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Probing the out-of-equilibrium dynamics of two interacting atoms
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We study the out-of-equilibrium dynamics of two interacting atoms in a one-dimensional harmonic trap after
a quench by a tightly pinned impurity atom. We make use of an approximate variational calculation called the
Lagrange-mesh method to solve the Schrödinger equation as a function of interparticle interaction and impurity
quench strength. We investigate the out-of-equilibrium dynamics by calculating the Loschmidt echo which
quantifies the irreversibility of the system following the quench, while its probability distribution after long times
can be used to identify distinct dynamical regimes. These quantities are related to the spectral function which
describes the full dynamical spectrum, and we show through a thorough examination of the parameter space the
existence of distinct scattering states and collective oscillations. This work demonstrates how these dynamics are
strongly dependent on the interaction strength between the atoms and may be tuned to observe the establishment
of the orthogonality catastrophe in few-body systems.
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I. INTRODUCTION

Advances in optical trapping of cold atoms have allowed
for unprecedented manipulation over the size of these quantum
systems such that the number of atoms being trapped can be
exactly controlled [1,2]. Experiments can now explore these
few-body systems where the interactions can be tuned via
Feshbach resonances to create strongly correlated states [3,4].
Exciting out-of-equilibrium dynamics can lead to distinct
oscillations of the wave function which are dependent on the
interaction modified energy structure of these systems [5–14].
Probing these oscillations has been proposed and implemented
recently [15–24] by using impurity qubits that can trigger
these dynamics and which are strongly correlated with the
many-body systems being measured. The out-of-equilibrium
dynamics of these systems is imprinted on the rate of decoher-
ence of the qubit and can be extracted through interferometric
measurements. One can use this scheme to extract information
about the system as the full excitation spectrum is obtained.

In this paper we investigate using an impurity to probe
the dynamics of two particles confined to a one dimensional
harmonic trap. The particles interact via a contact interaction
which leads to nontrivial shifts in the energy levels of the
atoms [25] resulting in complex dynamics after a sudden
quench of the impurity coupling strength [9,26]. Using
numerical tools we quantify this dynamics by calculating
a survival probability known as the Loschmidt echo (LE)
and its spectral components [27,28]. Its applications range
from understanding decoherence [29–32] and quantum phase
transitions [33–37], as an indicator of the orthogonality
catastrophe (OC) [16,38], and in the study of nonequilibrium
quantum thermodynamics [17,26,39]. Experimentally, the LE
is a measurable quantity in NMR setups [40,41] and can
be extracted through Ramsey interferometry [16,17,42,43].
We characterize distinct dynamical classes of the two-particle
system which are dependent on its interaction and the impurity
coupling strength, and we show that depending on the sign
of the impurity interaction the system can exhibit distinct
scattering and bound state dynamics which can be inferred
from the spectral function.

The paper is organized as follows: In Sec. II we introduce
the system and the method by which we evaluate the
Hamiltonian and calculate the out-of-equilibrium dynamics.
In Secs. III and IV we discuss the results of the numerical
calculations of the LE and the spectral function. Finally in
Sec. V we conclude our findings and in the Appendix we
outline the numerical techniques which we used in this paper.

II. MODEL HAMILTONIAN

We consider a system of two identical bosonic atoms
which are trapped in a harmonic potential. Due to strong
trap frequencies in two perpendicular directions, the atoms
are restricted to motion only along the axial direction and can
be regarded as one dimensional. The initial Hamiltonian Hi of
the system before the quench reads

Hi =
2∑

j=1

(
− �

2

2m

∂2

∂χ2
j

+ 1

2
mω2

T χ2
j

)
+ Vint(χ1,χ2), (1)

where χj is the coordinate of particle j , their mass is
labeled m, and ωT denotes the axial trap frequency. At low
temperatures, the boson-boson interaction consists mainly of
s-wave scattering and thus the interaction potential Vint can be
approximated by a δ-function potential of strength g1D

Vint(χ1,χ2) ≈ g1Dδ(|χ1 − χ2|) . (2)

The coupling constant g1D is a tunable parameter which can be
modified by exploiting Feshbach resonances of the scattering
length a3D or by changing the transverse confinement d⊥ =√

�/mω⊥ and has the following form [44]

g1D = 4�
2a3D

md2
⊥

1

1 − C a3D

d⊥

, (3)

where ω⊥ is the trap frequency in the perpendicular directions
and C = ζ ( 1

2 ) ≈ 1.4603 is a constant [3].
We will study the out-of-equilibrium dynamics following

an instantaneous quench of the two-particle ground state with
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an impurity

Hf = Hi + �(τ )Vimp , (4)

where �(τ ) is the Heaviside step function and Vimp is a
potential which describes the interaction with the impurity
that has the form of a δ-function potential barrier of height κ0

that is located centrally in the trap:

Vimp(χ1,χ2) =
2∑

j=1

κ0δ(χj ) . (5)

We assume that the impurity is a tightly pinned atom which has
two distinct internal levels, |0〉 and |1〉, such that it describes
a qubit. For simplicity, we assume that the qubit ground
state |0〉 does not interact with the bipartite system, while
the excited state |1〉 interacts with the coupling strength κ0,
which can be controlled with Feshbach resonances. Therefore
by exciting the qubit to its excited state we can suddenly
trigger its interaction with the bipartite state and create
out-of-equilibrium dynamics following this quench.

In the following, we scale all lengths by a = √
�/(mωT ), all

energies by �ωT , and give the time τ in units of the inverse trap-
ping frequency ω−1

T . Thus the scaled dimensionless quantities
are given by xj = χj/a, κ = κ0/(a�ωT ), g = g1D/(a�ωT ),
and t = τωT which leads to the following scaled Hamiltonians

H̃i =
2∑

j=1

(
−1

2

∂2

∂x2
j

+ 1

2
x2

j

)
+ gδ(|x1 − x2|) , (6)

H̃f =
2∑

j=1
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−1

2

∂2

∂x2
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2
x2

j + κδ(xj )

)
+ gδ(|x1 − x2|).

(7)

The time independent Schrödinger equation
H̃iψn(x1,x2) = Enψn(x1,x2) can be solved analytically
by introducing center-of-mass and relative coordinates [25];
however the quenched system’s Hamiltonian H̃f φn(x1,x2) =
E

′
nφn(x1,x2) lacks such a treatment and we therefore solve it

numerically. We accomplish this by using the Lagrange-mesh
method which is an approximate variational calculation [45]
and is further explained in the Appendix.

We study the dynamics of the system after the quench by
expressing the time dependent wave function in terms of the
eigenstates φn(x1,x2) of H̃f such that

�(x1,x2,t) =
∞∑

n=0

anφn(x1,x2)e−iE′
nt , (8)

where

an =
∫ +∞

−∞

∫ +∞

−∞
φ∗

n(x1,x2)ψ0(x1,x2)dx1dx2 , (9)

is the overlap of the final Hamiltonian’s eigenstates with the
initial ground state ψ0(x1,x2). The dynamics of the system can
be qualitatively understood through the time evolution of the
single-particle density

ρ(x,t) =
∫ +∞

−∞
|�(x,x2,t)|2dx2 . (10)

We consider the excited state of the impurity to have either a
repulsive (positive κ) or an attractive (negative κ) coupling to

FIG. 1. Evolution of the single-particle densities for an interac-
tion of g = 2.5 and a quenched impurity coupling of (a) κ = 0.7 and
(b) κ = −0.7.

the bipartite state, which will result in different dynamics after
the quench. In Fig. 1 the evolution of the single-particle density
is shown for an interaction of g = 2.5 and different impurities
of strength κ = ±0.7. For a repulsive impurity coupling the
quench imparts kinetic energy to the particles causing the
density to spread out to the trap edges with a pronounced dip
appearing at the position of the impurity. The density follows
a quasiharmonic motion as the particles interaction and the
impurity potential significantly alters the energy structure of
the state. Nonetheless, a partial revival of the density is visible
on short time scales occurring around t ≈ π/ωT . For attractive
quenches, the density is localized in the center of the trap as
the state is attracted to the site of the impurity and forms
a bound state which causes high frequency oscillations in
the single-particle density. When the strength of the quench
is small the dynamics caused by the static impurity quench
show comparable characteristics to that of a mobile impurity
considered in [9], as the effect of the impurity motion on the
bipartite state is negligible in this case. However, for large
quenches the two models begin to diverge as the motion of the
impurity is enhanced by the quench of the strong interspecies
interaction. These impurity density fluctuations will then be
written on the bipartite density and may be observed as high
frequency oscillations.

III. LOSCHMIDT ECHO

We calculate the LE to investigate the complex dynamics
which stem from the sudden impurity quench, and to under-
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stand its dependence on the quench coupling strength and
the interactions between the two particles. The LE describes
the reversibility of a given dynamical evolution, whereby it
illustrates the disparity between two states as a result of
imperfect time reversal, and it is therefore closely related
to the fidelity [46]. The LE can be measured experimentally
through Ramsey interferometry as explained in [16], whereby
a π/2 pulse is applied to the impurity qubit such that
the overall system becomes a correlated state of the form
(|0〉 ⊗ e−iH̃i t |ψ0〉 + |1〉 ⊗ e−iH̃f t |ψ0〉)/

√
2. This triggers out-

of-equilibrium dynamics in the bipartite state as it is quenched
by the sudden coupling to the excited state of the qubit. A
measurement of the probability of the qubits state allows one
to extract ν(t) which describes its decoherence and is related
to the LE L(t) through

L(t) = |ν(t)|2 = |〈ψ0|eiH̃ft e−iH̃it |ψ0〉|2 ; (11)

therefore one can extract the dynamics of the bipartite system
through a measurement of the qubit. The LE is essentially the
time dependent overlap of the initial state evolving with and
without the effects of the impurity quench, and can be rewritten
using Eq. (8) in the compact form

L(t) =
∣∣∣∣∣
∑

n

|an|2ei(E0−E′
n)t

∣∣∣∣∣
2

. (12)

This shows that the evolution of the LE is determined by
the difference in energy between the initial state E0 and the
excitation spectrum of the quenched Hamiltonian E′

n, and is
weighted by the factors an. At t = 0 the LE is unity as the
two states are equivalent, while for t > 0 the quench disturbs
the density of the bipartite state resulting in out-of-equilibrium
dynamics and a decay of the LE, with strong quenches resulting
in a temporal state which is far from the initial state and the
possibility of reaching a dynamical orthogonal state signaled
by L(t) → 0 [9,16,38]. Due to finite size effects from the
harmonic trapping potential, revivals of the state will be
observed as the density refocuses in the center of the trap
causing an increase of the LE. The frequency of these revivals
depends on the energy level shifts E0 − E′

n and can give a
indication of the energy structure of the system: evenly spaced
energy levels E′

n will mean sharp revivals and haveL(t) → 1 at
the revival times, while irregularly spaced levels will dephase
and have broad and diminished revivals.

For infinitely repulsive interactions the system is in
the Tonks-Girardeau (TG) limit and may be solved us-
ing the Fermi-Bose mapping theory [47,48], allowing us
to treat the infinitely repulsive bosonic two-particle wave
function as a system of two noninteracting fermions. There
are known solutions to the problem of a single particle in
a δ-function split trap which allow us to solve this system
exactly [25,49]. Due to the form of the mapping, the LE is
identical for both the TG and the fermionic systems. In the case
of the latter the LE can be written in terms of the single-particle
overlaps Amn(t) = 〈ϕ′

n(x,t)|ϕm(x,t)〉, such that

L(t) = |A00(t)A11(t) − A01(t)A10(t)|2, (13)

where ϕ(x,t) [ϕ′(x,t)] are the harmonic oscillator [quenched]
time-dependent single-particle states. As we only take the

FIG. 2. Evolution of the LE following the impurity quench for
different values of the bipartite interaction g and the impurity coupling
κ . The four panels each show a distinct behavior depending on the
choice of parameters and possess oscillations on different time scales.

two lowest single-particle states into account, the only state
influenced by the impurity is ϕ′

0, while the wave function
of the first excited state is zero at the position of the
impurity and is hence unaffected by it, meaning that ϕ1 = ϕ′

1.
Therefore A11(t) = 1, and due to the orthonormality of the
set of eigenstates of the harmonic oscillator the last term in
Eq. (13) vanishes, which means we need to only consider the
contribution of the evolution of the ground-state fermion to
the LE in this case. The LE for two TG particles under the
influence of the impurity is given by

L(t) = |A00(t)|2 =
∣∣∣∣∣
∑

n

|ãn|2ei(ε0−ε′
n)t

∣∣∣∣∣
2

, (14)

where ε0 [ε′
n] are the single-particle energies of the har-

monic oscillator [quenched] states and ãn denotes the time-
independent overlaps 〈ϕ′

n(x)|ϕ0(x)〉. For larger TG systems
under the influence of the impurity described by Eq. (5) we
need to only consider the contribution of the even states to
the LE as the odd states are unaffected. However, for finite
sized impurities both even and odd states will be altered by
the impurity and will therefore need to be taken into account
when calculating the LE.

In general, the LE exhibits an oscillatory behavior for
weak quenches [Fig. 2(a)] similar to that shown in [9] for the
mobile impurity. For strong repulsive impurity quenches the
LE is proportionately smaller in magnitude and its evolution
is more complex as it now involves higher energy components
which destroy the periodicity of the revivals [Fig. 2(b)]. In the
previously discussed situation of the mobile impurity, a high
frequency oscillation would also be present in the evolution
of the LE as the impurity density fluctuates between the two
strongly interacting particles, whereas in the situation of the
static impurity this is not seen. For strong attractive impurity
quenches [Fig. 2(c)], the LE shows high frequency oscillations
with rapidly changing amplitudes and periodically achieves
orthogonality (L = 0). Finally, a distinct beating pattern can be
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observed in the LE for specific parameter combinations, which
we have only observed for small interactions [Fig. 2(d)]. The
specific response of the LE in these figures will be explained
in detail in the following sections.

Probability distribution of the LE

While it is clear from Fig. 2 that the evolution of the LE
acquires some characteristic shape and behavior on short times,
it is difficult to say so quantitatively. Therefore, we numerically
evaluate the probability distribution of the LE,

P (y) = lim
T →∞

1

T

∫ T

0
δ(L(t) − y)dt , (15)

for those y which coincide with the values of the LE. This
distribution is calculated after evolving the system for a long
period of time such that all the intricacies of the evolution
are captured (typically on time scales of t ≈ 2π × 1600ω−1

T ).
Experimentally this could be achieved by creating many
replicas of the initial state and evolving them subjected to the
same quenched Hamiltonian, whereby measurements on the
individual states at different times would build the probability
distribution [28]. The distribution of the LE is shown in Fig. 3
for different parameter combinations ranging from weak to
strong regimes of interaction and impurity quench strength, as
well as the analytically solvable case of the TG pair. The
distributions of the four plots of the LE from Fig. 2 are
highlighted by red borders and their corresponding numbers
in Fig. 3. Each of these different quenches have distinct
distributions depending on the chosen parameters and we can
approximately separate them into four categories:

1. a double-peaked distribution when the LE oscillates
quasiperiodically after a small quench,

2. a Gaussian distribution when the LE possesses a
complex noisy shape for strong quenches,

3. an exponential distribution for strong quenches which
create dynamical orthogonality,

4. and a winged distribution when there is a beating
pattern in the LE for a small quench.

The other parameter combinations show slight deviations or
mixtures of these basic distributions as the system transitions
smoothly from one regime to the next; however a clear trend is
noticeable as a function of the quench strength which we will
now discuss.

In general, the LE will decrease with increasing κ due to the
growing destructive influence of the quench which reduces the
overlap between the initial and quenched states. This is visible
in the changing of the scales with κ in Fig. 3 and the behavior
of the average LE, L = ∑

n |an|4, plotted in Fig. 4. It is clear
that the response of the system to the impurity is dependent
on the interaction strength and will effect the values the LE
can take. The shift of the LE distribution to higher values for
growing interaction (for constant κ) is a result of the effect of
the pointlike interactions on the two-particle wave function.
For g large, the diagonal x1 = x2 in ψ(x1,x2) diminishes as
strong repulsive interactions force the particles apart. This
in turn lowers the density in the center of the trap where
the impurity is situated, thus diminishing the impact of the
impurity quench on the initial state. In the extreme case of the
TG pair, the quench only affects the center-of-mass component

FIG. 3. Probability distributions of the LE following the quench
for different values of the bipartite interaction strength g, and for the
quench coupling strengths (a) κ > 0 and (b) κ < 0. The LE for the
numbered distributions are plotted in Fig. 2.

of the wave function as the relative component is zero at the
origin. This reduces the impact of the quench significantly
on the bipartite state resulting in a larger mean value of the
LE and a smaller width of the probability distribution. Small
interactions are needed to achieve a lower LE and to approach
a dynamical OC, whereby the relative and center-of-mass
motion are coupled due to the presence of the impurity, and
the density of the bipartite state at the impurity is only slightly
reduced. The destructive effect of the impurity quench is the
most pronounced for g ≈ 1 in Fig. 4 where the minimum of
the mean LE is found. Due to the presence of the revivals in the
LE this temporal averaging will limit it magnitude to a finite
value larger than zero; however between these revivals the LE
is seen to vanish showing that weak interactions can be used
to approach the OC in few-body systems [9].
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FIG. 4. Mean of the LE, L, as a function of the impurity coupling
strength κ and the bipartite interaction strength g, where the contour
lines are added as a guide to the eye.

In the following we will discuss in more detail the four
specific distributions.

1. Double-peaked distribution

As shown in Fig. 1, the quench imparts kinetic energy to
the particles which excites periodic oscillations of the state,
whereby it expands and then contracts to the initial density at
the trap center. As the bipartite state is kicked to the trap edges
it is at its least dense, such that the overlap with the initial state
will be minimal and thus have a low value of the LE. Whereas
when the state refocuses at the trap center the LE will be
maximal as its density increases and will exhibit a sharp revival
[Fig. 2(a)]. The probability distribution of the LE will therefore
be bunched at these two points resulting in a double-peaked
distribution which also gives us important information about
the frequency of these oscillations. As the quench strength is
small there is only a low number of excitations and the energy
structure of the quenched state is close to that of the harmonic

oscillator; therefore these two peaks in the distribution can be
resolved [28].

2. Gaussian distribution

If the quench is strong there will be a large number
of excitations with energies that are far from the harmonic
spectrum. This means that these excitations will dephase as
the state evolves after the quench and the revivals of the
LE will be diminished [see Fig. 2(b)]. This will result in the
double-peaked probability distribution becoming blurred into
a shape resembling a Gaussian.

3. Exponential distribution

As discussed previously, by tuning the interaction strength
in the bipartite state the signature of OC may be observed
for strong quench strengths. In this case the LE will be
vanishingly small and will be punctuated with diminished
revivals of finite magnitude; therefore the corresponding
probability distribution of the LE will have a large peak at
L = 0 with an exponentially decaying tail. This effect can be
seen to emerge for a positive quench of κ = 20 at g = 0.5 and
for multiple values of the negative quench in Fig. 3, such as
g = 10 and κ = −5 which is shown in Fig. 2(c).

4. Winged distribution

Finally, we will discuss the winged distribution which only
exists for a reduced parameter range of small quenches, and
can be identified as a central peak in the LE probability
distribution surrounded by two lobes. This unique distribution
describes a regular beating pattern visible in the evolution of
the LE for g = 2.5 and κ = 0.7 [see Fig. 2(d)], where the
system oscillates with a breathing mode. The beating in the
dynamics is a direct result of the small finite interactions which
causes nontrivial energy level shifts away from the harmonic
spectrum. This can result in periodic temporal evolution
involving two distinct frequencies [6–8]. The emergence of
this beating is shown in Fig. 5(a) where the evolution of the
LE is plotted as a function of g for a small quench in κ . For
g ≈ 0 the revivals of the LE are periodic and regular, as the
initial energy spectrum is close to harmonic and the small
quench magnitude introduces only a minor anharmonicity to
the system. For g > 0 the formation of beatings can be seen in
the appearance of fringes in the revivals of the LE. This beating

t

0 30 60 90
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0.86

0.88

0.9

0.92

0.94

0.96
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FIG. 5. (a) Evolution of the LE as a function of the bipartite interaction g after an impurity quench of coupling strength κ = 0.7. The
frequency of the oscillations in the LE is dependent on g, and for g ≈ 2.5 fringes appear in the evolution highlighting the beating pattern
observed in Fig. 2(d). (b) Evolution coefficients |an|2 [calculated using Eq. (9)] as a function of g. The LE beatings occur around the crossing
between the coefficients a1 and a2.
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is the result of a resonance between two distinct frequencies
which become equally dominant in the evolution operator of
the state. The weights of these frequencies, |an|2, are plotted in
Fig. 5(b) for the six largest contributions to the evolution and
is dominated by the energy shift of the ground state, E′

0 − E0.
The beating is the most pronounced, when the coefficients a1

and a2 are of equal magnitude around g ≈ 2.5. As E′
1 and E′

2
are close in energy the envelope of the LE’s beating can be
visible on long timescales of the order of ten trap periods. In
contrast, other resonances of these coefficients, for example,
a1 and a5, have a much larger energy difference which results
in small fluctuations at a much higher frequency, which is
not easily visible in the LE. For large interactions (g � 10)
any beating in the LE vanishes due to the system returning
to an initial state which possesses a regularly spaced energy
spectrum close to that of the TG gas.

IV. SPECTRAL FUNCTION

The spectral function is a powerful tool which can be
used to understand the out-of-equilibrium dynamics following
the quench, whereby it describes the statistics of the initial
state and the subsequent quantum dynamics by providing the
excitation spectrum of the system. In its discrete form it is
given by

A(ω) = 2π
∑

n

|an|2δ(ω − ω0 + ω′
n), (16)

where ω′
n are the eigenfrequencies of H̃f and ω0 is the ground-

state frequency of the initial state. It is related to the work
probability distribution describing the work done on or by the
system following a quench; therefore its direct measurement
can be used to determine quantum thermodynamical statis-
tics [26,39]. We numerically evaluate the spectral function
by calculating the Fourier transform of the time-dependent
overlap of the initial and quenched state ν(t) [50], such that

A(ω) = 2π Re
∫ ∞

−∞
eiωtν(t)dt. (17)

Therefore the spectral function is the frequency representation
of the LE and should complement its description of the
out-of-equilibrium evolution. When calculating Eq. (17) we
simulate suitably large time scales such that we capture
all the relevant dynamics and we check that it agrees with
the discrete expression in Eq. (16).

Figure 6 shows the spectral function for (a) g = 2.5 and
(b) g = 10. For a repulsive impurity coupling (κ > 0) the
excitation frequencies are all positive in nature and are seen
to be dominated by the lowest frequency excitation, which is
the difference in energy between the initial and final ground
states, E′

0 − E0. For increasing quench strength the number of
excitations visible in the spectral function is seen to increase
as higher energy states are excited by the impurity and begin
to play a role in the dynamics. These excitations are comprised
of groups of nearly degenerate states which can be generally

FIG. 6. Spectral function for varying κ and fixed interactions of (a) g = 2.5 and (b) g = 10. The frequency ω is in units of ωT and the
spectra have been scaled by the height of the ground-state spectral peak E′

0 − E0 for κ ≈ 0. The color scale of the points represent the height
of the spectral peaks. The insets show close-ups of the spectral functions for the given parameters, whereby Fano resonances are visible at the
base of the peaks. (c)–(f) Spectral functions for the four basic cases displayed in Fig. 2 and their resulting LE probability distributions. The
frequency axes have been shifted by ω0 which is the frequency of the unperturbed ground state for the respective interaction.
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categorized into separate effective center-of-mass (COM) and
relative (REL) oscillations of the two-body wave function.
The interaction between the particles only affects the REL
states, thereby introducing a cusp in the wave function at the
center of the trap, this will naturally alter the effect of the
quench on these states compared to the COM states. For low
interactions (g = 2.5), strong quenches cause the excitations
to visibly split into pairs with diverging frequencies as the
COM and REL states are effected differently by the impurity.
For large interactions (g = 10) the even states become doubly
degenerate with the odd states, meaning the effects of the
quench in the strong interaction limit are essentially equal for
the COM and REL states, resulting in a minor splitting of the
excitation frequencies.

Similar effects are visible for κ < 0 and ω + ω0 > 0 where
the attractive impurity will create positive energy excitations
in the system. Owing to the attractive nature of the impurity a
more complex dynamics can be witnessed due to the creation
of a bound state. This is visualized in the spectrum as the
appearance of a second branch of peaks when ω + ω0 < 0 in
Figs. 6(a) and 6(b) [21]. These negative frequency excitations
describe the motion of the bound state which is tightly confined
at the position of the impurity, and its energy can be seen to
decrease unbounded as κ is decreased. Therefore the bipartite
state subject to an attractive impurity will display two distinct
dynamics: (i) trap dominant positive energy excitations which
oscillate in the harmonic potential with a time scale on the
order of the inverse trap frequency 1/ωT and are not bound to
the impurity, (ii) bound state dominant excitations that have
mainly negative energy which oscillate in the bound state and
whose time scale is determined by the energy of the bound
state. There is a crossover region where both sets of excitations
exist and we observe that it is dependent on the interaction in
the bipartite state. For weak interactions (g = 2.5) the coupling
of the COM and REL motions means it is favorable to form
a bound state at the impurity. There is a large contribution of
this bound state to the dynamics as the dominant peaks of the
spectral function have negative energy. For strong interactions
(g = 10) the repulsion between the particles causes a density
dip at the point of the impurity reducing the ability to form
a bound state; therefore the crossover region in this case has
mainly trap dominant excitations. The insets in the panels
[Figs. 6(a) and 6(b)] show the spectral function at a fixed
barrier height for the respective interaction. The upper parts of
the spectra have been cut off to better visualize the base of the
excitation peaks. These insets reveal that most peaks exhibit
Fano resonances, a feature which is typical in the spectrum of
two coupled oscillators [51].

Figures 6(c)–6(f) shows the spectral functions of the four
characteristic cases with the respective LE’s shown in Fig. 2.
The double-peak, exponential, and Gaussian distributions
show spectra that are in good agreement with those reported
in [28] which reflect these distribution shapes. In panel (e)
the exponential distribution is a result of the splitting of
the spectral function into two separate branches. For larger
attractive impurity strengths the two branches become more
and more separate and the resulting LE probability distribution
is a superposition of the distributions of these individual
branches. This also explains the many different LE probability
distributions occurring in the strong impurity coupling regime,

FIG. 7. Spectral function for κ = 30 and g = 1 which exhibits the
emergence of the OC. The inset shows the logarithm of the spectral
tails (dots) with a power law fit (solid line) and an exponential fit
(dashed line). The frequency ω is in units of ωT .

as the individual dynamics discussed in the previous paragraph
will merge. In panel (f) the beating responsible for the
winged probability distribution is caused by the spectral peaks
of approximately the same height around ω + ω0 ≈ 3.5 as
explained previously in Sec. III 4.

Finally, to explore the onset of the OC which was observed
in Fig. 4, we calculate the spectral function for κ = 30 and
g = 1 (see Fig. 7). The spectral function possesses a prominent
peak at low frequency followed by rapidly diminishing peaks
in the high frequency tails. Indeed, the birth of the OC
manifests itself in the power law decay of these spectral
tails which are plotted in the inset of Fig. 7. The tails are
fitted to a power law decay (solid line) which shows good
agreement, especially in comparison with the exponential
decay (dashed line) which would be observed for a system
at equilibrium [16,50].

V. CONCLUSION

We have investigated the effect of interparticle interactions
on the out-of-equilibrium dynamics of two atoms following
a sudden quench from the coupling with an impurity. A
thorough analysis of this dynamics was carried out through
numerical calculations of the LE, which describes the survival
probability of the initial state and contains information about
the excitations in the system. Finite interactions were shown
to result in nontrivial dynamics of the bipartite state which can
be characterized into four distinct probability distributions of
the LE and were found to have a direct role in observing the
emergence of the OC in few-body systems. A breathing mode
was also observed in this system for weak interactions which
is the result of an interference between two nonequilibrium
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excitations. To fully understand the complexity of this system
the spectral function was calculated; this illustrated two
different evolution dynamics when the impurity quench was
attractive: trap and bound-state oscillations.

We foresee our results to be relevant to the study of few- and
many-body systems as it allows complex out-of-equilibrium
dynamics to be categorized and understood in the statistics of
the LE. Recent experiments where neutral impurities interact
with a Bose gas of a different atomic species show promising
setups for our work, as the use of species-selective potentials
and Fesbach resonances allow for precise control of the
impurity position and tailoring of its interaction [52–54]. Our
analysis is also readily applicable to recent experiments with
impurities in Fermi gases, whereby Ramsey interferometry
has been performed on 40K impurities following an interaction
quench with a 6Li Fermi sea [19], and in [2] few-body
systems of 6Li atoms, which are deterministically created in
a one-dimensional trap and probed with an impurity atom.
And a recent demonstration of the ability to manipulate single
87Rb atoms into ordered arrays [55] showcases the ability to
deterministically create and control these small system sizes
discussed in our work.
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APPENDIX: LAGRANGE-MESH METHOD

The Lagrange-mesh method is a numerical method similar
to pseudospectral or discrete variable representation meth-
ods [45]. In a first step the examined region [a,b] is divided
into N mesh points x1, . . . ,xN and a Gauss quadrature for the
numeric integration of arbitrary functions g(x) on the mesh
has to be determined:

∫ b

a

g(x)dx ≈
N∑

k=1

λkg(xk) . (A1)

A basis of N Lagrange functions has to be chosen
that fulfill the following interpolation and orthogonality

conditions:

fi(xj ) = λ
−1/2
i δij ∀ i,j (A2)∫ b

a

f ∗
i (x)fj (x)dx = δij . (A3)

Together with the ansatz

�(x) =
N∑

i=1

cifi(x) , (A4)

where ci = λ
1/2
i �(xi), this leads to the equations

N∑
j=1

[Tij + V (xj )δij ]cj = Eci (A5)

that have to be solved for a general one-dimensional problem
with Tij = 〈fi |T |fj 〉, and Vij ≈ V (xi)δij is approximated
by means of the Gauss quadrature. In this work we used
a Cartesian mesh with unity spacing of the mesh points
at xj = j, j = − 1

2 (N − 1), . . . , 1
2 (N − 1). The Fourier basis

functions read

fi(x) = 1

N

sin[π (x − xi)]

sin[π (x − xi)/N ]
(A6)

and λi = 1 ∀ i. In this case the kinetic energy terms are given
by

Tij =
{

π2

6

(
1 − 1

N2

)
, i = j

(−1)(i−j ) π2

N2
cos[π(i−j )/N]
sin2[π(i−j )/N] , i = j .

(A7)

Applying this approach to the two-particle case leads to the
final equations for our problem,

N∑
k,l=1

{(
1

h2
Tik + V (hxk)δik

)
δjl +

(
1

h2
Tjl + V (hxl)δjl

)
δik

+ g

h
δilδjlδkl

}
�kl = E�ij , (A8)

where V (xi) = 1
2x2

i + κδ(xi). Equation (A8) is simply the
tensor product of two single-particle systems with the added
interaction term. Additionally we introduced a scaling param-
eter h that allows us to adapt the mesh to the region of interest
and thus increase the resolution of the method.
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