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Properties of strongly dipolar Bose gases beyond the Born approximation
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Strongly dipolar Bose gases can form liquid droplets stabilized by quantum fluctuations. In a theoretical
description of this phenomenon, the low-energy scattering amplitude is utilized as an effective potential. We
show that for magnetic atoms, corrections with respect to the Born approximation arise, and we derive a
modified pseudopotential using a realistic interaction model. We discuss the resulting changes in collective
mode frequencies and droplet stability diagrams. Our results are relevant to recent experiments with erbium and
dysprosium atoms.
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I. INTRODUCTION

Ultracold gases with dipolar interactions have been the
subject of intense experimental and theoretical studies over
the past few years [1]. Strong dipole-dipole interactions can
be realized by using atoms with large magnetic moments
such as chromium, erbium, and dysprosium [2–4] or polar
molecules with electric dipole moments induced by static
external fields [5,6]. Compared to systems with contact
interactions, dipolar gases exhibit much richer physics in
both the few-body [7] and many-body [8] domains. Even
in the limit of weak interactions, their properties are highly
affected by the long-range and anisotropic nature of the
dipole-dipole interaction term. In particular, for sufficiently
strong dipole-dipole interactions the Bogoliubov excitation
spectrum of the Bose gas can contain unstable modes which
drive the collapse of the condensate, observed experimentally,
e.g., with chromium [9].

Recent experiments performed using atoms with high
magnetic moments revealed the existence of new intriguing
effects. When the condensate is quenched into a regime that
is unstable from the mean-field point of view, instead of
collapsing, the gas can form a spatially ordered structure of
stable droplets with high density [10–12]. Stabilization of the
gas in form of droplets is due to quantum fluctuations which
have crucially important contributions near the instability.
These quantum droplets turn out to be stable even without
the presence of an external trap, with lifetimes limited only by
three-body losses [13–16].

In the regime of weak interactions the mean-field de-
scription of a dipolar Bose gas relies on the modified
Gross-Pitaevskii (GP) equation which acquires an additional
nonlocal term coming from dipole-dipole interactions [17].
Description of the droplet phase requires including a beyond-
mean-field Lee-Huang-Yang (LHY) correction which provides
an additional effectively repulsive term preventing the gas from
collapsing. For dipolar gases the LHY correction is strongly
enhanced compared to contact interactions [18–20].

In the mean-field theory for interacting bosons, the effec-
tive potential is given by the low-energy scattering ampli-
tude [21,22]. In contrast to contact interactions, for dipolar
bosons it is required to include many partial waves in the
scattering calculation. For weak dipole moments and away
from scattering resonances, the Born approximation describes

the scattering amplitude with good accuracy [17,23–27].
However, for lanthanide atoms the validity of the Born
approximation can be limited as the magnetic dipole-dipole
interaction becomes too strong. Furthermore, the interaction
potential at short range has a complex anisotropic structure,
resulting in additional coupling between partial waves. As
a result, lanthanide atoms exhibit very dense structures of
Feshbach resonances [28–32]. In the vicinity of a resonance,
the Born approximation is not valid at all and one has to use a
numerically calculated scattering amplitude. This can modify
the many-body properties of the dipolar gas [33,34].

While the droplet model based on an extended GP equation
within Born and local density approximations has so far
successfully described the droplet formation and their basic
properties, it is worthwhile to study more elaborate models
for deeper understanding of the droplet phase. In particular,
finite temperature effects can affect the size and lifetime of the
droplets [35]. Effects of the trapping potential can also be im-
portant especially when the characteristic trap lengths become
comparable not only to the condensate healing length, but also
to the length scales characteristic of the scattering. Finally,
strong dipolar interactions and dense resonances limit the use-
fulness of the Born approximation for the scattering amplitude.
In this work, we concentrate on the latter point and study
how the properties of dipolar Bose gas are affected by using
realistic interaction potentials. We find that the role of dipolar
interactions is enhanced away from resonances and strongly
suppressed in their vicinity. This has visible consequences
on the many-body properties of the gas, most notably on the
critical atom number needed for formation of a stable droplet.

The paper is structured as follows. In Sec. II we compute
the scattering amplitude for a pair of magnetic atoms using a
realistic interaction potential and discuss the validity of Born
approximation. In Sec. III we briefly review the mean-field
theory of dipolar quantum gases and the role of beyond-mean-
field corrections, and discuss the stability diagram of a trapped
gas. These results are then used in Sec. IV to analyze the
experimentally relevant cases of Dy atoms and weakly bound
Dy2 molecules. Conclusions are drawn in Sec. V.

II. SCATTERING AMPLITUDE

Providing a reasonable estimate for the low-energy scat-
tering amplitude of lanthanide atoms is a demanding task
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FIG. 1. Three lowest adiabatic potential curves with m = 0
obtained for realistic dysprosium long-range potential (black lines)
and for the case where the van der Waals interaction is replaced by a
hard wall set at short distance. The length unit is R6 = (2μC6/�

2)1/4,
while the energy is given in units of E6 = �

2/(2μR2
6).

because of the complex interaction potential [29]. The
dominating terms are isotropic van der Waals attraction
VvdW = −C6/r6 and anisotropic dipole-dipole interaction
Vdd = −C3P2(cos θ )/r3. Other terms such as quadrupole-
quadrupole and anisotropic van der Waals interactions intro-
duce additional couplings between different partial waves and
hyperfine channels. This leads to the occurrence of extremely
densely spaced Feshbach resonances with high-partial-wave
character [31]. In our model we simulate this behavior by
varying the short-range boundary conditions to mimic a
Feshbach resonance and we focus on the interplay of the van
der Waals and dipolar interactions.

A commonly used treatment of ultracold dipolar scattering
involves using a simplified potential with the dipolar term and
a hard wall placed at some distance r0 to set the scattering
length [23,25,36] and utilizing the Born approximation to
obtain the scattering amplitude. However, for magnetic atoms
the length scales associated with different terms in the potential
are comparable, with strong coupling between partial waves.
The Born approximation can be expected to break down in
this case, especially in the vicinity of scattering resonances.
The prominent role of the van der Waals potential can be
seen, e.g., by studying the adiabatic potential curves obtained
by diagonalizing the angular part of the Hamiltonian in the
partial-wave basis. Figure 1 shows a comparison between
realistic adiabatic potentials and the hard-wall approximation
for dysprosium. It can be seen that including van der Waals
interaction leads to vastly different shape and height of the
centrifugal barrier. As for higher partial waves the position of
the barrier moves toward the origin; the modification is even
stronger in high-partial-wave channels.

Let us now discuss the relevant length and energy scales.
In this work we will focus on strongly magnetic dysprosium
atoms, for which the isotropic van der Waals coefficient takes
the value C6 = 2270 in atomic units [37] and the dipole
moment is 9.93μB where μB is the Bohr magneton. One can
then define the characteristic van der Waals length as R6 =
(2μC6/�

2)
1/4

, which for dysprosium gives 161a0 with a0 being

the Bohr radius. Dipolar interactions can be characterized
in a similar way by Rdd = 2μd2/3�

2, for Dy atoms giving
Rdd = 131a0. We will also analyze the case of weakly bound
Dy2 dimers for which we take C6 = 4C

Dy
6 and the dipole

moment is assumed to be two times larger than for Dy. This
kind of molecule can be produced by making use of broad
universal Feshbach resonances [32]. Weakly bound erbium
molecules have been recently created and characterized [38].
The characteristic length scales for this case are R6 = 271.5a0

and Rdd = 1049a0. In atomic units the dipole moments we
are considering here are equivalent to 0.1–0.2 Debye. These
values are easily achievable also with polar molecules placed
in an external electric field.

To solve the low-energy scattering problem with realistic
potential, we first set the boundary conditions at very short
range where the van der Waals interaction dominates and
coupling between partial waves is negligible. The phase of
the short-range wave function would then determine the
scattering length for pure van der Waals interactions. Then we
propagate the solution to large distances using the Numerov
method with collision energy set at about 100 nK, which is
smaller than all characteristic energies of the problem. Dipolar
interactions require including a huge number of partial waves
and propagating the wave function to very large distances
to obtain convergent results [24,25]. Similar to changing the
position of the hard wall, we can manipulate the short-range
phase to set the scattering length and simulate a Feshbach
resonance (note that in contrast to contact interactions, the
actual scattering length differs from the position of the hard
wall as it is renormalized by dipolar interaction). The long-
range nature of the dipolar term which behaves as r−3 results
in increased density of near-threshold bound states, so usually
several resonances appear when changing the short range
phase. Additional couplings can easily be included within this
method.

We fit the wave function at large distances to asymptotic
scattering solutions to extract the scattering amplitude

f (k,k′) = 4π
∑

�m�′m′
Y �

�m(k̂)Y�′m′(k̂′)t�
′m′

�m (k), (1)

where t�
′m′

�m is the reduced T-matrix elements and Y denotes
standard spherical harmonics. For bosons the summation runs
only over even values of �, �′. For dipolar interactions the Born
approximation predicts [17,27]

(tB)�
′m′

�m = − 6π〈Y�,m|Y2,0|Y�′,m′ 〉Rdd

[(� − �′)2 − 1](� + �′)(� + �′ + 2)
(2)

for � + �′ > 0. For the t00
00 element one has to insert the value of

the s-wave scattering length a. The total scattering amplitude
within the Born approximation is then [25,27]

fB(θ ) = −a − aBorn
dd P2(cos θ ), (3)

where θ is the angle between the momentum transfer vector
and the dipole axis and aBorn

dd = Rdd. The relative strength
of the dipolar interaction in the Born approximation can be
characterized by εBorn

dd = aBorn
dd /a.

Figure 2 shows exemplary scattering amplitudes for Dy
atoms away from resonance and close to it, as well as for
Er atoms and Dy2 dimers away from resonance compared
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FIG. 2. Scattering amplitude f (θ ) for dysprosium atoms at
scattering length a = 169 a0 and a = 1490 a0, for erbium with
a = 154 a0 and for Dy2 dimers with a = 185 a0. Straight black lines
come from the numerical calculation, while red dashed lines show
the Born approximation predictions. Note that a different scale was
used for Dy2, where the amplitude spans a wider range due to a much
larger add coefficient.

with Born approximation predictions. Surprisingly, in all the
cases we investigated the numerically calculated scattering
amplitude could be well described with the same form as in
Eq. (3), but with a modified add parameter (from now on we will
refer to the standard dipolar length as aBorn

dd because it remains
unchanged within the Born approximation). This result sim-
plifies the analysis of many-body effects, since all the methods
developed for dipolar bosons within the Born approximation
can be readily used. The next observation is that away from
resonances, where scattering length is of the order of aBorn

dd , the
effective add turns out to be slightly larger than the actual one
due to corrections arising from all partial waves. For Dy the
enhancement of the effective dipolar length is of the order of
17%, while for Dy2 it is about 25%. Increasing the value of the
scattering length leads to a significant deviation of low (�,m) t-
matrix elements from the Born approximation (see Fig. 4) and
results in much smaller effective add. Figure 3 shows the depen-
dence of the effective dipolar length on the dipolar interaction
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FIG. 3. Effective dipolar length as a function of εBorn
dd for Dy and

Dy2. Also shown is the Born approximation result add/a
Born
dd = 1.
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FIG. 4. Exemplary magnetic field dependencies of the lowest
t-matrix elements near a Feshbach resonance in dysprosium. Black
lines show the numerical results, while red dashed are the Born
approximation results.

strength εdd. We see that the impact of the resonance depends
on the dipole moment. For low dipole moments the dependence
of add on the scattering length is changed only very close to
the resonance, while for highly dipolar particles the resonance
has a visible impact even at moderate scattering lengths. As
a result, the actual relative strength of the dipolar interaction
defined as εdd = add/a differs from εBorn

dd , being larger away
from resonances and smaller in the vicinity of a resonance.

Figure 4 shows an example of the dependence of the lowest
t matrix elements near an exemplary Feshbach resonance.
Scattering length has more than one pole here due to increased
density of near-threshold bound states resulting from dipolar
interaction. At each resonance, t20

20 also diverges (which is
not clearly visible in the figure due to too low resolution of
the data points and finite collision energy which suppresses
the divergence) and t20

00 vanishes. Within our model, channels
with m �= 0 are not affected by the resonance. It is possible
to include additional couplings that modify scattering in
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higher partial-wave channels. However, the phase shifts in
these channels would still be dominated by universal dipolar
scattering and the expected effects would be small as long as
the collision energy is low enough.

III. EFFECTIVE-MEAN-FIELD THEORY
FOR DIPOLAR BOSONS

Having calculated the scattering amplitude for realistic
interaction potential, we will now use these results in the
effective many-body theory. The system under consideration
consists of N magnetic (or electric) dipolar bosons of mass
m and dipole moment d oriented along the z direction by
an external magnetic field trapped in an external potential
Vext(r) = m

2 (ω2
xx

2 + ω2
yy

2 + ω2
zz

2) with ωx,y,z the trapping
frequencies. The second quantized Hamiltonian reads

H =
∫

dr �̂†(r)

[
− �

2

2m
∇2 + Vext(r)

]
�̂(r)

+ 1

2

∫
dr

∫
dr′�̂†(r)�̂†(r′)V (r − r′)�̂(r′)�̂(r), (4)

where �̂(r) and �̂†(r) are bosonic annihilation and creation
field operators, respectively, and V (r − r′) is the interaction
potential between the atoms.

The standard way to obtain the mean-field Gross-Pitaevskii
equation is to replace the field operators by a complex-valued
function ψ(r,t) = 〈�̂(r,t)〉. Here we also have to include
the LHY correction to the mean-field equation of state.
Furthermore, the true interaction potential between the atoms
V (r − r′) is replaced by the effective potential Veff(r − r′)
given by the low-energy scattering amplitude [21,22] obtained
for the full potential. A general expression for an anisotropic
effective potential can be given as [17]

Veff(r) = 4π�
2a

m
δ(r) +

∑
l>0,m

αlm

Ylm(r̂)

|r|3 , (5)

where the first term describes the s-wave contribution, Ylm

stays for standard spherical harmonic, and αlm are determined
from the scattering amplitude [17]. According to the results
from Sec. II, in our case the effective potential may be written
as the well-known formula consisting of a sum of the contact
and dipole-dipole interactions:

Veff(r − r′) = 4π�
2a

m
δ(r) − 4π�

2add

m

2P2(cos θ )

|r − r′|3 , (6)

where P2(cos θ ) is the second Legendre polynomial. We recall
that add is an effective parameter which stems from the
scattering amplitude.

The extended GP equation within the local density approx-
imation for slowly varying spatial profile of ψ(r,t) takes the
form [11]

i�
∂

∂t
ψ(r,t) =

[
− �

2

2m
∇2 + Vext(r)

+N

∫
d3r ′Veff(r − r′)|ψ(r,t)|2

+gQFN
3/2|ψ(r,t)|3

]
ψ(r,t), (7)

with
∫

d3r|ψ(r,t)|2 = 1. The last line of Eq. (7) refers to the
LHY correction to the equation of state. It can be intuitively
understood as the zero-point motion of the Bogoliubov
excitations. Primarily it was derived for a homogeneous gas
with the contact interaction. However, it can be generalized
to the case of dipolar interactions as well [19,20]. It turns
out that the LHY contribution scales as N3/2 for both
contact and dipolar cases. The magnitude of the quantum
fluctuations can be described by the coefficient gQF . For the
dipolar interaction gQF = 32

3
√

π
g
√

a3f (εdd), where f (εdd) =
1
2

∫ π

0 dθ sin θ [1 + εdd(3 cos2 θ − 1)]5/2. The relative strength
of the dipolar interaction is given by εdd. As we can see
the LHY correction has a universal character, because it
depends only on the two-body scattering length and the relative
strength of the dipolar interaction. The same formula, only with
effective add, can be used in our model.

A quite convenient way to examine the basic properties of
strongly dipolar bosons such as the ground state or elementary
excitations is to use a simple variational Gaussian ansatz for the
wave function. Even though the system is in the Thomas-Fermi
regime where the shape of the atomic cloud is far from
being Gaussian, it has been shown that results obtained
from this simple method are in considerable agreement with
those obtained by solving numerically the Gross-Pitaevskii
equation [13,15]. In the Gaussian model we take [13]

ψ(x,y,z) = 1

π
3
4 (σxσyσz)

1
2

∏
α=x,y,z

e
− α2

2σ2
α

+iα2ηα
, (8)

where the variational parameters are the widths σα(t) in
the α = x,y,z direction, and ηα(t), which determines the
phase curvature along α. We follow the notation proposed by
Wächtler and Santos [13,14]. By straightforward calculation
one can derive the energy functional corresponding to Eq. (4)
and then determine the following Euler-Lagrange equations:

ηα = m

2�σα

dσα

dt
(9)

and

d2να

dτ 2
= − ∂

∂να

U (νx,νy,νz), (10)

where in the second equation dimensionless units τ =
ω̃t , σα = l̃να , and l̃ = √

�/mω̃ are introduced, with ω̃ =
(
∏

ωα)1/3. The potential U (νx,νy,νz) for an arbitrarily chosen
anisotropic potential expressed as in Eq. (5) may be written as

U = 1

2

∑
α

[
ν−2

α +
(ωα

ω̃

)2
ν2

α

]
+ 2

3

PAN3/2

(∏
α να

) 3
2

+ PN∏
α να

− 1

2

∫∫
d3r d3r ′

×
∑

l>0,m

αlm

Ylm(R̂)

|R|3 |ψ(r,t)|2ψ(r′,t)|2, (11)

where R = r − r′ and the dimensionless constants P =
√

2
π

a

l̃

and A ∼ ( a

l̃
)3/2, which describe the magnitude of the LHY

correction for a given effective potential Veff . For the effective
potential described by Eq. (6) the expression for U (νx,νy,νz)
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takes exactly the same form as in Ref. [14], only with effective
add.

To describe the ground-state properties one has to find the
minimum of U that corresponds to the equilibrium widths ν

eq
α .

Then the lowest excitations are fully determined by the Hessian
matrix at the minimum of U . For spherical or cylindrical
harmonic traps the three lowest excitations are characterized
by the well-known 3D monopole, 3D quadrupolar, and 2D
quadrupolar modes [13,14].

To analyze the stability of a self-bound droplet solution it is
convenient to calculate the release energy ER, which is defined
as the energy of the system when subtracting the energy related
to the confinement, at the equilibrium widths corresponding
to a droplet state [14]. Whenever ER < 0 holds, a self-bound
solution is reached.

IV. RESULTS

Our goal is now to compare recent results concerning
strongly interacting dipolar bosons in Refs. [13–15] with our
calculations based on the effective potential obtained from the
realistic scattering amplitude described in Sec. II. To simplify
our presentation we will describe the results as a function of
εBorn

dd = aBorn
dd /a and εdd = add/a. The relation between both

relative dipolar strengths depends on the scattering length, as
shown by Fig. 3. We note that within the Born approximation
the theoretical predictions are completely universal, because
the properties of the system depend only on the value of εBorn

dd .
In contrast, in our treatment the dependence of εdd on the
scattering length is system specific.

A. Droplet stability

Theoretical calculations [13–15] predict the existence of
stable self-bound droplets stabilized by quantum fluctuations
(the LHY correction) in the region where the mean-field
solution predicts a collapse. In recent experiment [16] the
self-bound droplet has indeed been observed. However, the
phase boundary (the critical atom number Ncrit as a func-
tion of the scattering length) was not fully reproduced by
theory. The discrepancy was explained by proposing a shift
in the background scattering length from 92a0 to 62.5a0.
As the measurement of the critical atom number is very
sensitive to the interaction parameters, the correction to the
effective interaction can also significantly alter the phase
diagram.

In Fig. 5 we show the stability diagrams for Dy and Dy2
with effective dipolar lengths add originated from our model
potential compared with the phase boundary obtained within
the Born approximation. As shown previously, the self-bound
solution stability only depends on the atom number N and
εdd [15]. We determine the critical atom number as the value
of N at which the release energy ER = 0. We plot Ncrit as
a function of εBorn

dd . The areas above each line correspond to
stable (self-bound) solutions with ER < 0 for a given system,
while the areas below each line mark unstable (trap-bound)
solutions with ER > 0. We notice that the qualitative character
of the phase diagram is the same for all cases, but the lines
are offset relative to each other. This is obviously caused by
the fact that εdd �= εBorn

dd for a given scattering length a. In the
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FIG. 5. Droplet stability diagram for Dy and Dy2 with an
appropriate ãdd as a function of N and εBorn

dd calculated using the
simplified Gaussian ansatz. The lines correspond to the release energy
ER = 0 for Dy, Dy2, and Born solution. Regions below each line
indicate an unstable solution (ER > 0), whereas those above mark a
stable self-bound state (ER < 0).
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FIG. 6. Comparing the lowest excitation frequencies of a spheri-
cally trapped Dy Bose-Einstein condensate (BEC) with N = 20 000
atoms and ω̃/2π = 10 Hz (upper) or ω̃/2π = 70 Hz (lower) for the
numerical calculation (black straight line) and Born approximation
predictions (red dashed line). In both cases the Gaussian ansatz was
used. Both black and red lines exhibit anticrossings.
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FIG. 7. Comparing the lowest excitation frequencies of a spheri-
cally trapped Dy2 BEC with N = 20 000 atoms and ω̃/2π = 10 Hz
(upper) or ω̃/2π = 70 Hz (lower) for the numerical calculation (black
straight line) and Born approximation predictions (red dashed line).
In both cases the Gaussian ansatz was used.

experimentally most interesting regime εdd � 1, εdd > εBorn
dd .

The drop of εdd at large a is not as relevant since in that regime
the droplets do not exist. Note that for Dy2 the critical line
is more strongly displaced, which is in line with our findings
from Sec. II and Fig. 3. These results make the observed phase
boundary [16] more consistent with the previous measurement
of the background scattering length [32], since the measured
critical atom numbers were also much lower than the Born
approximation predictions.

B. Collective modes

To evaluate the three lowest lying excitations one has
to calculate the Hessian matrix for the potential U at
the equilibrium widths ν

eq
α . In Figs. 6 and 7 we depict

the mode frequencies for Dy and Dy2 respectively, both
for the Born approximation and the corrected effective po-
tential. We choose the case of a spherically symmetric trap
with N = 20 000 atoms for two different trap frequencies
ω = 10 and 70 Hz.

In Fig. 6 we present our findings for Dy. The results for
the Born approximation and our model are slightly displaced
for both trapping frequencies. The reason for that is the same
as in the previous section. The composition of the eigenstates
is the same as in Ref. [13]. Namely, in the mean-field regime

(εBorn
dd ≈ 1) the lowest excitation is given by the 2D quadrupole

mode, then the second lowest mode is a 3D quadrupole mode,
and the highest is a monopole mode. On the other hand, in
the droplet regime (εBorn

dd 
 1) the mode resembling the 3D
quadrupole mode becomes the lowest, then the second is
the 2D quadrupole mode, and the highest mode changes its
character from 3D monopole behavior to 2D monopole mode
behavior.

The results for Dy2 are depicted in Fig. 7. We notice that
in this case there is no significant difference between the Born
approximation results and our model. The effect is more visible
for a very weak trap. The qualitative difference between the
results for Dy2 and Dy can be explained by the fact that
the collective frequencies mainly depend on the scattering
length a while the dipolar contribution to the Hessian matrix
is rather small. As the magnetic moment of Dy2 is higher
than of Dy, in order to obtain a given εBorn

dd value one needs
much higher scattering lengths. Then the contact interaction
part completely dominates the dipolar contribution. One can
conclude that lanthanide atoms have the perfect combination
of parameters for which the dipolar interaction significantly
affects the collective modes.

V. CONCLUSIONS

In conclusion, we studied the effects of taking into account
the full scattering amplitude instead of relying on the Born ap-
proximation for the dynamics of strongly dipolar boson gases.
We demonstrated that already for lanthanide atoms one needs
to use realistic interaction models. We showed that the main
effect beyond the Born approximation is the emergence of an
effective dipolar length which replaces the standard one in the
effective potential. This has strong impact on the many-body
properties of the gas such as the critical atom number of the
self-bound droplet and to some extent on collective mode fre-
quencies. Our results suggest that the stability boundary of the
self-bound droplets is shifted to smaller atom numbers, in line
with the recently reported experimental measurements [16].
Our findings are relevant also for recently reported Monte
Carlo calculations [39–41] which have used a simplified inter-
action potential with a constant dipolar part and a hard wall,
suggesting that more realistic potentials should be used there as
well.

So far, the models of dipolar gases were based on the local
density approximation. Our treatment is no exception to that,
since we calculate the scattering amplitude and the resulting
effective interaction and LHY correction in free space. One
subtlety in treating dipolar gases is that in order to obtain
the scattering amplitude it is necessary to propagate the wave
function to distances much larger than add, comparable to the
characteristic trap length. The presence of the trap modifies
the asymptotic form of the wave function at this length scale,
which can potentially modify the derivation of the mean-field
theory. Including the trap in the derivation seems to be a
challenging task. It would also be desirable to further improve
the interaction model, taking into account the anisotropic
van der Waals terms [29] and hyperfine structure details and
looking for possible novel effects.
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[9] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A.
Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda,
Phys. Rev. Lett. 101, 080401 (2008).

[10] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau,
Phys. Rev. Lett. 116, 215301 (2016).
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