1)D U(1) gauge-
Higgs model defined on a (3 + 1)D lattice [24] for some set
of parameters. This phase diagram may be used as a guide
for experimentalists to select parameters for the extended
Bose-Hubbard model, i.e., parameters for experimental setups
of quantum simulations. Recently, the extended Bose-Hubbard
model has been realized for cold atoms on a 3D optical
lattice and some interesting experimental results have been
reported [25]. We are looking forward to hearing about
further results of experimental studies, especially those that are
relevant to LGTs that include the gauge-Higgs model studied
in the present paper.

Let us point out that our way to introduce the U(1) gauge
field by the points (A2) and (A3) is in strong contrast to
another way [5–12] using the quantum link model (gauge
magnet). The gauge-magnet recipe for U(1) gauge operator
prepares a multiplet of boson states |Saz〉 at each site a

with the multiplicity 2S + 1, and uses the pseudospin for-
malism. Then the electric field Êa is identified as Êa = Ŝaz.
Therefore, the eigenvalue Ea = Saz is restricted to the range
(−S,S). To recover the expected genuine support of the U(1)
momentum operator Ea ∈ Z (integer) one needs to take the
limit S → ∞. We note that, in Ref. [12], it is proposed that
the gauge symmetry is implemented by angular-momentum
conservation in the scattering processes between a matter
particle and a boson. However, the gauge field is a composite
of two bosons and is not a genuine U(1) field exp(iθ ) for
finite S.

In our second paper [26], we focused on the extended Bose-
Hubbard model in the two-dimensional (2D) optical lattice
and the resulting 2D gauge-Higgs model. A reason for choos-
ing the 2D system is that it is easier to set up experimentally
than the 3D system. We studied the following three points:

(B1) Phase diagram of the (2 + 1)D gauge-Higgs model as
well as the extended Bose-Hubbard model itself; we found that
the Coulomb phase is missing, as expected, from the study of
the related models [27].

(B2) Formulation and solution of the Gross-Pitaevskii
equation (GPE) [28–30] of the extended Bose-Hubbard model;
GPE [31] is an approximate but useful equation describing the
time evolution of a quantum system. It has been applied widely,
mainly in condensed-matter physics [29,30].

(B3) Proposal of two feasible methods to set up a practical
atomic simulator; one is based upon the excited bands of an
optical lattice and the other uses dipolar atoms in a triple-layer
optical lattice. These may help experimentalists to set up their
systems for a quantum simulation of LGT.

In this paper, we return to the 3D gauge-Higgs model
again, and present a detailed account of the first paper [13].
Furthermore, we study the following three new aspects:

(C1) We refine and generalize the phase structure.
(C2) We extend the GPE study of dynamical properties

made for the 2D gauge-Higgs model.
(C3) We propose a feasible experimental set up of a system

describing the 3D gauge-Higgs model.
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The structure of the paper is as follows. In Sec. II,
we introduce the 3D extended Bose-Hubbard model, the
Bose-Hubbard model with intersite interactions, and explain
how the gauge-Higgs model appears as its effective model
at low energies (i.e., at low temperatures). In Sec. III, we
discuss the results of the MC simulations of the resultant
gauge-Higgs model. The phase diagrams are shown and the
physical properties of each phase are explained. The Higgs
phase in the gauge theory corresponds to the superfluid phase
of cold atoms and the confinement phase corresponds to the
Mott-insulator phase, which has no phase coherence.

In Sec. IV, we study the dynamical properties of the gauge-
Higgs model by using GPE. In particular, we are interested
in the time evolution of an electric flux put on the links of
the gauge lattice. The electric flux behaves quite differently in
the confinement and Higgs phases. The string tension of the
electric flux is also calculated. In Sec. V, we propose feasible
experiments of the extended Bose-Hubbard model to simulate
the gauge-Higgs model. The recipe starts from a system of two
species of bosons (A and B atoms) and subsequently changes
over the optical-lattice structure to obtain the desired system
consisting only of the A atoms. Section VI is devoted to the
conclusions.

Our paper describes a somewhat lengthy and subtle analy-
sis, but this is necessary to make it self-contained. In Sec. II, the
important point is that the Hamiltonian of the suitably designed
atomic system Eq. (4) or Eq. (6) [after the transformation
Eq. (5)] can be identified by the gauge-Higgs model Eq. (6),
whose partition function is given by Eq. (16). Readers who
are not interested in the details of the statistical analysis of
the Monte Carlo simulations in Sec. III can skip this section,
except for the phase diagrams of Figs. 4 and 8. The contents
of Secs. IV and V would be the parts that, we expect, attract
most of the readers, because these parts are closely related to
the experimental observations.

To close this section, let us confirm the motivation for a
quantum simulation of this gauge-Higgs model. First, it is out
of criticism that the Wilson-type models [17] of LGT (which
are well known and studied mainly in high-energy physics)
are the primary targets of quantum simulations, because their
time-dependent behavior is certainly of great interest (for a
partial list of explicit fields of application, see Ref. [13]). These
models have symmetric couplings in the space-time directions,
thus reflecting relativistic invariance. In contrast, the present
gauge-Higgs model has asymmetric plaquette and Higgs
couplings [see Eq. (17) below], reflecting that the starting
point, the extended Bose-Hubbard model, is nonrelativistic.
However, quantum simulation of the gauge-Higgs model itself
does not lose its importance. As one reason for its existence
and usefulness, one may first list that there are currently no
realistic proposals available to simulate the Wilson-type U(1)
gauge-Higgs model, i.e., with symmetric plaquette couplings
with arbitrary strength, and with symmetric Higgs couplings.
This may sound like a passive reason, but we recall that we
have very little solid knowledge of time-dependent quantum
phenomena of 3D gauge theory. The present gauge-Higgs
model exhibits both the confinement and Higgs phases as
we will see in Sec. III. Any experimental information of the
time-dependent phenomena of this model, such as the motion
of electric flux in each phase, as we consider in Sec. IV, is thus

welcome. Second, we list and stress the importance of quantum
simulation of nonrelativistic models of LGT themselves in
condensed-matter physics. In this field, the gauge-theoretical
approach has proved to be a powerful method to understand
and describe physical phenomena [19], especially for systems
with strong correlations [20]. The explicit results for the time
development of an electric flux obtained in Sec. IV and in
Ref. [26] seem to support well these reasons for the importance
of quantum simulation of nonrelativistic gauge models.

II. FROM THE EXTENDED BOSE-HUBBARD MODEL
TO THE U(1) GAUGE-HIGGS MODEL

In this section, we start from the extended Bose-Hubbard
model that is to be realized by ultracold atom systems on an
optical lattice and show that it is equivalent to the 3D gauge-
Higgs model under certain conditions. For the optical lattice,
we choose the body-centered-tetragonal (bct) lattice where the
unit cell is a cuboid of size dx × dy × dz with dx = dy = d and
dz = √

2d. This bct lattice is illustrated in Fig. 1, where the
(black) circles denote its sites. These sites are the potential
minima and atoms may sit on them (see Sec. V for details). In
Fig. 1, we also draw the gauge lattice on which the gauge-Higgs
model is defined; its sites are shown by (red) squares. The
gauge lattice is a simple cubic lattice with the lattice spacing√

2d, so the volume of unit cell (
√

2d)3 is twice as large as that
of d2 × √

2d. Every optical lattice site sits on the midpoint of
a nearest-neighbor (NN) pair of sites of the gauge lattice, i.e.,
it sits on a link of the gauge lattice. As long as one imposes
that (i) the 3D gauge lattice is simple cubic and (ii) a link of
the gauge lattice corresponds to a site of the optical lattice, the
optical lattice has to be bct as shown in Fig. 1.

The Hamiltonian of the extended Bose Hubbard model on
this bct lattice is given by

HEBH = −
∑
a �=b

Jabψ̂
†
aψ̂b + V0

4

∑
a

ρ̂a(ρ̂a − 1)

+
∑
a �=b

Vab

2
ρ̂aρ̂b, (1)

where a and b denote the sites of the bct lattice, ψ̂a (ψ̂†
a ) is the

annihilation (creation) operator of the bosonic atom at site a

satisfying the canonical commutation relation [ψ̂a,ψ̂
†
b ] = δab,

and ρ̂a = ψ̂
†
aψ̂a is the atomic density. The parameter Jab(=Jba)

is the hopping amplitude between the pair of sites a and
b, whereas V0 and Vab(=Vba) are the on-site and off-site
interactions between atoms at a and (a,b), respectively. In
this work, we confine ourselves to the repulsive interactions
V0 > 0 and Vab > 0.

The values of Jab and Vab are shown in Table I. To explain
it, it is useful to partition unit cells of the optical lattice into
“even”-column cells (as the ones with the center sites 7, 7± in
Fig. 1) and “odd”-column cells (as the ones with 8, 8±), where
each column of cells extends in the z direction. Even and odd
columns are distinguished by their signature (−)x+y and face
each other alternatively as in a black-red checkerboard in the
x-y plane.
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FIG. 1. Sites of the bct (body-centered-tetragonal) optical lattice (black circles) and the simple-cubic gauge lattice (red squares). (a) Cuboid
having the eight vertices 1,2,3,4,1u,2u,3u,4u, the center 7, and dimensions d × d × √

2d . This is a unit cell of the bct optical lattice. These
sites are potential minima and cold atoms reside on them. The cube having eight vertices (red squares) and dimensions (

√
2d)3 is a unit cell of

the simple-cubic gauge lattice on which the gauge-Higgs model is defined. (b) The cross section in the x-y plane (i = 1,2 plane in the gauge
lattice). The combined 3D system of the optical lattice and the gauge lattice is obtained by piling up copies of this cross section along the z

(i = 3) direction with equal distance
√

2d and further inserting between them copies of another kind of cross section, which is made of only
the centers of the cuboids of the bct lattice [such as 7 and 8 in (a)]. The essence of the relation between these two lattices is that every link of the
gauge lattice corresponds to a site of the optical lattice, because every nearest-neighbor pair of red squares has a black circle on its midpoint.
We note that every other black circle [such as 8 in (a)] in the second cross section has no corresponding gauge link.

The NN pairs in the bct lattice of Fig. 1 have a distance d

and consist of two types: NN1—the ordinary pairs connecting
each corner in the x-y plane [as (1,2) in Fig. 2(a) and (1,6) in
Fig. 2(c)] and NN2—the pairs starting from each body-center
site [as (1,7) in Fig. 2(b)] because of the choice d3 = √

2d.
Then, Jab and Vab have the nonvanishing values Jab = J and
Vab = γ −2 for NN1 in all the unit cells and for NN2 in all the
even cells, and Jab = 0, Vab = 0 for NN2 in all the odd cells.
Jab are truncated up to the NN pairs and Jab = 0 for longer
pairs.

The next-NN (NNN) pairs have the distance
√

2d, and are
classified in two types: NNN1—the pair has a gauge lattice
site at its midpoint [such as (2,4) in Fig. 2(d)] and NNN2—the

pair does not have a gauge lattice site at its midpoint [such as
(1,5) in Fig. 1]. Then, Vab is nonvanishing as Vab = γ −2 for
NNN1, while Vab = 0 for NNN2. Here, Vab are truncated up
to the NNN pairs and Vab = 0 for longer pairs.

These settings of parameters might seem rather strange,
e.g., some NN and NNN pairs have the same value Vab = γ −2

[32]. However, it is necessary to relate this extended Bose-
Hubbard model to a model of LGT, and in Sec. V we present
a feasible experimental way to set up an atomic system that
describes the extended Bose-Hubbard model with this choice
of parameters.

To derive the effective gauge field theory from HEBH in
Eq. (1), we introduce an operator corresponding to the phase

TABLE I. Atomic parameters Jab and Vab in Eq. (1) for the bct optical lattice of Fig. 1. The parameters for the pairs (a,b) that have longer
distance than NNN are set zero. The pairs that belong to each of the (sub)groups (i), (ii), and (iv) are illustrated in Fig. 2. With this choice
of parameters, the extended Bose-Hubbard model can be equivalent to the 3D gauge-Higgs model. In particular, group (iv) is responsible for
Gauss law [See Eq. (7) below].

Group pairs in each group (a,b) Jab Vab

(i) NN1 and NN2 in an even unit cell (center site 7) (1,2), (2,3), (3,4), (4,1), (1u,2u), (2u,3u), (3u,4u), J γ −2

(4u,1u), (1,7), (2,7), (3,7), (4,7), (1u,7), (2u,7), (3u,7), (4u,7)
(ii) NN1 in an odd unit cell (center site 8) (1,6), (6,5), (5,4), (4,1), (1u,6u), (6u,5u), (5u,4u), (4u,1u) J γ −2

(iii) NN2 in an odd unit cell (center site 8) (1,8), (4,8), (5,8), (6,8), (1u,8), (4u,8), (5u,8), (6u,8) 0 0
(iv) NNN1 with a midpoint gauge lattice site (1,3), (2,4), (1u,3u), (2u,4u), (7,7+), (7,7−) 0 γ −2

(v) NNN2 with no midpoint gauge lattice site (1,5), (4,6), (1u,5u), (4u,6u), (1,1u), (2,2u), (3,3u), 0 0
(4,4u), (5,5u), (6,6u), (8,8+), (8,8−)
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FIG. 2. Illustration of pairs of sites in each (sub)group in Table I
with nonvanishing Jab and/or Vab. (a) NN1 of group (i), (b) NN2 in
group (i), (c) NN1 in group (ii), and (d) NNN1 in group (iv).

degrees of freedom θ̂a of ψ̂a as

ψ̂a = eiθ̂a

√
ρ̂a. (2)

Then ρ̂a and θ̂a are conjugate to each other, satisfying the
canonical commutation relation, [ρ̂a,θ̂b] = iδab. We further-
more separate ρ̂a into its mean value ρ̄a and the quantum
fluctuation η̂a as

ρ̂a = ρ̄a + η̂a. (3)

The value ρ̄a may be estimated in various ways: some mean-
field theory, more elaborated methods making use of self-
consistency, and/or numerical simulations. In this paper, we
consider the case in which a homogeneous state ρ̄a = ρ0 (a-
independent value) is realized. In Appendix A, we study a
simple mean-field theory to determine ρ̄a for the choice of
Table I. We show there that the inhomogeneous states compete
in energy with the homogeneous state, but for sufficiently
large on-site repulsion V0 compared to the intersite repulsion
γ −2, the homogeneous state has lower energy as expected. As
described in Appendix A, the homogeneous state is stable for
γ −2/V0 � 0.5 for sufficiently large average atomic density per
site. For the parameters that support the inhomogeneous state,
one may still have a chance to obtain a lattice gauge model
from the extended Bose-Hubbard model of Eq. (1). For this
purpose, however, the parameters Jab and Vab should be altered

from the values in Table I to those that reflect no uniformity of
ρ̄a . In short, Gauss law relates Jab not only to Vab but also to ρ̄a .

We identify each site a of the original bct optical lattice as
a link (r,i) ≡ (r,r + i) of the cubic gauge lattice on which the
gauge model is defined. Here, r = (x1,x2,x3) is the site of the
gauge lattice and i = 1,2,3 is the direction index (below we
also use i as the unit vector î). We take the directions i = 1,2
as shown in Fig. 1(b) and i = 3 to the z direction.

By setting ρ̄a = ρ0, choosing the parameters in the Hamil-
tonian HEBH in Eq. (1) according to Table I, and expanding the
density operator in powers of η̂a up to the second order, HEBH

of Eq. (1) becomes

HEBH|Table I = H ′
EBH + O[(η̂/ρ0)3],

H ′
EBH =

∑
r

⎡
⎣ 1

2γ 2

(∑
k

η̂k

)2

+ V ′
0

2

∑
k

(η̂k)2

−ρ0J
∑
(m,n)

cos(θ̂m − θ̂n)

⎤
⎦, V ′

0 ≡ V0 − 2

γ 2
, (4)

where k = 1,2,3,4,7,7− represents the six optical lattice sites
surrounding r with the distance d/

√
2, and (m,n) = (1,2), (2,3),

(3,4), (4,1), (7,1), (7,2), (7,3), (7,4), (7−,1), (7−,2), (7−,3),
(7−,4), are the 12 NN optical lattice pairs surrounding r . We
note that the condition of homogeneous state γ −2/V0 � 0.5
implies that V ′

0 > 0.
Let us make some comments on H ′

EBH. As explained in
Appendix A, the average value ρ0 is adjusted so that no
linear terms in η̂a appear in H ′

EBH. Further, a straightforward
expansion of HEBH up to O(η̂2) gives rise to an extra J

term ∝ J η̂
†
mη̂n exp[i(θm − θn)] + H.c. We neglected this term

because our main interest is the BEC transition of cold
atoms, since this transition corresponds to the confinement-
deconfinement transition in gauge theory (see Sec. III). Due
to the limited accessibility to extremely low temperatures, the
average density ρ0, which generally increases as the transition
temperature rises, cannot be set arbitrarily small. One expects,
e.g., that ρ0 � 10 in practical experiments. Then the extra
J term can be neglected due to an extra suppression factor
ρ−1

0 (� 10−1) compared to the last ρ0J term in H ′
EBH. We note

that the coefficients γ −2 and V ′
0 of the remaining two terms in

H ′
EBH should compete with ρ0J near the phase transition, i.e.,

these three parameters are roughly of the same order. This point
is confirmed a posteriori in the phase diagram Fig. 8 in Sec. III.

In the U(1) gauge theory, the vector potential θ̂r,i and the
electric field Êr,i on the link (r,i) are a set of canonically con-
jugate operators satisfying [Êr,i ,θ̂r ′,i ′ ] = −iδrr ′δii ′ [33]. They
have the eigenvalues θr,i ∈ [0,2π ) mod(2π ) and Er,i = 0, ±
1, ± 2, . . . ∈ Z as mentioned in Sec. I. Therefore, we identify

θ̂r,i ≡ (−)r θ̂a, Êr,i ≡ −(−)r η̂a, (5)

where (−)r = (−)x1+x2+x3 (we use the same letter θ for the
optical and gauge lattice). It is straightforward to check that
θ̂r,i and Êr,i are a canonical pair. The sign factor (−)r plays a
crucial role to obtain the Gauss-law equation as seen below.
At this stage, we stress that the behavior of the electric field
such as motion of the electric fluxes is simulated by observing
the density fluctuations of the extended Bose-Hubbard model
experimentally.
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FIG. 3. Illustration of
∑

k η̂k in Eq. (4). k is the six optical-lattice
sites NN corresponding to a gauge-lattice site r . The relation between
the density fluctuation η̂k and the electric field of Eq. (5) [the figure is
for the odd site r with (−)r = −1] converts the summation

∑
k η̂k of

the lattice divergence of electric fields Êr,i into
∑

k η̂k = ∑
i(Êr,i −

Êr−i,i) = ∑
i ∇i Êr,i ∝ div 
E(
r).

By rewriting H ′
EBH in Eq. (4) in terms of θ̂r,i and Êr,i ,

and sorting some terms suitably, we obtain the following
Hamiltonian HGH of the gauge-Higgs model:

HGH ≡ H ′
EBH =

∑
r

Hr,

Hr = 1

2γ 2

[∑
i

(Êr,i − Êr−i,i)

]2

+ V ′
0

2

∑
i

Ê2
r,i

− ρ0J
∑
i<j

[cos(θ̂r,i − θ̂r,j ) + cos(θ̂r,i + θ̂r+i,j )

+ cos(θ̂r+i,j − θ̂r+j,i) + cos(θ̂r,j + θ̂r+j,i)]. (6)

The first γ −2 term in HGH is just a rewriting of the first term
of H ′

EBH of Eq. (4) by using Eq. (5) as
∑

k η̂k = ∑
i(Êr,i −

Êr−i,i). This is illustrated in Fig. 3. The last ρ0J term in
HGH comes from the NN hopping term of the extended Bose-
Hubbard model and represents the interaction between two
phases put on the two links on the gauge lattice such as (r,i)
and (r,j ). These two links have a common gauge lattice site (r)
and make a right angle, forming an L shape. The four terms in
the square bracket represent the four L shapes, and they are four
pieces contained in the plaquette (r,r + i,r + i + j,r + j ) of
the gauge lattice. The relative signature between the two phases
is determined by the factor (−)r in Eq. (5).

To reveal that the system (6) can be regarded as a gauge
system, let us investigate Eq. (6) term by term. The first
term describes Gauss law. This term can be regarded as the
Gaussian distribution of the divergence of Er,i . In fact, its
coefficient (2γ 2)−1 determines the variance as γ 2. Therefore,
the expectation value Er,i of Êr,i can be estimated as∣∣∣∣∣

∑
i

∇iEr,i

∣∣∣∣∣ � γ, ∇iEr,i ≡ Er,i − Er−i.i . (7)

We note that
∑

i ∇iEr,i has the continuum limit ∝ div 
E(r) as
d → 0 [33]. Equation (7) is Gauss law on the gauge lattice
with a matter-field charge density ∝ ±γ . In the path-integral
formulation below (using real time instead of imaginary time),
we will identify this matter field with a complex scalar field
φ̂r (charged Higgs field) in the London limit. By taking the

limit γ 2 → 0, Eq. (7) reduces to
∑

i ∇i Êr,i = 0, i.e., Gauss
law without matter fields. The second term with Ê2

r,i is the
well-known energy density of the electric field [33]. The third
term explicitly breaks the gauge invariance under the U(1)
local gauge transformation,

θ̂r,i → θ̂ ′
r,i = λr+i + θ̂r,i − λr,

Êr,i → Ê′
r,i = Êr,i , (8)

where λr is a real r-dependent parameter. However, as shown
in our previous work [13], this term is closely related to a
gauge-invariant term. We will explain it later in detail.

The partition function of the quantum system HGH of Eq. (6)
on the gauge lattice at the temperature T is formulated by the
path-integral method [17,19]. To this end, we introduce the
four-dimensional lattice by piling up 3D gauge lattices along
the imaginary-time [τ ∈ [0,β], β ≡ (kBT )−1] direction with
the spacing �τ . We call this four-dimensional hypercubic
lattice the (3 + 1)D gauge lattice, and label its sites as
x = (x0,r) = (x0,x1,x2,x3), with x0 = 0,1, . . . ,L0 and �τ =
β/L0. To be precise, the limit L0 → ∞ should be taken [18].
However, in the actual Monte Carlo simulations to determine
the phase structure of LGT models, it is common to keep �τ

finite and draw useful results by applying scaling arguments,
etc. [18]. We follow this approach in the next section.

Then the partition function of HGH on the gauge lattice is
given in the canonical formalism as follows:

ZGH =
∫

[DEx,i][Dθx,i]

× exp

[
�τ

(
i
∑
x,i

Ex,i θ̇x,i −
∑
x0

HGH(θ,E)

)]
,

∫
[DEx,i][Dθx,i] =

∏
x,i

∑
Ex,i∈Z

∫ π

−π

dθx,i

2π
,

θ̇x,i = 1

�τ
(θx+0,i − θx,i) = 1

�τ
∇0θx,0, (9)

where HGH(θ,E) is the c number obtained by replacing the
operators θ̂r,i and Êr,i in HGH of Eq. (6) by their eigenvalues
θx,i and Ex,i , respectively.

Below we follow Ref. [13] to obtain the path-integral
expression of ZGH in the Lagrange formalism in terms of the
four-component gauge field θx,μ ∈ [0,2π ] defined on the link
(x,x + μ), where μ = 0,1,2,3 represents the direction index
(and the unit vector as before). First, we introduce the auxiliary
field θx,0, the zeroth component of the vector potential, and put
on the link (x,x + 0) in the zeroth direction of the (3 + 1)D
gauge lattice through the usual Gaussian integration

exp

⎡
⎣− �τ

2γ 2

(∑
i

∇iEx,i

)2
⎤
⎦

∝
∫ ∞

−∞
dθx,0 exp

(
− γ 2

2�τ
θ2
x,0 + iθx,0

∑
i

∇iEx,i

)

∝
∫ π

−π

dθx,0 exp

(
γ 2

�τ
cos θx,0 + iθx,0

∑
i

∇iEx,i

)
. (10)
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Here, we replaced θ2
x,0 by 2(1 − cos θx,0), respecting the

periodicity under θx,0 → θx,0 + 2π , which is required by the
Ex,i summation over Ex,i ∈ Z. The partition function ZGH is
then given by

ZGH =
∫

[DEx,i][Dθx,i][Dθx,0] exp[A(E,θ )],

A(E,θ ) =
∑

x

[
γ 2

�τ
cos θx,0 + i

∑
i

Ex,i(∇0θx,i − ∇iθx,0)

−�τ
V ′

0

2

∑
i

E2
x,i − �τH3

]
,

H3 = −ρ0J
∑
i<j

[cos(θx,i − θx,j ) + cos(θx,i + θx+i,j )

+ cos(θx+i,j − θx+j,i) + cos(θx,j + θx+j,i)]. (11)

At this stage, we derive the Gauss law which describes
Eq. (7) in a precise manner as the Schwinger-Dyson equa-
tion [34] corresponding to the variation with respect to θx,0.
In fact, we have the identity that the surface term in the θx,0

integration vanishes:∫
[DEx,i][Dθx,i][Dθx,0]

∂

∂θx,0
exp[A(E,θ )] = 0

→
∫

[DEx,i][Dθx,i][Dθx,0]
∂A(E,θ )

∂θx,0
exp[A(E,θ )] = 0

→
〈
∂A(E,θ )

∂θx,0

〉
= 0. (12)

This gives rise to〈
∂

∂θx,0

[
i
γ 2 cos θx,0

�t
+ iθx,0

∑
i

∇iEx,i

]〉
= 0

→
∑

i

∇i〈Ex,i〉 = 〈Jx,0〉, Jx,0 ≡ γ 2 sin θx,0

�t
, (13)

where �τ has been replaced by i�t reflecting the relation for
the real time t = −iτ . Equation (13) describes the Gauss law
for the present gauge Higgs model of Eq. (11) [35].

Returning to the path to obtain the gauge-Higgs model, we
perform

∫
[DEx,i] for each x by using Poisson’s summation

formula as

∏
x,i

∑
Ex,i

exp

[
i
∑
x,i

Ex,i(∇0θx,i − ∇iθx,0) −
∑
x,i

�τ
V ′

0

2
Ex,i

]2

=
∏
x,i

∫ ∞

−∞

dχx,i

2π

∞∑
mx,i=−∞

exp

[
i
∑
x,i

χx,i(∇0θx,i − ∇iθx,0)

−
∑
x,i

(
�τ

V ′
0

2
χ2

x,i − 2πiχx,imx,i

)]
∝

∏
x,i

∑
mx,i

exp

[
−

∑
x,i

1

2�τV ′
0

(∇0θx,i − ∇iθx,0 + 2πmx,i)
2

]
. (14)

The last line is just a periodic Gaussian form. We utilize
Villain’s approximation in the inverse way to replace it by
the following cosine form up to a multiplicative constant:

exp

[∑
x,i

1

�τV ′
0

cos(∇0θx,i − ∇iθx,0)

]
. (15)

ZGH is then expressed as follows;

ZGH =
∫

[Dθx,μ] exp(AGH),

AGH = AI + AP + AL,

AI =
∑
x,μ

c1μ cos θx,μ, AP =
∑

x,μ<ν

c2μν cos θx,μν,

θx,μν ≡ θx,μ + θx+μ,ν − θx+ν,μ − θx,ν,

AL =
∑
x,i<j

c3ij [cos(θx,i − θx,j ) + cos(θx,i + θx+i,j )

+ cos(θx+i,j − θx+j,i) + cos(θx,j + θx+j,i)], (16)

where ν = 0,1,2,3 and i,j = 1,2,3 are spatial indices as
before.

From HGH in Eq. (6) and through the way to introduce the
scalar potential θx,0, the nonvanishing coefficients in Eq. (16)

are listed as follows:

c1 ≡ c10 = γ 2

�τ
,

c2 ≡ c201 = c202 = c203 = 1

�τV ′
0

,

c3 ≡ c312 = c313 = c323 = Jρ0�τ. (17)

Therefore, the effective action AGH(θx,μ) has asymmetric cou-
plings concerning the space-time directions. This is in strong
contrast with the LGT models of high-energy physics [17],
which is made obvious in the plaquette term AP. The Wilson
model [17] has c2μν = c2, while Eq. (17) shows that c2ij = 0
for the plaquettes in the space-space directions. Here, we note
that there are some proposals for generating the space-space
plaquette interactions in the context of quantum simulation of
LGT using cold atomic systems [4,5,36,37] such as making
use of the second-order perturbation theory and assuming that
the L-shaped interaction in AL is a small perturbation.

We comment here on the gauge invariance in the Lagrange
formalism. The terms AI and AL in the effective action AGH(θ )
break the gauge invariance under the 4D transformation,
θx,μ → λx+μ + θx,μ − λx . However, one may introduce the
gauge-invariant gauge-Higgs action ÃGH(θ,ϕ) for θx,μ and the
phase ϕx of the Higgs field φx = exp(iϕx) in the London limit.
This ÃGH(θ,ϕ) is defined simply by the replacement θx,μ →
θx,μ − ϕx+μ + ϕx in AGH(θ ) as ÃGH(θ,ϕ) ≡ AGH(θ − ϕ + ϕ)
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[its explicit form is given in Eq. (11) of Ref. [13]]. It is invariant
under the combined gauge transformation,

θx,μ → λx+μ + θx,μ − λx, ϕx → ϕx + λx, (18)

by construction. Then AGH(θ ) becomes just the gauge fixed
version of ÃGH(θ,ϕ) in the unitary gauge ϕx = 0; AGH(θ ) =
ÃGH(θ,0). At the level of the partition function, the equivalence

Z̃GH ≡
∫

[Dθx,μ][Dϕx] exp[ÃGH(θ,ϕ)] = ZGH, (19)

holds.
From this gauge-invariant action ÃGH(θ,ϕx), some impor-

tant properties of the Higgs field are drawn. The ÃI term with
c1μ = c1δμ,0 reads as

ÃI(θ,ϕ) = c1

2

∑
x

[φ∗
x+0 exp(iθx,0)φx + c.c.]. (20)

Its first term describes propagation of a Higgs particle along the
time axis in the positive direction as for an ordinary particle,
whereas the second term describes its back propagation as
for an antiparticle [19]. Therefore, the present Higgs particles
are accompanied with their antiparticles having charges with
the opposite sign. This is not strange at all, although we
treated the atoms described by the extended Bose-Hubbard
model as totally nonrelativistic ones without their antiparticles.
The Higgs charge density is calculated from the action ÃI

in Eq. (20) as J̃x,0 = −∂ÃI(θ,φ)/∂θx,0 = c1 sin(θx,0 − ϕx+0 +
ϕx), which is nothing but the gauge-invariant version Jx,0

appearing in Eq. (13). This confirms that Eq. (13) represents
the Gauss-law constraint of the gauge-Higgs model defined
by ÃGH. In a similar manner, the Higgs current density
J̃x,i is calculated from the c3 term of the action ÃGH(θ,φ)
as J̃x,i = −∂ÃL(θ,φ)/∂θx,i = ∑

j c3ij sin(θx,i − θx,j ) + · · · .
The conservation law

∑
μ ∇μJ̃x,μ = 0 holds owing to the

gauge invariance.
Finally, to explain our treatment of gauge invariance and

the London limit explicitly, we derive Z̃GH of Eq. (19) starting
with the gauge invariant Hamiltonian,

Ĥ ′ =
∑

r

�̂†
r �̂r + V ′

0

2

∑
r,i

Ê2
r,i

−ρ ′
0J

2

∑
r,i<j

[�̂†
r+i+j Ûr+i,j Ûr,i�̂r + H.c. + · · · ]. (21)

Here �̂r is the genuine complex Higgs field (having radial
fluctuations) and �̂r is its conjugate momentum satisfying
[�̂r ,�̂r ′ ] = iδrr ′ , and Ûr,i ≡ exp(iθ̂r,i). We restrict our physi-
cal space |phys〉 as

P̂ |phys〉 = 0, P̂ ≡
∏

r

δĜr ,0, Ĝr ≡
∑

i

∇i Êr,i − Q̂r ,

Q̂r = −i : �̂r�̂r − �̂†
r �̂

†
r := â†

r âr − b̂†r b̂r , (22)

where â (b̂) is the annihilation operator of the
Higgs (anti)particles, which are introduced as �̂r ≡ (âr +
b̂
†
r )/

√
2, �̂r ≡ i(â†

r − b̂r )/
√

2]. By starting with Z′ =
TrP̂ exp(−βĤ ′), and following the standard method [23,38]

we obtain

Z′ =
∫

[Dθx,μ][D�x] exp[A′(θ,�)],

A′(θ,�) = exp

[
−

∑
x

[�̄x+0(�x+0 − Ux,0�x) + c.c.]

+AP + ρ ′
0J

2

∑
x,i<j

(�̄x+i+jUx+i,jUx,i�x

+ c.c. + · · · )

]
, (23)

where AP is given in Eq. (16). By replacing �x as �x →
γ /

√
2�τ × φx and choosing as ρ ′

0γ
2/(2�τ ) = ρ0, we obtain

Z̃GH of Eq. (19). This implies that Z̃GH restricts the physical
states in the hard-constraint level of Eq. (22). As explained, by
setting φx = 1(ϕx = 0) we arrive at ZGH of Eq. (16).

III. PHASE DIAGRAM OF THE U(1) GAUGE-HIGGS
MODEL: MC SIMULATION

In the previous section, we explained how the 3D U(1)
gauge-Higgs model of Eq. (6), or equivalently its path-integral
expression Eq. (16) on the (3 + 1)D lattice, appears from the
extended Bose-Hubbard model of Eq. (1) on the 3D optical
lattice as its low-energy effective model. Therefore, we expect
that various dynamical properties of this gauge-Higgs model
will be “quantum simulated” by cold atomic gases in near
future. On the other hand, its static properties such as the phase
structure and correlation functions may be studied by various
conventional techniques. Such information is certainly useful
in understanding the model and also as a guide to perform
cold-atomic experiments.

In this section, we study the phase diagram of the 3D
gauge-Higgs model by applying the standard (“classical”)
MC simulation to the (3 + 1)D system of Eq. (16). This
brings no difficulties such as the negative-sign problem
because the system involves only bosonic variables and has
a positive definite probability. In high-energy physics, the
(3 + 1)D U(1) gauge-Higgs model [17,18] that is related to
the present gauge-Higgs model has symmetric couplings and
is defined by Eq. (16) by setting c1μ = c1, c2μν = c2, c3ij = 0.
Its phase diagram is known to have three phases, i.e., the
confinement, Coulomb, and Higgs phases [17,19]. They are
distinguished by the strength of fluctuations of θx,μ as large,
medium, and small, respectively. In addition, the potential
energy V (r) between two point sources of opposite charge
and separated by distance r has different typical behavior as
V (r) ∝ r, 1/r, exp(−mr)/r , respectively.

Generally speaking, these three phases are distinguished
by the fluctuations of the gauge field �θx,μ and fluctuations
of the phase of the Higgs field �ϕx . The confinement phase
has a large �θx,μ and �ϕx , the Coulomb phase has a small
�θx,μ and large �ϕx , and the Higgs phase has a small
�θx,μ and �ϕx . In a gauge-fixed representation such as
Eq. (16), �ϕx is not defined. In this case, �θx,μ decreases
in the order of confinement, Coulomb, and Higgs phases. In
addition, one may measure the averages and fluctuations of the
Higgs-coupling terms such as AI and AL of Eq. (16) term by
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FIG. 4. Phase diagram in the c1-c3 plane for various values of c2

calculated by Monte Carlo simulation of the (3 + 1)D lattice of the
size L4 (L = 16). The Higgs and confinement phases are separated
by the first-order (1st) or second-order (2nd) phase-transition lines.
The first- and second-order transitions are represented by filled and
empty symbols, respectively. The transition points are measured from
the peak of C for a second-order transition and the midpoint of the
hysteresis curve of U for a first-order transition. The error bars for
the first-order transition indicate the size (starting and ending points)
of hysteresis along the c3 axis.

term. These values may be used to judge whether the system
is in the Higgs phase or not.

Because the present gauge-Higgs model has the asymmetric
couplings c1μ and c2μν in four directions and additional c3ij

couplings as shown in Eq. (17), its phase diagram should
be examined separately, and we expect some richer phase
structure.

To calculate the phase diagram, we measure the following
“internal energy” U and “specific heat” C as functions of the
coupling constants:

U = 〈AGH〉/L4,

C = 〈(AGH − 〈AGH〉)2〉/L4, (24)

where we consider the (3 + 1)D space-time hypercubic lattice
with the common linear size Lμ in the μth direction, and
use Lμ = L with periodic boundary condition [39]. An
explanation of our MC calculations and some supplementary
results such as scaling analysis are given in Appendix B. The
thermodynamic limit is given by taking L → ∞, which we
shall discuss later, together with the path-integral requirement
�τ → 0. We determine the order of the phase transition by
checking the behaviors of U and C as follows: (i) If U exhibits
a hysteresis (a jump �U �= 0) as we change a parameter back
and forth, it is a first-order transition; (ii) if C has a peak
increasing as L increases, it is a second-order transition; (iii)
if U has no hysteresis and the peak is round or does not develop
as L increases, it is a crossover (no genuine transition) [40].

In Fig. 4, we show the phase diagram in the c1-c3 plane
for several fixed values of c2. There are two phases. Below
we shall see that the phase in the lower c3 region is the
confinement phase and the phase in the higher c3 region
is the Higgs phase. They are separated by a first-order or
second-order phase transition line. In Fig. 5, we present the

FIG. 5. Typical behavior of the internal energy U and specific
heat C of Eq. (24) for L = 16. (a) U and (b) C for c1 = 0.9 and
c2 = 1.2 show a second-order phase transition at c3 � 0.21. (c) U and
(d) C for c1 = 0.2 and c2 = 2.4 show a first-order phase transition at
c3 � 0.185 ∼ 0.235. The hysteresis loop in (c) is obtained as we first
increase c3 and then decrease it.

two sets U and C as functions of c3 for fixed c1 and c2,
which exhibit a typical second-order and first-order transition,
respectively. For the first-order transitions, the hysteresis effect
obscures the location of the transition point. In Fig. 4, we plot
the midpoint of the hysteresis curve as the transition point.
For a precise determination of the transition point, we need
another algorithm such as the multicanonical ensemble [41],
which is a future problem.

To identify the nature of the two phases in Fig. 4, we
measure the fluctuations (uncertainty) �E of the electric field

E and the fluctuation �B of the magnetic field 
B. Explicitly

we use the following quantities:

We ≡ 1

3L4

∑
x,i

〈(Ex,i − 〈Ex,i〉)2〉

= 1

3L4

∑
x,i

[
c2〈cos θx,0i〉 − c2

2〈sin2 θx,0i〉
]
, (25)

Wm ≡ 1

3L4

∑
x,i<j

〈(sin θx,ij − 〈sin θx,ij 〉)2〉, (26)

where θx,μν is defined in Eq. (16), i.e., the field strength defined
on the plaquette (x,x + μ,x + μ + ν,x + ν). In Eq. (25), the
second equality is obtained by following the path from Eqs. (9)
to (16) by adding the source term for Ex,i to the action. The
detailed derivation of We is shown in Appendix C. Because
the relation Bi(x) ∝ ∑

jk εijkθx,jk(εijk is the completely anti-
symmetric tensor) holds in the continuum limit [17,18,33],
its simple compactification

∑
jk εijk sin θx,ij is taken as a

natural candidate for the magnetic field Bx,i on lattice [27,42].
Then Wm of Eq. (26) is just the square of the fluctuation,
(�B)2 = (3L4)−1 ∑

x,i 〈(Bx,i − 〈Bx,i〉)2〉.
There exist the correlations that large Wm implies large �B

and �θx,i , and large We implies large �E and small �θx,0

because θx,0 is the variable conjugate to
∑

i ∇iEx,i . From the
characterization of each phase given above, the confinement
phase has small �E and large �B, while the Higgs phase and
Coulomb phase have small �B and large �E.
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FIG. 6. Fluctuation strengths of the electric and magnetic fields,
We and Wm of Eqs. (25) and (26) for L = 16. Panels (a) and (b) show
We and Wm, respectively, for c1 = 0.9 and c2 = 1.2, while (c) and
(d) show those for c1 = 0.2 and c2 = 2.4, respectively. We is small
(large) in the smaller (larger) c3 region, whereas Wm behaves the other
way around. From their behaviors, we can identify the confinement
and Higgs phases as in the phase diagram in Fig. 4.

In Fig. 6, we show We and Wm for the parameters chosen
in Fig. 5. In the phase with smaller c3, We (Wm) is small
(large). Hence, this phase is the confinement phase. On the
other hand, since We (Wm) is large (small) in the phase with
larger c3, this phase can be either the Higgs or Coulomb phase.
Because larger c3 implies that the c3 Higgs-coupling term AL

has a larger expectation value and smaller fluctuations than the
confinement phase at smaller c3, it should be the Higgs phase.
This conclusion is confirmed by measuring 〈AL〉 and the c3

specific heat (�AL)2 ≡ 〈A2
L〉 − 〈AL〉2 directly.

The characteristics of the confinement phase, i.e., largeness
of �B, is sometimes rephrased as a condensation of magnetic
monopoles [27]. Magnetic monopoles describe topologically
nontrivial configurations of the magnetic field strength θx,ij ,
i.e., configurations having “large” θx,ij . To define the monopole
density Qx , we decompose θx,ij into its integer (large) part
2πnx,ij (nx,ij ∈ Z) and the remaining (small) part θ̃r,ij as

θx,ij = 2πnx,ij + θ̃x,ij , (−π < θ̃r,ij < π ), (27)

where nx,ij ( �= 0) describes nothing but the Dirac string
(quantized magnetic flux) penetrating the plaquette (x,ij ).
Then, the monopole density Qx is defined [42] as

Qx ≡ −1

2

∑
i,j,k

εijk(nx+i,j,k − nx,jk)

= 1

4π

∑
i,j,k

εijk(θ̃x,jk − θ̃x,jk), (28)

where the last equality comes from the identity∑
i,j,k εijk(θx+i,jk − θx,jk) = 0 (lattice version of div · rot =

0). Therefore, Qx measures the total magnetic fluxes emanat-
ing from the 6 surfaces (plaquettes) of the 3D cube centered at
the dual lattice site x + 1̂

2 + 2̂
2 + 3̂

2 . Qx certainly expresses
the magnitude of the topologically nontrivial fluctuations
of the space-component of the gauge field θx,i in a local
and gauge-invariant manner. In Fig. 7, we plot the average

FIG. 7. Magnetic monopole density Q ≡ 〈Qx〉 [see Eq. (28)] for
L = 16; (a) c1 = 0.9,c2 = 1.2 and (b) c1 = 0.2,c2 = 2.4. They have
behaviors that are similar to the corresponding Wm in Fig. 6.

Q ≡ 〈Qx〉 for the two cases shown in Figs. 5 and 6. It has a
behavior similar to that of Wm of Fig. 6; as expected, Q is large
in the confinement phase and very small in the Higgs phase.

To understand the phase structure of the gauge-Higgs
model, let us focus on the order of the phase transitions in
Fig. 4. This may be summarized as follows: as c3 increases
while c1 and c2 are fixed, the transition from the confinement
phase to the Higgs phase is second order for large c1 and small
c2 and shifts to first order as c1 decreases and/or c2 increases.
This crossover of the order is an interesting phenomenon itself.
One may conceive a few plausible arguments to explain this
point. Although it is not rigorous, we present one such an
argument in Appendix D. It is based on known facts about the
related models and an interpretation of the system (16) as a sum
of mutually interacting two XY spin systems. One system has
the action AI of Eq. (16) and consists of the time component
of the gauge field θx,0. The other system has the action AL of
Eq. (16) and consists of the space component θx,i . A synthetic
effect between these two systems, driven by the coupling
action AP of Eq. (16), may convert an ordinary second-order
transition to a first-order one. This is one of the characteristics
of the present system having asymmetric couplings in the
space-time directions, which reflects the nonrelativistic nature
of the starting extended Bose-Hubbard model. This is in sharp
contrast with the LGT studied in high-energy physics [17],
which has symmetric couplings in the space-time directions
reflecting the relativistic invariance.

At this point, we mention the possibility of the Coulomb
phase in our system. A typical example of the Coulomb
phase is the ordered phase of θx,μ in the 4D Wilson model
(c1μ = c3μν = 0, c2μν = c2) for c2 � 1.0. For the symmetric
4D U(1) gauge-Higgs model (c1μ = c1, c2μν = c2, c3μν = 0),
it appears in the region of large c2 and small c1 (it is a smooth
extension from the Coulomb phase of the Wilson model). It is
also known that the 3D Wilson model has only the confinement
phase and no Coulomb phase [27]. In our system, because the
spatial-spatial plaquette term is missing, c2ij = 0, it is rather
hard to expect the Coulomb phase. In fact, we checked that the
specific heat C(c2) at c1 = c3 = 0 has no peaks developing as
L(�16) increases. This indicates that the Coulomb phase does
not show up and the confinement phase dominates along the c2

axis. In addition, we comment here on the approach in Ref. [5].
It is argued there, in the context of the gauge magnet, that the
second-order perturbation of a small c3ij term may generate
the c2ij term effectively, but the present argument and Fig. 4
indicate that such a c2ij is not large enough to generate the
Coulomb phase.
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Next, we discuss how to manage the limit of �τ → 0,
which is required in the precise path-integral treatment. This
is important when we use the present MC result such as
the phase diagram Fig. 4 as a guide to set up experiments
and interpret their results. For practical MC simulations, as
mentioned in Sec. II, we use sufficiently large but finite size
L0 in the imaginary-time direction with the finite-size scaling
hypothesis, which, in our symmetric choice Lμ = L, implies
the thermodynamic limit at the same time. We are interested in
the sufficiently low temperature region T < TBH, where TBH

may be ∼10 nK by setting the parameters of HEBH suitably to
focus on quantum phase transitions instead of thermal phase
transitions. This temperature region T � 0 is consistent with
the limit L → ∞ in our symmetric choice Lμ = L [17,18].

Equation (17) shows that the limit �τ → 0 with the
physical parameters γ −2, V ′

0, J, ρ0 kept finite implies
that the dimensionless parameters approach the limits
c1, c2 → ∞, c3 → 0 in the space of ci . To discuss the
possible phase transition, etc., we need to “enlarge” this
limiting point in some way. This is possible by calculating the
transition points for finite ci’s by using U and C at sufficiently
large, but finite, L’s such that they exhibit scaling behaviors.
Then we map these points into a new space parametrized
by �τ -independent combinations of ci’s, and extrapolate
these boundaries to the limit c1,c2 → ∞,c3 → 0. These
extrapolated boundaries are genuine transition points for
�τ → 0. They are not a single point anymore and carry
nontrivial information as in a typical phase diagram in a
certain parameter space for quantum phase transition.

To follow this program explicitly, we redraw in Fig. 8 the
four phase-boundary curves for each c2 in Fig. 4 into the two-
dimensional plane of the horizontal axis; c1/c2 = γ 2V ′

0 and
the vertical axis c2c3 = Jρ0/V ′

0 [Fig. 8(a)] and c1c3 = γ 2Jρ0

[Fig. 8(b)]. Here we note that Fig. 4 is drawn by using the data
of L = 16, where L = 16 is supported to be in the scaling
region by the scaling analysis in Appendix B. Then we discuss
the extrapolation of these boundaries as c2 → ∞ [43]. We
note that the dimensions of the parameter space reduce as 4
(original; γ 2,J,ρ0,�τ ) → 3 (dimensionless; c1,c2,c3) → 2
[�τ -eliminated; c1/c2,c2(c1)c3].

In Fig. 8(a), the boundary curve shifts upward systemat-
ically as c2(= 0.4,0.8,1.2,2.4) increases, but its part of the
second-order transition seems to converge as c2 → ∞ to a
fixed curve given by c2 = 1.2 and 2.4 (they are almost degen-
erate). Part of the first-order transition still develops and there is
no sign of convergence. In Fig. 8(b), the four boundary curves
show a rather clean convergence behavior to the degenerate
curves of c1 = 1.2 and 2.4, where the deviation in the first-
order points above are not visible because the relevant region
in Fig. 8(a) is now condensed near the origin. In Fig. 8(c),
we replot the four curves of Fig. 4 in the 1/(γ 2Jρ0)-V0/(Jρ0)
plane, i.e., the normalized (off site)-(on site) density-density
interactions at large ρ0. Similar phase diagrams are often drawn
for the systems with small fillings (small ρ0) [44], and this
diagram may be helpful in choosing interaction parameters
in the experimental setups. Again, it shows rather clear
convergence behavior of the curves of c2 = 1.2 and 2.4 [45].

These observations lead us to the conclusion that the
degenerate curves of c2 = 1.2 and 2.4 in Figs. 8(b) and 8(c)
give rise to approximate but useful locations for the genuine

0.4

0.3

0.2

0.1

0
0 1 2 3 4

c c1 3

c2
c2

c2c2 =2.4(1st)
=1.2(1st)

=0.4(2nd)
=0.8(2nd)

c2 =1.2(2nd)

c2=2.4(2nd)
c
c

1
2

(a)

(b)

Confinement

Higgs

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4

c
c

1
2

c c32

c2
c2

c2c2 =2.4(1st)
=1.2(1st)

=0.4(2nd)
=0.8(2nd)

c2 =1.2(2nd)

c2=2.4(2nd)

Confinement

Higgs

20

15

10

5

0

V
/(J

ρ
0

0)

2 4 6 8 100
1/(γ  0 )2 Jρ

c2
c2

c2c2 =2.4(1st)
=1.2(1st)

=0.4(2nd)
=0.8(2nd)

c2 =1.2(2nd)

c2 =2.4(2nd)

Confinement

Higgs

(c)
V’0 =0

FIG. 8. Phase diagrams for various values of c2, shown in
Fig. 4, are redrawn in the planes of dimensionless coordi-
nates; (a) c1/c2-(c2c3) plane, (b) c1/c2-(c1c3) plane, and (c)
(c1c3)−1-[(c2c3)−1 + 2(c1c3)−1] plane. In terms of the original param-
eters, they read (a) γ 2V ′

0-Jρ0/V ′
0, (b) γ 2V ′

0-γ 2Jρ0, and (c) 1/(γ 2Jρ0)-
V0/(Jρ0). The first- and second-order transitions are represented by
filled and empty symbols, respectively. In (c) the points on the vertical
axis (γ 2Jρ0 → ∞) are extrapolations from the nearest three points.
The dashed line in Fig. (c) is the line of V ′

0 = 0. The present gauge
Higgs model is defined only in the region V ′

0 > 0 above this line (see
the text).

transitions defined in the limit of �τ → 0. In actual quantum
simulations of the gauge theory, one may predict the location of
a phase-transition point of the gauge-Higgs model of Eq. (16)
from a single transition point determined experimentally (e.g.,
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as discussed in Sec. IV) in the two-dimensional plane of
Fig. 8(c). Here we note that an experimentally determined
point corresponds to a point on the “would-be” line of c2 = ∞
in Fig. 8(c), but, of course, the correspondence is not exact
due to the approximations involved in the derivation of the
gauge-Higgs model in Sec. II. To locate the transition point in
the gauge-Higgs model, one may simply choose an arbitrary
value of c2, which should be larger than 1.2, and calculate
the corresponding critical values of c3 and c1 according to the
mapping rule between Figs. 4 and 8(c). This confirms that the
results of Fig. 4 are useful as long as c2 � 1.2. This “magic”
in dimensional unbalance to produce a gauge-Higgs phase
diagram in the 3D c1-c2-c3 space (c2 � 1.2) from the phase dia-
gram of the extended Bose-Hubbard model in 2D V0/J -Vab/J

space is based on the quick convergence of the transition curves
explained above. This is a nontrivial observation.

To close this section we comment on Fig. 8(c). As Eqs. (6)
and (14) show, we assumed V ′

0 > 0 in deriving the present
gauge-Higgs model, which implies the region above the dashed
line V ′

0 = 0 in Fig. 8(c) [46]. As noted before, the Higgs
phase of the gauge-Higgs model corresponds to the superfluid
phase of atomic system and the confinement phase to the
Mott-insulator state. Concerning the latter correspondence, we
note that, in the Mott state realized in some region of V ′

0 < 0,
the density fluctuations may be short-range. However, in the
confinement regime, here with V ′

0 > 0, the density fluctuations
may have long-range correlations because they correspond to
the electric field and a one-dimensional electric flux connecting
a pair of opposite charges may be formed in the confinement
phase (see Sec. IV). Therefore, not only the on-site interaction
but also the long-range interactions between atoms must be
carefully adjusted to realize the confinement phase.

IV. DYNAMICS OF ELECTRIC FLUX BY SEMICLASSICAL
APPROXIMATION OF THE GAUGE-HIGGS MODEL

In the previous section, we obtained the phase diagram of
the effective gauge system by MC simulation in Figs. 4 and 8,
which is one of the most important static properties of the
system under question. In this section, we study the dynamical
properties of each phase in this phase diagram; in particular,
we are interested in the behavior of an electric flux connecting
a pair of external charges.

It is a challenging problem to explore real-time dynamics
of quantum many-body systems. Recently, a tensor network
method was applied to study the real-time dynamics of string
breaking for a (1 + 1)D quantum link model [47], but this
method is restricted to problems in one spatial dimension.
Here, we use a simple mean field treatment to study the real-
time dynamics by following our previous studies [26,44], in
which the semiclassical GPE (discrete nonlinear Schrödinger
equation) was employed to study the dynamics of an electric

flux in the gauge-Higgs model derived from the atomic system.
We note that the direct derivation and application of GPE for
gauge theories, including LGT, is not straightforward due to
the existence of gauge invariance; one needs to determine how
to respect gauge invariance. The correspondence between the
extended Bose-Hubbard and the gauge-Higgs model we have
explained so far offers us a convincing approach; one can
derive and solve the GPE of the extended Bose-Hubbard model
and use the correspondence between the two sets of parameters
to interpret the solution in the context of gauge theory. Here we
should mention that the analysis using the GPE corresponds
to the LGT with the temporal system size L0 much larger than
the spatial lattice size Li .

The Gross-Pitaevskii description of the extended Bose-
Hubbard model may be quite effective if the site occupation
is large enough and the phase coherence in each site is well
established, because the field operator at each site is just re-
placed by the c-number field within the GPE [28]. As explained
before, this regime is within our assumptions for realizing the
gauge-Higgs model. More precisely, the Higgs phase can be
described well by GPE, because it corresponds to the superfluid
phase. As we approach the confinement phase, GPE cannot
work well to study the dynamics, because quantum fluctuation
becomes large. However, we still expect that some qualitative
feature can be captured by the Gross-Pitaevskii approach, as
described in our previous studies [26,44] and later discussion.
Quantum fluctuations can be included in the truncated Wigner
approximation [48], which is obtained by taking into account
quantum fluctuations around the classical path up to the
second order. The truncated Wigner approximation consists
of (i) deriving an equation of motion of the average value of
quantum operator, which is just the GPE itself; (ii) solving
GPE for a given initial condition; and (iii) averaging over the
solutions of GPE with different initial conditions with a certain
weight. The faithful treatment according to the truncated
Wigner approximation requires step (iii), which certainly
seems important because Êr,i and θ̂r,i are canonically conjugate
pairs and their averages should obey the uncertainty principle.
The implementation of the requirement of step (iii) into actual
experiments and the discussion of the appropriateness of the
result with a single initial condition is discussed quantitatively
for gauge-Higgs model in one spatial dimension [44]. We leave
this discussion for the present 3D model as a future problem,
and focus on the detailed study with the most interesting initial
condition below, which is certainly important by itself.

The equation of motion for the effective gauge model of
Eq. (6) involves the expectation values Er,i(t) and θr,i(t) (t is
the time) of the operators Êr,i and θ̂r,i of Eq. (5), respectively.
It may be obtained by averaging the Heisenberg equations of
motion for Êr,i and θ̂r,i and truncating the quantum correlations
among them or by taking the saddle point configuration of the
path integral in canonical formalism (9). Explicitly, we have

�
d

dt
Er,i = −2Jρ0

∑
j=1,2,3(�=i)

[sin(θr,i − θr,j ) + sin(θr,i + θr−j,j ) + sin(θr,i + θr+i,j ) + sin(θr,i − θr+j−j,j )],

�
d

dt
θr,i = V ′

0Er,i+ 1

γ 2

⎡
⎣Er,i−Er−i,i+

∑
j=1,2,3(�=i)

(Er,j−Er−j,j )

⎤
⎦+ 1

γ 2

⎡
⎣−Er+i,i+Er,i+

∑
j=1,2,3( �=i)

(−Er+i,j+Er+i−j,j )

⎤
⎦, (29)
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for a canonically conjugate pair θr,i and Er,i . We are interested
in the motion of an electric flux initially pinned up between
two external static source charges. Therefore, we confine
ourselves to the solution of Eq. (29) with the initial condition
representing such a situation.

We solve Eq. (29) by the standard Crank-Nicolson method
with a discrete time step �t . We use a 3D cubic lattice (gauge
lattice) with the size 100 × 100 × 100, i.e., we define the
lattice site r = (rx,ry,rz) with 1 � ri � 100, and apply the
Neumann boundary condition. Concerning the dimensionless
time step, we use �t̃ ≡ V ′

0�t/� and set �t̃ = 0.01, and
then make runs with typical elapsed time steps 20 000 ∼
30 000(×�t̃). The realistic time scale corresponding to this
choice can be estimated as �t = 0.01 × �/V ′

0 ∼ 0.0032 ms
for the typical energy scale V ′

0/h ∼ 500 Hz used in experi-
ments [49]. For other dimensionless parameters, we considered
the case of γ̃ 2 ≡ γ 2V ′

0 = 1 and 10, and J̃ ≡ Jρ0/V ′
0 =

0.001–10. These parameters correspond to c1/c2 = γ̃ 2 and
c2c3 = J̃ in Fig. 8(a). For example, as J̃ increases from 0.001
to 10 for γ̃ 2 = 1, the system moves from the deep confinement
region to the deep Higgs region in the phase diagram of
Fig. 8(a).

We set up our simulation by pinning down two external
charges separated by the distance �; a positive charge q+ at the
site r+ = (50 − �/2,50,50) and a negative charge q− at r− =
(50 + �/2,50,50). Because there are no dynamical variables
for charges on the sites in Eq. (29), we fix alternately the
electric field Er+,1(t) emitted from q+ and directed to q−, and
Er−−1,1(t) absorbed on q− as Er+,1(t) = Er−−1,1(t) = E0(> 0)
throughout the process. As the initial condition of Eq. (29), we
prepare an electric flux of strength E0 connecting q+ and q−
by setting Er,1(0) = E0 along the straight line L± spanned
between r+ and r−, and Er,i(0) = 0 for other links. We set
θr,i(0) = 0.

To study the stability of the electric flux, we measure
fluctuations of the electric field (fluctuation of atomic density)
by using the quantity

σ (t) ≡
∑

(r,i)∈ L±

[
[Er,i(t)]

2 − E2
0

]2
, (30)

where the summation is taken for the sites on the straight line
L±. If the initial flux configuration is stable for a long time,
σ (t) stays close to zero.

In Fig. 9(a), we show the time development of σ (t)
in the deep confinement phase (J̃ = 0.001) for various �.
σ (t) exhibits an approximately periodic oscillation with its
amplitude having larger values for larger �. This oscillation
in time comes from the Higgs coupling (Jρ0 term) that is
present even for the present case. When one of these terms
exp(iθr,j ) exp(−iθr,i) is applied to an electric flux bit at
(r,r + i), it annihilates this bit and creates a new bit at (r,r + j )
[33]. The next application may restore the original flux, and
complete a process of vacuum polarization by creation and
annihilation of a pair of Higgs particles. This phenomenon
is closely related to the Schwinger mechanism [50], and
has also been seen in previous literature [26,44,47]. More
generally, these oscillations exhibit just an exchange of
energy between the kinetic energy (V ′

0-electric term) and the
potential energy (Jρ0 Higgs term). This can be understood

FIG. 9. Time evolution of σ (t) of Eq. (30) for various lengths � of
electric flux with E0 = 0.1. The amplitude of the oscillation of σ (t)
increases with the length � according to the definition of Eq. (30).
(a) J̃ (≡ Jρ0/V ′

0) = 0.001 (confinement); σ (t) continues oscillations
and shows the stability of the electric flux. (b) J̃ = 10 (Higgs); the
oscillation of σ (t) gradually diminishes and σ (t) approaches an �-
dependent constant � (� − 2)E4

0 .

by referring to the case without external charges q±. Then the
uniform configuration Er,i(t) = E(t) and θr,i(t) = θ (t) has the
conserved energy density W per link (the same form as a simple
gravity pendulum) and the approximate harmonic-oscillator
solution of Eq. (29) for |θ (t)| 	 1;

W = V ′
0

2
E(t)2 − 4Jρ0 cos[2θ (t)], E(t) = �

V ′
0

d

dt
θ (t),

E(t) � Ẽ cos(ωt + α), ω2 = 16Jρ0V
′

0

�2
. (31)

As we shall see, the total energy of the system is not strictly
conserved due to pinning down two charges. However, the
oscillation in Fig. 9(a) is taken as a local realization of
Eq. (31) with the frequency ω along the line L±. We conclude
that the electric flux oscillates but is stable for a long time
for the present parameters. This is a clear evidence showing
that the system stays in the confinement phase, as we expected
from the phase diagram by the MC simulation in Fig. 4. We
comment that “classical” MC simulations, which calculate the
ensemble (time) average of physical quantities, cannot reveal
such a dynamical oscillation of the electric flux explicitly.

On the other hand, in Fig. 9(b) in the deep Higgs phase
with J̃ = 10, the oscillation of σ (t) is gradually lost, and σ (t)
converges to a constant value for any �. This indicates the
decay of the original flux structure along the line L±, because
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a nonvanishing constant value of σ (t) means that a fraction of
the electric flux along L± disperses from the initial position
and/or reduces in its strength from E0. Due to the large Jρ0

term, the energy escaped from L± diffuses into the entire space,
i.e., “condensation” of the gauge potential energy takes place.

In the confinement phase, it is interesting to measure the
confinement potential between the external charges q+ and q−.
In the confinement phase of LGTs without couplings to matter
fields the potential energy V (�) of a pair of external charges
(in the fundamental representation) separated by a distance
� is well fitted by a linear-rising confining potential, i.e.,
V (�) = α′�, where α′ is called the string tension [17,33]. One
may naively think that coupling to a matter field may change
the potential to a short-range one because of the shielding
effect. However, the above observation of σ (t) suggests that
the confinement potential survives even in the presence of the
Higgs field due to the energy exchange sketched in Eq. (31).
In fact, σ (t) in Fig. 9(a) shows that the shape of the electric
flux at t = 0 is almost reproduced in every single period of the
oscillation.

To study V (�) in the confinement phase further, we measure
the total energy W (�) of the whole system with pinned down
q+ and q− and define V (�) and the string tension α′ as

V (�) = W (�) − W (0) (� � 2),

α′ = V (�)

�
. (32)

Here we explain the time dependence of W (�). After the update
from t to t + �t , two values of the electric field Er+,1 and
Er−−1,1 attached to q+ and q− change from their original value
E0 at t to new values E′

+ and E′
− according to Eqs. (29).

This is an energy-conserving process. Then we reset them as
Er+,1(t + �t) = Er−−1,1(t + �t) = E0 by hand for the next
update. This procedure certainly injects (or absorbs) the energy
�W = (V ′

0/2)[2E2
0 − (E′

+)2 − (E′
−)2] to (from) the system.

In Fig. 10(a), we show the time evolution of α′ for various
�’s. As explained above, the total energy W (�), and hence α′,
is not a constant of motion, and gradually increases with the
oscillating behavior of Eq. (31). In Fig. 10(b), we show the time
averages ᾱ and V̄ (�) of α′ and V , respectively. It is obvious
that, as � increases, ᾱ monotonically decreases and tends to a
constant. As a result, the potential exhibits an expected linear
behavior V (�) ∝ �, which strongly supports that the present
system is in the confinement phase [51].

Note that the short-distance behavior for � < 5 in Fig. 10
deviates from the linear dependence. This may come from
the perturbative one-photon exchange effect that gives rise
to the Coulomb potential like V (�) ∝ −1/� [18], although
vacuum polarization by the Higgs field renormalizes the
external charges. For small �’s, the confinement effect does
not emerge significantly. This behavior can be seen in the data
� = 4 of Fig. 9, in which we cannot discriminate the behavior
of σ between (a) and (b). Two phases are distinguished by the
long-range (large-�) behavior of V (�).

Finally, in Fig. 11 we show the 3D electric field Er,i and the
divergence divEr ≡ ∑

i ∇iEr,i . The upper panels in Fig. 11
represent the snapshots of electric field Er,i at t = 200 for the
typical parameter values, J = 0.001 (confinement) and J =
10 (Higgs), where we measured the electric field in the vicinity
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FIG. 10. (a) Time evolution of the string tension α′ of Eq. (32)
for various lengths � of the electric flux. (b) Time average V̄ (�) of the
potential V (�) and time average ᾱ of α′ with the time interval from
t = 0 to t = 200. It is obvious that ᾱ exhibits a smooth behavior
converging to a constant as � increases.

of the initial electric flux. These results represent the intuitive
picture expected from the LGT; the electric flux between static
charges survives in the confinement phase, while it breaks off
in the Higgs phase. In the lower panels of Fig. 11, we show
snapshots of the divergence of the 3D electric field Er,i for
γ̃ 2 = 10 and 1 with J̃ = 1. The value of the density plot of
divEr for γ̃ 2 = 1 is overall smaller than that for γ̃ 2 = 10, that
is, the Higgs charge in the weak Gauss-law coupling γ̃ 2 =
10 is denser than that in the case γ̃ 2 = 1. For γ̃ 2 = 10, the
distribution of divEr appears as a characteristic quasiperiodic
structure. From these results in Fig. 11(b), the expression divEr

for Higgs charge depends significantly on the parameter γ̃ 2.
This result is qualitatively in good agreement with the previous
expressions of Eqs. (7) and (13) in Sec. II.

V. PROPOSAL FOR FEASIBLE EXPERIMENT
OF COLD ATOMIC GASES

In this section, we propose a feasible experimental setup
for realization of a cold atom system on a bct optical lattice
of Fig. 1, which is described by the extended Bose-Hubbard
model of Eq. (1). Then, as explained in Sec. II, under
certain conditions such as uniform and large average atomic
density, this atomic system is used to quantum-simulate the 3D
gauge-Higgs model on a cubic gauge lattice. The theoretical
investigation given in Secs. III and IV may be a guide for such
experimental simulations.
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FIG. 11. (a) Snapshots of the electric field Er,i for γ̃ 2 = 1 with static charged sources pinned at r± (see the text) with the flux length � = 12;
(left) t = 0, (center) t = 200 for zJ̃ = 0.001 (confinement regime), (right) t = 200 for J̃ = 10 (Higgs regime). The electric flux spanned
between static sources clearly survives for J̃ = 0.001 and breaks for J̃ = 10. (b) Snapshots of the divergence of electric field divEr at t = 200
with the same static sources as (a). divEr just measures the Higgs charge [see Eqs. (7) and (13)], and its magnitude is certainly larger for
γ̃ 2 = 10 (left) than for γ̃ 2 = 1 (right).

It is possible to create a variety of lattice structure in two and
three dimensions by appropriately arranging the propagation
directions and the polarization of the laser beams [52,53]. To
prepare a bct optical lattice of Fig. 1, we follow the recent
proposal by Boretz and Reichlof [54], and make use of the
following optical potential:

Vbct = u[cos2(kxx) + cos2(kyy) + cos2(kzz)

+ cos(kxx) cos(kyy) + cos(kyy) cos(kzz)

+ cos(kzz) cos(kxx)], (33)

where kα = π/dα (dx = dy = d, dz = √
2d) and x = nxdx ,

y = nydy , and z = nzdz with nα ∈ Z (α = x,y,z). The form
of Eq. (33) can be produced by the standard method with
three pairs of counterpropagating laser beams. We shall explain
the coefficient u later [see Eq. (37)]. One may check that
the minima of Vbct for u < 0 are located at sites of the bct
lattice. More precisely, there are two groups of minima: (i)
nα ∈ 2mα + 1 (mα ∈ Z) corresponding to the center sites of
the unit cells of the bct lattice (such as the sites 7, 8 in Fig. 1)
and (ii) nα ∈ 2mα to corner sites of unit cells (such as 1 ∼ 4,
1u ∼ 4u in Fig. 1).

To tune the atomic interactions in Table I, we propose the
following two procedures.

(D1) We prohibit cold atoms from occupying certain
specific sites of the bct optical lattice. Explicitly, we exclude
atoms from the center sites of unit cells belonging to the odd
column [(−)x+y = −1] such as 8, 8+, and 8− in Fig. 1. In
what follows, we call these excluded sites odd-column centers
(OCCs). This certainly satisfies the condition for group (iii) in
Table I.

(D2) We adjust the parameters Jab and Vab so that the
conditions for the groups (i), (ii), (iv), and (v) are satisfied.
In fact, Rydberg atoms trapped on the optical lattice [55] may
have an isotropic interaction with a 1/r3-type potential under a
certain external electric field [56]. This long-range interaction
is expected to satisfy the condition in groups (i) and (ii).

The condition for the NNN interactions in groups (iv)
and (v) may be satisfied (without relying upon dipole-dipole
interactions) by making use of extended anisotropic orbitals
of Wannier states in the excited bands of an optical lattice.
In fact, this method was investigated explicitly in Ref. [26] to
simulate the 2D gauge-Higgs model in a successful manner.
We think that these methods are applicable also for the present
3D gauge-Higgs model without essential problems, and leave
the details to be reported in a future publication.

Hereafter we focus our attention on the procedure (D1)
above. A scenario for (D1) to exclude the atoms in question,
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FIG. 12. Setups to prepare the bct optical lattice of Fig. 1 with the interactions of Table I. (a) Choices of various frequencies ω’s appearing
in the trapping potentials of Eqs. (33) and (36). (b) The cubic optical lattice built by the potential VOCC of Eq. (36). Its sites (marked by triangles)
are odd-column centers (OCCs) such as the sites 8, 8± in Fig. 1, and occupied by B atoms. (c) The bct optical lattice built after switching the
trapping potential from VOCC to Vbct of Eq. (33). The A atoms reside on the sites marked by black circles, while the B atoms continue to occupy
the OCCs of (b).

which we hereafter call A atoms, from OCC is by introducing
another kind of atoms, which we call B atoms, and let them
reside only on the OCCs and give them strong repulsion
to repel the original A atoms. The interspecies interaction
Hamiltonian ĤAB between A atoms and B atoms is given by

ĤAB = UAB

∑
c∈OCC

ρ̂cn̂Bc, (34)

where c runs over the OCC, and n̂Bc is the number operator of
B atoms residing on the site c. The B bosons are assumed to
be in a Mott state, so n̂Bc may be approximated by a uniform
mean value, n̂Bc → n̄B . Then we have

ĤAB � UABn̄B

∑
c∈OCC

ρ̂c. (35)

For sufficiently large UABn̄B , the probability that A bosons
reside on the OCC is suppressed significantly.

From these consideration, we propose the following two
steps to achieve the above procedure (D1).

1. Preparation of B atoms on OCCs. Start with a continuum
harmonic trapping system including both A and B atoms.
Prepare a 3D optical lattice, the sites of which are just the
OCCs [see Fig. 12(b)] and occupied by B atoms. It is a simple
cubic lattice with the lattice spacing

√
2d. The corresponding

optical lattice potentials V ′
A and V ′

B felt by A and B atoms,
respectively, are given by

V ′
A(B) = u′

A(B)[cos2(k′
1x) + cos2(k′

2y) + cos2(k′
3z)],

u′
A(B) = − (dA(B)E

′)2

��′
A(B)

< 0,

k′
i = π√

2d
, �′

A(B) = ω′
L − ωA(B), (36)

where E′ is the electric-field strength induced by a standing
laser, ω′

L is the laser frequency, and ωA(B) the ns-np energy
gap [57], where the ‘ns-np’ means the state of valence electron
of a trapped atom, i.e., ns and np represent the lowest ground
state of the valence electron of an atom and the first excited

state of it, respectively. The amplitude u′
A(B) is the result of the

second-order perturbation of the electromagnetic interaction
between the instantaneous dipole 
dA(B) = qA(B)
rA(B) of A(B)
atoms and photons, (dA(B)E

′)2 ≡ 〈( 
dA(B) 
E′)2〉 [58]. �′
A(B) is a

detuning parameter for the A(B) atom fixed on blue detuning,
�′

A(B) > 0. We choose ω′
L in such a way that �′

B 	 �′
A [see

Fig. 12(a)], so that the B atoms are strongly trapped in OCCs.
2. Changeover of optical potential. Switch the laser poten-

tial from V ′
A,B of Eq. (36) to Vbct of Eq. (33) within millisecond

order. Because of the mixture of A and B atoms, the amplitude
u in Vbct becomes uA and uB for A and B atoms, respectively,
which are given by

u → uA(B) ≡ − (dA(B)E)2

��A(B)
, �A(B) = ωL − ωA(B), (37)

where E and ωL are parameters of the standing laser after the
switch. As its time scale is smaller than the typical time scale
of quantum tunneling between neighboring wells [Fig. 12(b)],
this potential changeover may prevent the B atoms from
escaping from OCC. Furthermore, by choosing ωL so that

�B 	 �A → |uB | � |uA| (38)

[see Fig. 12(a)], the B atoms continue to stay on OCC, even
though the A atoms are allowed to tunnel into nearest-neighbor
sites.

The resultant lattice system of A atoms is shown in
Fig. 12(c), which is described by HEBH of Eq. (1). With
the interaction parameters chosen according to the procedure
(D2) above (and assuming ρ̄0 � 1), this A-atom system is just
described by H ′

EBH of Eq. (4) or equivalently by HGH of Eq. (6).

VI. CONCLUSION

In this section, we summarize the results of the paper and
present our outlook. In Sec. II, we started from the extended
Bose-Hubbard model in the 3D optical lattice of Eq. (1). Then
we derived a low-energy effective model, Eq. (4), by assuming
(i) a homogeneous and large average density 〈ρ̂a〉 = ρ0 � 1
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and (ii) small density fluctuations η̂a(= ρ̂a − ρ0) [the O(η̂3)
terms in Hamiltonian were neglected]. We showed that this
effective model becomes equivalent to the gauge-fixed version
of the gauge-Higgs model in LGT when the interaction
parameters Jab and Vab are suitably chosen, as in Table I. This
equivalence requires no special limit such as γ → 0 owing to
the inclusion of the Higgs matter field.

We restricted ourselves to the region of J and γ 2

that supports a uniform (site-independent) average density,
〈ρ̂a〉 = ρ0. For other regions of parameters, the lowest-energy
configuration may favor an inhomogeneous pattern of 〈ρ̂a〉
supporting density waves (see Appendix A). In fact, in a
separate paper [44], we consider the extended Bose-Hubbard
model in a one-dimensional optical lattice for general values
of the on-sight repulsion V0 and the NN repulsion V ≡ Vab.
Among other things, we studied the phase diagram in the V0-V
plane, and confirmed that it certainly includes the density-wave
phase in which 〈ρ̂a〉 takes two alternative values on every other
site. Even in such a case, the equivalence to the gauge-Higgs
model is maintained in some region of V0 and V by choosing
Jab and Vab in a suitable manner.

In Sec. III, we studied the phase structure of the gauge-
Higgs model by a MC simulation. The explicit phase diagrams
of Figs. 4 and 8 may work as a guide for how to choose
the model parameters in actual experiments of the system
described by the extended Bose-Hubbard model. The coupling
constants of the gauge-Higgs model are asymmetric in space-
time directions, in contrast to the LGT models studied in
high-energy physics. This point may open the possibility of
a richer phase structure. The first-order phase transition we
found is certainly such an example.

In Sec. IV, we studied the time development of the
extended Bose-Hubbard model by using the semiclassical
Gross-Pitaevskii type approach. Although the GPE underes-
timates the effect of quantum fluctuations and correlations,
the obtained dynamical behavior of the electric field clearly
changes as the coupling parameters change, reflecting the char-
acteristics of each phase. The location of a “phase boundary”
determined in this way is qualitatively consistent with the result
of the static MC simulation of Sec. III. These approximate, but
explicit and quantitative, solutions of the dynamical equation
certainly help us, not only to design the actual setup of the
experiments of quantum simulation, but also to gain a precise
understanding of the real dynamics of the gauge theory. For
example, to understand the structure of the potential of Fig. 10,
a simple shielding mechanism by pair creation of Higgs
particles is not sufficient because the potential may saturate to
a constant value when just a static Higgs pair is produced. The
linear rising behavior at a larger distance may be understood
by taking the kinetic energy of the Higgs bosons into account.
This is done by GPE, which respects the energy conservation
law.

In Sec. V, toward quantum simulation of the gauge-Higgs
model, we present an explicit proposal to prepare an atomic
system described by the extended Bose-Hubbard model. To
realize the 3D gauge lattice, a bct optical lattice is a suitable
configuration. To prevent the occupation on OCC, one can
use another kind of atoms to protect this occupation by
a strong atom-atom repulsion. Adjustment of the NN and
NNN interactions as in Table I seems to be a hard task, but

engineering the atomic state into their higher-orbital state or
suitably arranging the dipolar atoms or molecules can result in
a desirable intersite interaction, which may lead to a realization
of the parameter setting of Table I.

Our original aim is of course to simulate the target model,
the gauge-Higgs model of LGT, by the base model, the
extended Bose-Hubbard model of ultracold atoms on the
optical lattice. However, the extended Bose-Hubbard model
is an interesting model in its own regard, from a theoretical
viewpoint, and our understandings of it is far from complete.
Our static and dynamical study of the gauge-Higgs model
carried out in this paper will certainly be of help to under-
stand further the starting extended Bose-Hubbard model at
sufficiently low temperatures because the gauge-Higgs model
is derived as its low-energy effective model. For example, the
part V ′

0 > 0 of Fig. 4(c) is taken to describe the phase structure
of the extended Bose-Hubbard model at large fillings and low
temperatures.

Generally speaking, various notions and concepts estab-
lished in LGT find their places in understanding ultracold
atomic systems on an optical lattice, and vice versa. An
explicit example of this mutual aid is discussed in Ref. [44],
where the Haldane-insulator phase in the 1D extended Bose-
Hubbard model is interpreted by LGT. By stretching one’s
imagination in the opposite direction, the extended Bose-
Hubbard model may shed some light to generalize LGT beyond
the region of parameters where the present equivalence to LGT
holds.
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APPENDIX A: MEAN-FIELD CALCULATION
OF THE EQUILIBRIUM ATOMIC DENSITY

IN THE 3D GAUGE LATTICE

In this Appendix, we formulate a simple mean-field theory
to calculate the mean value of the atomic density ρa ≡ 〈ρ̂a〉
in the 3D gauge lattice shown in Fig. 1, where the atoms
are located on the links of the gauge lattice. In particular, we
are interested in the competition between the homogeneous
state, in which ρa is a site-independent constant, and an
inhomogeneous state, which has some periodic distribution
and supports density-wave excitations.

To derive the energy EMFT of the mean-field theory from
HEBH of Eq. (1), we first set exp(iθ̂a) = 1 ignoring the
fluctuations of the phase θ̂a , and replace the amplitude operator
by its average as ψ̂a → √

ρa and ρ̂a → ρa . Then we obtain
EMFT, including the chemical-potential term as

EMFT(ρ) = −
∑
a �=b

Jab

√
ρaρb + V0

4

∑
a

ρa(ρa − 1)

+
∑
a �=b

Vab

2
ρaρb − μ

∑
a

ρa. (A1)
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When we consider the parameter setting shown in Table I,
EMFT is rewritten as

EMFT(ρ) = −J
∑

a �=b∈(i,ii)

√
ρaρb + V0

4

∑
a

ρa(ρa − 1)

+V

2

∑
a �=b∈(i,ii,iv)

ρaρb − μ
∑

a

ρa. (A2)

The chemical potential μ is chosen as a function of the mean
density ρ0 = ∑Ns

a=1 ρa/Ns over the sites, so that the total
number of atoms in the system with Ns(≡

∑
a 1) sites is a

given number Nsρ0. In the case of a homogeneous density, we
can take ρa = ρ0, which is site-independent. Using this ρ0, we
rescale the energy as

ẼMFT(ζa) = EMFT

Jρ0

= −
∑

a �=b∈(i,ii)

√
ζaζb + V0ρ0

4J

∑
a

ζ 2
a

+Vρ0

2J

∑
a �=b∈(i,ii,iv)

ζaζb − μ

J

∑
a

ζa. (A3)

Here, we have introduced the scaled density ζa = ρa/ρ0

(ζa = 1 for the homogeneous case) and omitted the small ρ−1
a

contribution in the on-site energy term. We minimize ẼMFT(ζ )
with respect to ζa numerically to obtain an approximate
configuration of ζa for the ground state.

Let us first consider the simplest case of vanishing NN and
NNN couplings, V = 0 (γ 2 = ∞). Then the lowest-energy
state with given ρ0 is the uniform state ζa = 1. This is
understood because the inhomogeneous density fluctuations
ζa = 1 + δρa cost an extra energy �E as

ρ0V0

4J
ζ 2
a − μ

J
ζa = ρ0V0

4J
[(ζa − R)2 − R2],

R ≡ 2μ

ρ0V0
,

�E = ρ0V0

4J

∑
a

[(1 + δρa − R)2 − (1 − R)2]

= ρ0V0

4J

∑
a

(δρa)2 > 0, (A4)

where
∑

a δρa = 0 due to the total atomic-number conserva-
tion.

For the opposite case of vanishing on-site coupling V0 =
0, the lowest energy state can be determined so that it
minimizes the intersite coupling energy. Intuitively, this term
dislikes the homogeneous density distribution, because, if we
assume alternative density undulations such as ρa = ρ0 + δρ

and ρb = ρ0 − δρ, the simple inequality (ρ0 + δρ)(ρ0 − δρ) =
ρ2

0 − (δρ)2 < ρ2
0 implies that the system prefers the density

wave state.
From these considerations, we expect that the lowest energy

state is homogeneous when the ratio of V (= γ −2) and V0,
r ≡ V/V0 = γ −2/V0 is sufficiently small, while it becomes
inhomogeneous as r becomes sufficiently large. To measure

FIG. 13. Numerical result of the parameter m of Eq. (A5) as a
function of the ratio of off-site and on-site repulsion, r ≡ γ −2/V0 for
ρ0V0/J = 5 (circles), 10 (squares), 20 (triangles), and 30 (crosses).
The parameter m measures the nonuniformness of the ground
state. The inset shows the parameter space revealing the boundary
between the homogeneous and inhomogeneous density distributions.
For sufficiently large ρ0V0/J , the density distribution of the ground
state is homogeneous for r � 0.5 and becomes inhomogeneous for
0.5 � r .

the degree of inhomogeneity of the lowest energy state, we use

m ≡ 1

Ns

Ns∑
a=1

(ζa − 1)2, (A5)

which is zero for the homogeneous state and increases for
the inhomogeneous one. The value of m can be calculated
for general r and V0ρ0/J by minimizing EMFT numerically
with respect to ζa . In Fig. 13 we plot m as a function of
r for several V0ρ0/J . It certainly supports our expectation
above. We note that, as the value ρ0V0/J increases, the
critical ratio r saturates the value 0.5. From this result and
the relation V ′

0 = V0 − 2γ −2 = V0(1 − 2r), positiveness of
the electric energy (V ′

0 > 0) implies a homogeneous ground
state (r < 0.5) and vice versa. The inhomogeneous density
distribution forms nontrivial patterns because of the intrinsic
complexity of the 3D gauge lattice. This will be reported and
discussed elsewhere.

APPENDIX B: DETAILS AND SUPPLEMENTARY
RESULTS OF THE MC CALCULATIONS

In the MC calculations in Sec. III, we use the standard
Metropolis algorithm [59], which typical sweeps 50 000
(thermalization) +10 (samples) ×5000 (measurement) in a
single run for a fixed set of ci’s, and calculate errors as the
standard deviation of the ten samples. We take the gauge-
invariant expression Z̃GH of Eq. (19) and update both the
gauge field θx,μ and the Higgs field ϕx . This process is known
to accelerate the convergence of the Markov process more than
using the gauge-fixed expression ZGH of Eq. (16) would. The
linear sizes of lattice L we used are 8, 12, 16, 20, 24 and the
phase transition points of Fig. 4 are determined by the data of
L = 16. Typical acceptance ratios are 0.7 ∼ 0.8.
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FIG. 14. (a) Specific heat C vs c3 for L = 12, 16, 20 at c1 = 0.0
and c2 = 0.4. (b) Scaling function �(x) in Eq. (B1) determined from
the data (a). The scaling parameters in Eq. (B1) are determined as
σ = 0.125, ν = 0.50, c3c = 0.339.

For a second-order transition, one expects that the specific
heat C(T ) obeys the following finite-size scaling behav-
ior [60]:

C(T ) = Lσ/ν�(L1/νε), ε = T − Tc

Tc

, (B1)

for sufficiently large L, where Tc is the transition point at
L → ∞. In Fig. 14(a) we show the typical size dependence of
C(c3) at c1 = 0,c2 = 0.4 for L = 12, 16, 20 around a second-
order transition point c3 � 0.33 ∼ 0.34. As L increases, the
three curves C(c3) seem to vary systematically as expected by
Eq. (14). In Fig. 14(b), we show the scaling function �(x)
determined by using the data of Fig. 14(a). The optimal values
of the critical exponents and critical c3 are determined as
σ = 0.125, ν = 0.50, and c3c = 0.339, respectively. Be taking
the errors in C(c3) in Fig. 14(a) into account, we think that
the three curves in Fig. 14(b) define an approximate scaling
function �(x). This supports that the systems with L � 12 are
approximately in the scaling region.

To check whether the number of sweeps (5000 in our case)
for the measurement of a sample is large enough, one may
use the integrated autocorrelation time τ (N ) [60], where N is
the total sweeps for measurement (N = 10 × 5000 in our case)
and the function τ (k) (1 � k � N ) is defined for an observable

TABLE II. Saturated values of the integrated autocorrelation time
τ (k) of Eq. (B2) calculated by the data for the internal energy of a
single run with c1 = 0.0 and c2 = 0.4.

c3 0.32 0.325 0.33 0.335 0.34 0.345 0.350

L = 12 61 86 238 235 180 281 115
L = 16 59 90 410 441 174 119 79
L = 20 68 65 424 922 222 106 85

O as

τ (k) ≡ 1

2
+

k∑
t=1

f (t)

f (0)
, Ō ≡ 1

N

N∑
i=1

O(i),

f (t) ≡ 1

N − t

N−t∑
i=1

[O(i + t) − Ō][O(i) − Ō], (B2)

where O(i) (i = 1, . . . ,N) is the value at the ith sweep after
the thermalization.

As O, we use the internal energy U of Eq. (24). As k

increases, τ (k) saturates to a constant and then oscillates
slightly. The saturated values (defined by the first local
maximum) for c1 = 0.0 and c2 = 0.4 are shown in Table II.

As expected, the saturated values become larger as C(c3)
approaches its peak. However, all the values are well below the
number of sweeps for measurement of each sample, 5000. We
judge that 5000 is large enough to truncate autocorrelations
and define independent samples.

These results may support that the essential structure of the
global phase diagrams Figs. 4 and 8 are reliable as the size
dependence of the peak in Fig. 14(a) is tiny compared with
the scale of these diagrams. For a more precise determination
of location of phase-transition points, we certainly need more
intensive calculations with high statistics and larger lattices.

APPENDIX C: DERIVATION OF EXPECTATION VALUE
OF THE ELECTRIC FIELD EQ. (25)

In this Appendix we derive Eq. (25). We start from the first
line of Eq. (14), which is written as

exp

[(
−

∑
x,i

E2
x,i

2c2
+ iEx,iθx,0i

)]
. (C1)

Then, by introducing a source Jx,i for the electric field Ex,i ,
the generating functional of ZGH(J ) is obtained as

ZGH → ZGH[J ] =
∫

[Dθx,μ][DEx,i]

× exp

[∑
x,i

(
−E2

x,i

2c2
+ iEx,i(θx,0i + Jx,i)

)
+ · · ·

]

∝
∫

[Dθx,μ] exp

[∑
x,i

c2 cos(θx,0i + Jx,i) + · · ·
]
, (C2)

where · · · denotes the terms AI and AP that are independent
of Ex,i , and the last line is obtained by summation over Ex,i

following the step to Eq. (14). Then we obtain the expectation
value 〈En

x,i〉 by letting the partial derivative (−i∂/∂Jx,i)n act
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on ZGH[J ]. As a result we obtain the variance of the electric
field of Eq. (25) as

〈(Ex,i − 〈Ex,i〉)2〉 = 〈
E2

x,i

〉 − 〈Ex,i〉2

=
[
−i

∂

∂Jx,i

ZGH[J ]

∣∣∣∣
Jx,i→0

]2

−
[
− ∂2

∂J 2
x,i

ZGH[J ]

∣∣∣∣
Jx,i→0

]

= c2〈cos θx,0i〉 − c2
2〈sin2 θx,0i〉. (C3)

APPENDIX D: INTERPRETATION OF THE
PHASE DIAGRAM

In this Appendix, let us discuss the global structure of Fig. 4,
the phase diagram of the 3D gauge-Higgs model given by
Eq. (16), and interpret the order of transitions by a plausible
argument.

First, we consider the case c2 = 0. Then, the total action
AGH of Eq. (16) decouples to AI of the timelike θx,0 and AL of
the spacelike θx,i , and ZGH becomes

ZGH|c2=0 = (Zc1 )L
4
(Z3DXY )L,

Zc1 =
∫ π

−π

dθ

2π
exp(c1 cos θ ) = I0(c1),

Z3DXY =
∫

[Dθr,i] exp

⎡
⎣c3

∑
r,i<j

cos(θr,i − θr,,j ) + · · ·
⎤
⎦.

(D1)

The integrals over [Dθx,0] decouple to L4 sites, and each site
gives rise to Zc1 , the modified Bessel function. Zc1 has no
singularity in c1, and gives an average 〈Ux,0〉 = 〈cos θx,0〉 =
I1(c1)/I0(c1), which starts from 0 at c1 = 0 and increases as
c1 increases up to 1. The integrals over [Dθx,i] decouple to L

spatial 3D gauge lattices labeled by x0, and each 3D system
gives rise to Z3DXY , the partition function of the 3D XY spin
model. This is because the c3 term in AGH at fixed x0 is just the
energy of the NN XY spin model E3DXY = −c3

∑
(a,b)∈(i)


Sa ·

Sb of spins 
Sa = (cos θa, sin θa), defined on a 3D optical lattice
with the identification θr,i ↔ θa as in Fig. 1 of Sec. II. Z3DXY

is known to exhibit a second-order phase transition at c3 =
c3c � 0.34. For c3 > c3c there is an order of θr,i and disorder
otherwise. The horizontal second-order transition curve for
c2 = 0 in Fig. 4 expresses just this transition where the critical
value of c3 has no c1 dependence because Zc1 is analytic.

Next, we consider the effect of the c2 term, AP, which
couples θx,0 and θx,i . In the mean-field type interpretation, one
may decouple it as follows:

c2 U
†
x,0U

†
x+0,iUx+i,0Ux,i → c′

2U
†
x+0,iUx,i + c′′

2U
†
x,0Ux+i,0,

c′
2 ≡ c2〈 U

†
x,0Ux+i,0〉, c′′

2 ≡ c2〈U †
x+0,iUx,i〉. (D2)

The first term on the right-hand side of Eq. (D2) is the NN pair
of the “XY ” spin Ux,i in the μ = 0 direction with a “coupling
constant” c′

2. So this term and AL compose the “pseudo”-4D
XY model of XY spins Ux,i . Of course, this is not a genuine
4D XY model because its coupling c′

2 is “soft”; it contains
fluctuations of another variable Ux,0. For sufficiently large c1,
the AI term prepares a saturated value 〈Ux,0〉 ∼ 1 with small
fluctuations. So c′

2 is almost a stable constant and the system
becomes almost a genuine 4D XY model with asymmetric
couplings (c3,c

′
2). This model is known to exhibit a second-

order phase transition as its 3D counterpart, irrespective of
the value of c̃3 as long as it is a constant. This explains the
second-order transitions at large c1 in Fig. 4. The second term
of Eq. (D2) is the NN coupling of timelike XY spin Ux,0 in the
3D lattice at fixed x0 with a soft “coupling constant,” c′′

2 . This
gives rise to a set of L decoupled 3D XY spin models, each
of which is labeled by x0. The term AI works as an external
source to Ux,0.

Therefore, the total system with the replacement (D2) is the
sum of two subsystems: (i) one 4D XY model with coupling
(c3,c

′
2) and (ii) L 3D XY models with coupling c′′

2 and the
source. Through the soft couplings c′

2,c
′′
2 these two subsystems

affect each other. For example, let us start with the phase
where both Ux,i and Ux,0 are disordered, i.e., small c′

2,c
′′
2 . If

c′
2 develops once by fluctuation, Ux,i spins favor ordering,

which, in turn, may increase c′′
2 and favor an ordering of Ux,0

and lead to larger c′
2. That is, c′

2 and c′′
2 rapidly increase each

other by a synergistic effect. This is in strong contrast with
the usual “hard” coupling constants. As one changes the usual
constants c1,c3 with fixed c2, c′

2, and c′′
2 may not change linearly

with c1,c3, but stay at zero until a certain critical point is
reached and then rise continuously but abruptly. This behavior
of soft couplings certainly brings the would-be second-order
transition to a first-order transition. This is one explanation
of the first-order transition shown in Fig. 4. The conditions
to achieve the above scenario of first-order transitions are (i)
sufficiently large c2 and (ii) sufficiently small c1, because (i) c′

2
and c′′

2 are proportional to c2 and the above synergistic effect
needs a certain amount of sensitivity for each other, and (ii) if
c1 is large enough, 〈Ux,0〉, and hence c′

2 has a small fluctuation
and behaves almost as a “hard” constant.
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