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Hydrodynamics of vortices in Bose-Einstein condensates: A defect-gauge field approach

F. Ednilson A. dos Santos
Department of Physics, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil

(Received 17 September 2016; published 23 December 2016)

This work rectifies the hydrodynamic equations commonly used to describe the superfluid velocity field in such
a way that vortex dynamics are also taken into account. In the field of quantum turbulence, it is of fundamental
importance to know the correct form of the equations which play similar roles to the Navier-Stokes equation in
classical turbulence. Here, such equations are obtained by carefully taking into account the frequently overlooked
multivalued nature of the U (1) phase field. Such an approach provides exact analytical explanations to some
numerically observed features involving the dynamics of quantum vortices in Bose-Einstein condensates, such as
the universal t1/2 behavior of reconnecting vortex lines. It also expands these results beyond the Gross-Pitaevskii
theory so that some features can be generalized to other systems such as superfluid 4He, dipolar condensates, and
mixtures of different superfluid systems.
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I. INTRODUCTION

Superfluidity is a macroscopic quantum phenomenon that
has attracted attention since its discovery in liquid 4He
by Kapitza [1] as well as Allen and Misener [2]. London
[3] proposed that the superfluidity appearing in 4He was
closely related to the existence of a Bose-Einstein condensate
(BEC) which can be described by a complex wave function
ψ = √

ρeiS , where ρ is the condensate density and S is the
phase that determines the superfluid velocity, which is usually

assumed to be v ?= (�/m)∇S, where the notation
?= represents

the fact that this equation is not correct in general and therefore
must be modified, as we will see below. The multivalued nature
of S implies the quantization of the superfluid vorticity [4,5].
Since S is defined modulo 2π , the velocity circulation

∫
� v · dr

must be an integer multiple of 2π�/m = h/m.
Associations between quantum-vortex degrees of freedom

and gauge fields have been previously discussed in great detail
by Kleinert [6–10], where the concept of defect-gauge fields
was introduced. An alternative approach is discussed, for
example, by Kozhevnikov [11,12], where vortex gauge fields
are introduced as extra terms in the equations of motion for
the complex scalar field. An interesting possibility is based
on the exploration of approximate boson-vortex dualities as in
[13,14], where the continuity equation is used as a basis for the
introduction of gauge fields. In Ref. [15], a gauge field which
is dual to the velocity field is considered, thus allowing the
study of the motion of a two-dimensional (2D) point vortex in
inhomogeneous backgrounds. In Ref. [16], Popov’s functional
integral formalism [17], where a gauge field is introduced in
order to enforce the constraint between velocity and vorticity
fields, is also applied to the study of 2D vortex motions.

The analogy between quantum and classical hydrodynam-
ics is usually made by using the Gross-Pitaevskii (GP) equation

i∂tψ = − 1
2∇2ψ + V (r)ψ + g|ψ |2ψ, (1)

where direct substitution of ψ = √
ρeiS seems to lead to the

hydrodynamic equations [4,5]:

∂tρ = −∇ · (ρv), (2)

∂tv
?= ∇

[
1

2

(
1

2ρ
∇2ρ − 1

4ρ2
|∇ρ|2 − v2

2

)
− V − gρ

]
,

(3)

where for simplicity the system of units is chosen so that
� = m = 1. In Eq. (3), a usually unnoticed complication
arises: S is a multivalued field and therefore the chain rule of
differentiation cannot be applied to eiS [10]. Indeed, by taking
the curl in Eq. (3), one would be left with the false statement
that vorticity has no dynamics, i.e., ∂tω = ∂t (∇ × v) = 0.
Thus, Eq. (3) turns out to be of little use for dealing with
situations where the dynamics of vorticity plays an important
role, as in the case of quantum turbulence [18–22]. In the latter,
it is common to interpret results through an analogy between
Eq. (3) and the Navier-Stokes equation, thus establishing a
close relationship between quantum and classical turbulence
[22,23]. In practice, due to the weaknesses of Eq. (3), studies
are normally based on direct numerical simulations of the
GP equation, as in [24–26], or the Biot-Savart model, as in
[27–29].

The present work aims to provide a general framework
where exact hydrodynamic equations can be obtained for
models of superfluidity described by complex fields which
have equations of motion of the form

∂ψ(r,t)
∂t

= F{ψ∗,ψ}(r,t), (4)

where F{ψ∗,ψ}(r,t) can be any arbitrary functional of ψ

which is local in time (i.e., depends only on ψ at the instant t)
and has explicit dependency in r and t . The Gross-Pitaevskii
theory based on Eq. (1) is therefore only one example. This is
made possible through a careful analysis of the multivalued
nature of the phase field S, following the lines presented
in Ref. [10]. The hydrodynamic equation obtained this way
makes it possible to derivate the superfluid behavior in its
entirety, which includes its vorticity dynamics.

A. Two-dimensional case

For illustrative purposes, let us consider a scalar complex
field ψ in two spatial dimensions with its usual definition for
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the velocity field [4,5]

v = ψ∗∇ψ − ψ∇ψ∗

2iψ∗ψ
. (5)

A common approach at this point would be to consider the
Madelung’s representation ψ = √

ρeiS and use the chain rule
of derivatives in order to obtain the relation between the phase
S and velocity field v, as follows:

v = ψ∗∇ψ − ψ∇ψ∗

2iψ∗ψ
= e−iS∇eiS − eiS∇e−iS

2i

?= ∇S. (6)

However, as pointed out by Kleinert in [10], the chain rule
should not be indiscriminately used in the case of multivalued
fields. A typical example is that of a 2D isotropic vortex which,
in polar coordinates, can be expressed as ψ(r) = f (r)eiϕ , with
0 � ϕ < 2π as in Fig. 1(a). In that case, the field S = ϕ is
discontinuous over the cut line [see Fig. 1(a)], thus giving

∇S = ϕ̂

r
− 2π�(x)δ(y)ŷ, (7)

where �(x) and δ(y) are the Heaviside and Dirac functions,
respectively, while ϕ̂ and ŷ are the unit vectors corresponding
to ϕ and y. Observe that, in this way, the property ∇ × ∇S = 0
is preserved as expected. However, a direct calculation of the
velocity field gives

v = ψ∗∇ψ − ψ∇ψ∗

2iψ∗ψ
= ϕ̂

r
, (8)

which means that

∇S = v − A, (9)

A = 2π�(x)δ(y)ŷ. (10)

Therefore, formula (6) for the velocity field must be correctly
defined according to

v = ∇S + A, (11)

where the vector field A compensates for the discontinuity in
S. In addition, all the vorticity of v is concentrated in the field
A, i.e.,

∇ × v = ∇ × A = 2πδ(r)ẑ. (12)

In order to make these results consistent with Eq. (6), the
common chain rule of differentiation must be modified [10]
according to

∇eiS = iveiS = i(∇S + A)eiS. (13)

Due to the U (1) symmetry of ψ , the definition of S can
always be modified by adding to it a scalar field Q which
assumes values equal to 2πl, with l ∈ Z, where l can be
different for different regions of the plane [see Fig. 1(c)].
Observe also in Figs. 1(b) and 1(c) that cut lines can be moved
due to the extra Q field. This way, the field A also has to change
in order not to modify v = ∇S + A, therefore v is invariant
under the following gauge transformations

S → S + Q, (14)

A → A − ∇Q. (15)

B. Arbitrary number of dimensions

From now on, the tensor notation with Einstein summation
rule will be used, where Greek indices correspond to space-
time coordinates and Latin indices correspond to pure spatial
coordinates.

The previous analysis can be extended to arbitrary space-
time dimensions, where we have the four-velocity field vμ

given by

vμ = ψ∗∂μψ − ψ∂μψ∗

2iψ∗ψ
= e−iS∂μeiS − eiS∂μe−iS

2i

= ∂μS + Aμ, (16)

where ∂μeiS = i(∂μS + Aμ)eiS and the gauge field Aμ must
be chosen such that it accounts for any artificial discontinuities
from ∂μS. This leads to the gauge transformations

S → S + Q, (17)

Aμ → Aμ − ∂μQ. (18)

C. Topological conservation laws

In analogy to the electromagnetic theory, we can use the
gauge field Aμ to define the force field tensor

Fμν = ∂μAν − ∂νAμ

= ∂μvν − ∂νvμ, (19)

which is invariant under the gauge transformations (17)–(18).
Such a definition leads to the conservation laws

In (2 + 1) dimensions: ∂μ

(
1
2εμαβFαβ

) = 0, (20)

In (3 + 1) dimensions: ∂μ

(
1
2εμναβFαβ

) = 0, (21)

where ε is the Levi-Civita symbol.
The topological charge density in (2+1) dimensions is the

vorticity


0 = 1
2ε0ijFij = εij ∂ivj = ω, (22)

while the vortex-current vector is


i = 1
2εi0jF0j + 1

2εij0Fj0 = −εijF0j = −εijEj . (23)

In (3+1) dimensions the topological charge density is the
vorticity vector


0i = 1
2ε0ijkFjk = εijk∂j vk = ωi, (24)

while the vortex-current tensor is


ij = 1
2εij0kF0k + 1

2εijk0Fk0 = −εijkF0k = −εijkEk. (25)

Here, the field Ei is the timelike component of the antisym-
metric force-field tensor which in the electromagnetic theory
corresponds to the electric field

Ei ≡ F0i ≡ ∂0Ai − ∂iA0. (26)

D. Hydrodynamic equations

Now, in order to derive the correct hydrodynamic equations,
let us consider the derivative

∂iv0 = ∂i(∂0S + A0) = ∂0(∂iS + Ai) + ∂iA0 − ∂0Ai, (27)
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FIG. 1. Different representations of the same multivalued phase corresponding to the velocity field in Eq. (8). In (a), S is defined so that
0 � S < 2π . In (b), S is defined so that −π � S < π , and (c) corresponds to a gauge transformation which adds 2πl, with different l ∈ Z for
different regions of the plane.

which can be rearranged in order to give the time derivative of
the spacelike velocity field

∂tvi ≡ ∂0vi = Ei + ∂iv0, (28)

where v0 is given by (16). Observe that ∂0ψ in Eq. (4) can be
used for the calculation of v0 in terms of ρ and vi . In the case
of the GP equation (1), we have

v0 = 1

2

[
1

2ρ
∇2ρ − 1

4ρ2
|∇ρ|2 − v2

2

]
− V − gρ. (29)

This corrects the usual hydrodynamic equation (3) so that
Ei takes into account all possible vorticity effects. Thus, the
correct hydrodynamic equation following from GP Eq. (1)
differs from the classical Euler equation in two aspects: the
quantum pressure and the force Ei . The vorticity equations
can be obtained by taking the curl in Eq. (28), which ends up
reproducing the vorticity conservation laws already stated in
Eqs. (20) and (21). Although it is necessary to correct (3), a
straightforward calculation shows that the continuity equation
(2) remains valid, despite the discontinuities of S.

E. Explicit form of force fields

In order to construct a full hydrodynamic theory, it is
also necessary to express the force fields in Eq. (19) in
terms of ρ and vi . According to (19), Fμν can be obtained
straightforwardly once an explicit form of the gauge field Aμ

is known. In order to do that, let us consider the phase field
S as being restricted to 0 � S < 2π , in analogy to the two-
dimensional example presented earlier. The discontinuities
appearing in S must be compensated by the gauge field in
order to allow for the correct calculation of the velocity field,
as defined in Eq. (16). Considering that R and I are the real
and imaginary parts of ψ , respectively, such a convention for S

implies that its discontinuities appear when R � 0 and I = 0.
This means that ∂μS will have discontinuities of the form
−2π�(R)∂μ�(I ). Therefore the gauge field must be given by

Aμ = 2π�(R)∂μ�(I ). (30)

This leads directly to the force field

Fμν = 2πδ(R)δ(I )(∂μR∂νI − ∂νR∂μI )

= iπδ(R)δ(I )(∂μψ∂νψ
∗ − ∂νψ∂μψ∗). (31)

Finally, by using the property δ(R)δ(I ) = 2δ(R2 + I 2)/π , we
get the hydrodynamic form of the force field

Fμν = 2δ(ρ)(∂μρvν − ∂νρvμ). (32)

In such a way, the field Ei = F0i , necessary in Eq. (28), is

Ei = −2δ(ρ)[vi∂j (ρvj ) + v0∂iρ], (33)

where ∂0ρ is obtained from the continuity equation Eq. (2) and
v0 is model specific.

F. Vortex motion

As a testing ground to the validity of the theory presented,
let us check whether it is indeed capable of predicting the
correct motion of point vortices in 2D and vortex lines in
three dimensions (3D). In fact, the motion of vortex lines can
be analyzed by looking at the motion of point vortices over
planes crossed by the vortex line. Hence this discussion can
be reduced to the two-dimensional situation.

In this case, the motion of vortices can be described by
Eq. (20), while vortex currents can be directly evaluated from
(31). As illustrated in Fig. 1, a singly quantized vortex is always
located at the crossing between R = 0 and I = 0 lines in the
xy plane. Let us consider, without loss of generality, that such
a crossing happens at the origin. At the vicinity of the crossing
point, the δ functions in (31) can then be simplified to

δ(R)δ(I ) = δ(x)δ(y)

|εij ∂iR∂j I | . (34)

From (22), (32), and (34) we get

ω = 
0 = 2πδ(x)δ(y)
εij ∂iR∂j I

|εlm∂lR∂mI |
= 2π sgn(εij ∂iR∂j I )δ(x)δ(y), (35)

where sgn(εij ∂iR∂j I ) gives the vortex sign. Now combining
(23), (32), and (34), we have the vortex current


i = −2πδ(x)δ(y)εij ∂0R∂jI − ∂jR∂0I∣∣εlm∂lR∂mI
∣∣ = ωwi, (36)

where the vortex velocity wi is

wi = −εij ∂0R∂jI − ∂jR∂0I

εlm∂lR∂mI
. (37)
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Observe that wi is indeed consistent with the equations
describing the motion of the crossing point between the lines
R = 0 and I = 0, as in Ref. [30]:

∂0R + wi∂iR = 0, (38)

∂0I + wi∂iI = 0, (39)

whose solution for wi is given by (37).
An elegant approximation for wi can be obtained for the

case of quasi-isotropic vortices with dynamics given by the
GP equation (1), i.e., when

ψ ≈ [(x − x0) + i(y − y0)]φ, (40)

with φ = Aeiλ, where both A and λ have their values as well
as their first derivatives well defined at (x, y) = (x0, y0). By
directly substituting (40) into (37) and observing that at the
vortex location we have ∂0ψ = i 1

2∇2ψ , we get

wi = ∂iλ + εij ∂j ln(A). (41)

This gives a correction to the so-called point-vortex model,
where ∂iλ is the velocity field over the vortex core excluding
the self-generated velocity field, while εij ∂j ln(A) gives a con-
tribution perpendicular to the density gradient. The necessity
for this correction has already been observed in the numerical
studies of Ref. [31].

Our 2D analysis can be directly generalized to 3D vortex
lines by considering a plane crossed by the vortex line. In this
case, wi would describe the motion of the crossing point over
the considered plane.

G. Reconnection of lines and creation or annihilation of pairs

An interesting situation occurs when the R = 0 and I = 0
lines touch each other tangentially at a single point as in
Fig. 2(b). Actually, Fig. 2 can illustrate either the situation right
at the beginning of a vortex-pair-creation process or at the end
of a vortex-pair annihilation process. Indeed, the sequence
(a)-(b)-(c) in Fig. 2 exemplifies a vortex-pair annihilation
process, while the inverse sequence (c)-(b)-(a) describes a
pair-creation process. For simplicity, without loss of generality,
one can consider that the lines touch at x0 = y0 = t0 = 0 and
are tangent to the x axis at this point, i.e., ∂x0R = ∂x0I = 0. At

the vicinity of the touching point the Taylor expansion can be
used:

R = ∂R

∂y0
y + ∂R

∂t0
t + 1

2

∂2R

∂x2
0

x2 + · · · , (42)

I = ∂I

∂y0
y + ∂I

∂t0
t + 1

2

∂2I

∂x2
0

x2 + · · · . (43)

Close to the touching point, the curves R = 0 and I = 0 can
then be obtained by considering the dominant terms in (42)
and (43), according to

yRe ≈ −1

2

∂2R/∂x2
0

∂R/∂y0
x2 − ∂R/∂t0

∂R/∂y0
t, (44)

yIm ≈ −1

2

∂2I/∂x2
0

∂I/∂y0
x2 − ∂I/∂t0

∂I/∂y0
t. (45)

The crossing points as depicted in Fig. 2(a) are solutions of
the condition yRe = yIm, which are given by

x2 ≈ 2tα, (46)

α = ∂tR∂yI − ∂t I∂yR

∂2
x I∂yR − ∂2

xR∂yI

∣∣∣∣
x=y=t=0

. (47)

The sign of α indicates whether there are real solutions for
x with t < 0 or with t > 0, thus determining if it is the case
of an annihilation (α < 0) or creation (α > 0) process. Also
from (46), we get the power-law behavior for the creation or
annihilation process:

x ∼ ±t1/2. (48)

Observe that these results can also be directly obtained
from (37) by considering the expansions (42) and (43) and
neglecting the subdominant terms. This calculation would then

FIG. 2. Annihilation or creation of a vortex pair. The sequence (a)-(b)-(c) corresponds to the annihilation process, while the inverse sequence
(c)-(b)-(a) corresponds to the pair-creation process. Such sequences also describe the recombination process of 3D vortex lines, where the
depicted plane crosses the recombination point.
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lead to

wy ≈ − ∂tR∂2
x I − ∂t I∂2

xR

∂2
x I∂yR − ∂2

xR∂yI

∣∣∣∣
x=y=t=0

, (49)

wx ≈ 1

x

(
∂tR∂yI − ∂t I∂yR

∂2
x I∂yR − ∂2

xR∂yI

∣∣∣∣
x=y=t=0

)
= α

x
. (50)

Creation and annihilation of vortex pairs also leave their
signatures in the hydrodynamic equation (28). A direct
evaluation of Fμν at t = 0 and around the point x0 = y0 = 0
can be obtained with the help of Eqs. (42) and (43). It then
gives

Fμν = 4πδ(x2)δ(y)
∂μR∂νI − ∂νR∂μI∣∣∂2

xR∂yI − ∂2
x I∂yR

∣∣ . (51)

Since ∂xR = ∂xI = 0 at x = y = 0, the vorticity ω = εijFij

vanishes. However, it does not mean that the vorticity flux
vanishes in all directions. Actually, the vorticity flux in the y

direction 
2 = F01 vanishes, while for the x direction we have


1 = −F02 = −4πδ(x2)δ(y)
∂tR∂yI − ∂yR∂tI∣∣∂2
xR∂yI − ∂2

x I∂yR
∣∣ . (52)

This reflects the fact that although no vortex actually exists
at t = 0, a vorticity flux is still necessary to account for
the creation and annihilation of vortex pairs occurring in
the superfluid. Also, the possibility of having a nonzero
Ei = F0i , even in the absence of vortices, shows that the
hydrodynamic equation (28) is capable of describing the
creation and annihilation of vortex pairs.

Again, it should be emphasized that such a two-dimensional
analysis can also be directly generalized to the case of
recombinations of 3D vortex lines by considering planes
crossed by the vortex lines. Indeed, the present analysis demon-
strates exactly the x ∼ ±t1/2 behavior for the reconnection of
vortex lines which was observed experimentally in Ref. [32],
numerically in the context of Biot-Savart models in Ref. [33],
and analytically in the context of GP equation in Ref. [34]. In

addition, such a t1/2 law turns out to be very general in the
sense that it is not restricted to any particular superfluid model
such as the GP equation. Indeed, this result depends only on
the existence of the first time derivative as well as the first and
second spacial derivatives of ψ .

II. CONCLUSIONS

This work provides a general framework for the construc-
tion of hydrodynamic theories which are capable of correctly
including any possible vortex dynamics that may exist in a
large set of superfluidity models. By a detailed examination
of the role of the multivalued nature of the phase field S

in the vortex dynamics, the general hydrodynamic equation
(28) was obtained, where all details of a specific model are
introduced through the quantity v0, defined in Eq. (16). Such
multivaluedness of S demands the introduction of the gauge
field Aμ, where the time-like component Ei = F0i of its force
field must be introduced in the hydrodynamic equation (28).
The only restriction of this approach is that the equation of
motion for the macroscopic wave function ψ must be of
first order in time, according to Eq. (4). As a test for the
practicality of this approach, the dynamics of 2D point vortices
and 3D vortex lines have been considered. It turns out that the
numerically observed behavior [31] of point vortices moving
over a background density gradient is analytically reproduced
in Eq. (41). In addition, the t1/2 behavior of creation or
annihilation of 2D vortex pairs as well as of 3D vortex line
reconnections [32–34] is exactly demonstrated for a large class
of superfluid models.
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