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Recently there have been experimental results on Poisson spot matter-wave interferometry followed by
theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon.
We propose an analytical theoretical model for Poisson’s spot with matter waves based on the Babinet principle,
in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of
coherence and finite detection area using the propagator for a quantum particle interacting with an environment.
We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates
the predominantly wavelike character of the Poisson’s spot. Our model shows remarkable agreement with the
experimental data for deuterium (D2) molecules.
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I. INTRODUCTION

The wave nature of light which explains Poisson’s spot
(Tache de Poisson–Fresnel–Arago) has an interesting history.
In the beginning of the 19th century, Fresnel submitted a paper
on the theory of diffraction supporting the wave nature of
light for a contest sponsored by the French Academy. Poisson,
a member of the judging committee, used Fresnel’s theory
to show the odd prediction that a bright spot should appear
behind a circular obstacle. Arago, another member of the
committee, thus observed the spot experimentally. Fresnel won
the competition, and the phenomenon is known in history as
Poisson’s or Arago’s spot [1].

Particle interferometry far-field diffraction behind a grating
and near-field interference behind an opaque sphere or disk,
namely the observation of the Poisson’s spot for matter
waves, provide experimental evidence that matter can exhibit
wave-particle duality. Technology has greatly evolved since
electron diffraction in the 1920s to interferometry in a grating
with macromolecules like fullerene in the 1990s [2]. Poisson’s
spot has been demonstrated by means of matter waves with
electrons [3] and deuterium molecules [4]. Some theoretical
models study the feasibility of the Poisson spot setup for
fullerene [5] and gold clusters [6]. The transverse coherence
of the matter-wave beam is achieved for a source pinhole
sufficiently far away from the obstacle. Thus multipath inter-
ference leads to a bright spot at the center of the shadow region
behind the obstacle. From the experimental viewpoint [6,7], it
is believed that the diffraction pattern is significantly affected
by the dispersive interaction between the matter waves and
the obstacle, namely modifying the width and the height
of the central Poisson spot, invalidating the Fresnel zone
construction and Babinet principle. Some researchers argue
that the spot could appear in the case of classical particles
passing the obstacle following deflected trajectories due to
the attractive force towards the obstacle (van der Waals). In
addition to that, we have the unavoidable edge corrugation
of the disk. In Ref. [7] the effect of Casimir-Polder–van der
Waals (CP-vdW) dispersion forces on Poisson spot diffraction

at a dielectric sphere was studied, which may obscure the
distinction between particle and wave nature. Obviously these
effects blemish the distinction between the quantum and the
classical description for sufficiently large interaction strengths,
such that the appearance of the spot in itself is not exclusively
due to wavelike behavior of the particles.

Recently it was shown that two fundamental but seemingly
independent optical phenomena, namely the Poisson spot
and the orbital angular momentum (OAM) of light, can
be well connected by a phase changing. It was demon-
strated that spiral phase modulation can be added to the
optical tool to effectively shape the diffraction of light,
which may have potential applications in the field of optical
manipulations [8].

In 1890 Gouy observed the effect of a phase shift in light
optics that further was named the Gouy phase [9,10]. The
physical origin of this phase attracted the attention of several
researchers, as can be seen in Refs. [11–18]. As is known
today, the Gouy phase shift appears in any kind of wave
that is submitted to transverse spatial confinement, either by
focusing or by diffraction through small apertures. When a
wave is focused [13], the Gouy phase shift is associated to
the propagation from −∞ to +∞ and is equal to π/2 for
cylindrical waves (line focus), and π for spherical waves
(point focus). In the case of diffraction by a slit it was
shown that the Gouy phase shift is π/4 [19]. The Gouy phase
shift has been observed in water waves [20]; acoustic [21],
surface plasmon-polariton [22], phonon-polariton [23] pulses;
and recently in matter waves [24–26]. As some examples of
applications of Gouy phase we can mention the following:
the Gouy phase has to be taken into account to determine
the resonant frequencies in laser cavities [27] or the phase
matching in high-order harmonic generation (HHG) [28] and
to describe the spatial variation of the carrier envelope phase
of ultrashort pulses in a laser focus [29]. Also, it plays an
important role in the evolution of optical vortex beams [30]
as well as electron beams, which acquire an additional Gouy
phase dependent on the absolute value of the orbital angular
momentum [25].

2469-9926/2016/94(6)/063609(7) 063609-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.063609


I. G. DA PAZ et al. PHYSICAL REVIEW A 94, 063609 (2016)

In the coherent matter-wave context the Gouy phase has
been explored in Refs. [19,31–33]. Experimental realizations
were made in different systems such as Bose-Einstein conden-
sates [24], electron vortex beams [25], and astigmatic electron
matter waves using in-line holography [26]. Matter-wave
Gouy phases have interesting applications; for instance, they
serve as mode converters, which are important in quantum
information [31], in the development of singular electron
optics [26], and in the study of nonclassical (looping) paths in
interference experiments [34].

It is the main purpose of this contribution to perform a
complete analytical calculation of partially coherent matter-
wave Poisson’s spot due to an unidimensional obstacle. We
also define a generalized expression for the Gouy phase
for partially coherent matter waves and study the effect of
this phase in the Poisson’s spot intensity. The shape of the
diffraction pattern on the screen can be computed using the
Babinet principle [35]: the superposition principle implies
that the wave amplitudes behind a slit of certain length, ψslit,
and behind the corresponding obstacle of the same length,
ψobst, must add up such that ψslit + ψobst = 1. In order to
keep track of all important phases such as Gouy phase and
display fully analytical results we consider a Gaussian-shaped
slit (obstacle). In this way we may compare with experimental
results and clearly distinguish wave interference from mutually
induced dipoles which give rise to van der Waals–type
attracting forces on the particle towards the obstacle as well as
imperfections of the blocking object. In order to incorporate
loss of coherence in our model, we obtain the reduced density
matrix of the particles evolving effectively and autonomously
according to a Boltzmann-type master equation. The effect
of the environment is summarized by a collision term in the
propagator which takes into account the decoherence, that is
to say, the damping of off-diagonal terms of the density matrix
in position representation, just as in Ref. [36]. The Gouy phase
for partially coherent light wave was treated in Ref. [37], which
defines a generalized expression for the Gouy phase in terms
of the cross-spectral density. For a model of matter waves
with loss of coherence, we do not have an expression for the
Gouy phase. However, since the cross-spectral density and
density matrix have analogous meanings, in this contribution
we follow the treatment adopted in Ref. [37] and define the
Gouy phase as the phase of the density matrix.

The article is organized as follows: In Sec. II we use
the Babinet principle to obtain analytical expression for the
Poisson spot with coherent matter waves. In Sec. III we obtain
an analytical expression for the Poisson’s spot with partially
coherent matter waves and define a generalized expression for
the Gouy phase. These results are used in Sec. IV to analyze the
existing experimental data. We draw our concluding remarks
in Sec. V.

II. BABINET PRINCIPLE: POISSON
SPOT AND GOUY PHASE

In this section we model the Poisson spot problem using the
Babinet principle and show that the intensity at the detector
depends on the Gouy phase and plays an important role,
particularly at the central peak.

FIG. 1. Sketch of the Poisson spot problem. A source of particles
positioned behind of an opaque disk of radius β sends particles one by
one and a bright spot is observed by a detector in a screen of detection.
The red line along one diameter of the disk is used to illustrate the
treatment of the disk as a one-dimensional problem.

For the sake of simplicity we will treat with a coherent
model in order to demonstrate the action of the Babinet
principle as well as the contribution of the Gouy phase for
the intensity. We shall obtain a simple analytical expression
for the Poisson intensity which enables us to distinguish the
role played by each phase. A source of particles positioned
behind an opaque disk of radius β emits particles one by one
and a detector browses over a screen of detection. It is a good
approximation, as we shall see, to suppose a one-dimensional
model in which quantum effects are manifested only in the x

direction, as depicted in Fig. 1 by a red line along a diameter
of the disk.

The propagation through the obstacle can be obtained by
the Babinet principle which enables us write ψobst(x,t,τ ) =
ψfree(x,t + τ ) − ψslit(x,t,τ ). Here, ψobst(x,t,τ ) stands for the
wave function describing the propagation through the obstacle,
ψfree(x,t + τ ) is the wave function for free propagation, and
ψslit(x,t,τ ) denotes the wave function characterizing propa-
gation through a single slit. To calculate the corresponding
wave functions, we consider that a coherent Gaussian wave
packet of initial transverse width σ0 is produced at the source
and propagates during a time t before arriving at a single
slit with Gaussian aperture from which the Gaussian wave
packet propagates. After crossing the slit, the wave packet
propagates during a time τ before arriving at detector in the
detection screen. The superposition of the wave packets that
propagate freely and through the slit gives rise to a interference
pattern as a function of the transverse coordinate x. Quantum
effects are realized only in x direction as we consider that the
energy associated with the momentum of the particles in the
z direction is very high, such that the momentum component
pz is sharply defined, i.e., �pz � pz. Then we can consider a
classical movement in this direction with velocity vz. Because
the propagation is free, the x, y, and z dimensions decouple
for a given longitudinal location and thus we may write
z = vzt . Because vz is assumed to be a well-defined velocity
we can neglect statistical fluctuations in the time of flight, i.e.,
�t � t . Such approximation leaves the Schrödinger equation
analogous to the optical paraxial Helmholtz equation [36,38].
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The wave functions at the screen of detection are given by

ψfree(x,t + τ ) =
∫

dx0Kt (x,t + τ ; x0,0)ψ0(x0), (1)

and

ψslit(x,t,τ ) =
∫∫

dxjdx0Kτ (x,t + τ ; xj ,t)F (xj )

×Kt (xj ,t ; x0,0)ψ0(x0), (2)

with

K(xj ,tj ; x0,t0) =
√

m

2πi�(tj − t0)
exp

[
im(xj − x0)2

2�(tj − t0)

]
, (3)

F (xj ) = exp

[
− (xj )2

2β2

]
, (4)

and

ψ0(x0) = 1√
σ0

√
π

exp

(
− x2

0

2σ 2
0

)
. (5)

The kernels Kt (xj ,t ; x0,0) and Kτ (x,t + τ ; xj ,t) are the free
propagators for the particle, the function F (xj ) describes the
slit transmission function, which is taken to be Gaussian of
width β, σ0 is the effective width of the wave packet emitted
from the source, m is the mass of the particle, and t (τ ) is the
time of flight from the source (slit) to the slit (screen).

After some algebraic manipulations, we obtain

ψfree(x,t + τ ) = 1√
b
√

π
exp

(
− x2

2b2

)
exp

(
imx2

2�r
+ iμf

)
(6)

and

ψslit(x,t,τ ) = 1√
B

√
π

exp

(
− x2

2B2

)
exp

(
imx2

2�R
+ iμs

)
,

(7)
where

b(t + τ ) = σ0

[
1 +

(
t + τ

τ0

)2
] 1

2

, (8)

r(t + τ ) = (t + τ )

[
1 +

(
τ0

t + τ

)2
]
, (9)

μf (t + τ ) = −1

2
arctan

(
t + τ

τ0

)
, (10)

B(t,τ ) =

√√√√√
(

1
β2 + 1

b(t)2

)2 + m2

�2

(
1
τ

+ 1
r(t)

)2

(
m
�τ

)2( 1
β2 + 1

b(t)2

) , (11)

R(t,τ ) = τ

(
1
β2 + 1

b(t)2

)2 + m2

�2

(
1
τ

+ 1
r(t)

)2

(
1
β2 + 1

b(t)2

)2 + t

σ 2
0 b(t)2

(
1
τ

+ 1
r(t)

) , (12)

μs(t,τ ) = −1

2
arctan

⎡
⎣ t + τ

(
1 + σ 2

0
β2

)
τ0

(
1 − tτσ 2

0

τ 2
0 β2

)
⎤
⎦, (13)

and

τ0 = mσ 2
0

�
. (14)

Here, b(t + τ ), r(t + τ ), and μf (t + τ ) are respectively
the beam width, the radius of curvature of the wavefronts,
and Gouy phase for the free propagation during the total time
t + τ . Moreover, B(t,τ ), R(t,τ ), and μs(t,τ ) are respectively
the beam width, the radius of curvature of the wavefronts, and
Gouy phase for the propagation through a single slit. B(t,τ )
and R(t,τ ) can be written in terms of b(t) and r(t), i.e, the
beam width and the radius of curvature of the wavefronts for
the free evolution from the source to the slit (or disk). The
parameter τ0 = mσ 2

0 /� is viewed as a characteristic time for
the so-called aging of the initial state [39].

According to the Babinet principle, the intensity at the
screen of detection is given by

I (x,t,τ ) = |ψobst(x,t,τ )|2

= 1√
πb

exp

(
−x2

b2

)
+ 1√

πB
exp

(
− x2

B2

)

− 2√
πbB

exp

[
−

(
1

2b2
+ 1

2B2

)
x2

]

× cos

[
mx2

2�

(
1

R
− 1

r

)
+ μ(t,τ )

]
, (15)

where

μ(t,τ ) = μs(t,τ ) − μf (t + τ )

= −1

2
arctan

⎧⎨
⎩ τ

[
τ 2

0 + t(t + τ )
]

τ0τ 2 + β2

σ 2
0
τ
[
(t + τ )2 + τ 2

0

]
⎫⎬
⎭ (16)

is the coherent Gouy phase difference. Therefore, from
Eq. (15) we clearly observe the Gouy phase effect on the
Poisson’s spot intensity. We illustrate such an effect in Fig. 2
by plotting the normalized intensity I for the parameters of

FIG. 2. Gouy phase effect on Poisson’s spot for a coherent model.
For the solid line we consider and for pointed line we do not consider
the Gouy phase effect on the normalized intensity I .
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deuterium molecules of Ref. [4], i.e., m = 3.34 × 10−27 kg,
σ0 = 50 μm, and β = 60 μm. We consider the propagation
times t = 20 ms and τ = 40 ms. For the solid line we consider
and for the pointed line we do not consider the Gouy phase
effect. A pronounced peak at x = 0 appears for the case in
which we consider the Gouy phase difference.

The dependence of the Poisson’s spot intensity on the Gouy
phase obviously appears to corroborate the wave nature of the
Poisson’s spot since the Gouy phase is a wave property. The
simple model treated so far in this section does not take into
account some effects that a realistic model of Poisson’s spot
has to present. It would be interesting to investigate if a more
realistic model for the Poisson spot can still be related to the
Gouy phase. It is the purpose of the next section to investigate
such extension.

III. A MODEL WITH LOSS OF COHERENCE

The result obtained in Eq. (15) for the Poisson’s spot
intensity does not take into account any loss of coherence.
We shall consider that the loss of coherence is produced from
the obstacle to the screen and therefore starting from time
t + ε (with ε → 0 being the propagation time through the
obstacle) until the detection screen. Now, the evolution during
the time τ is given by the propagator for a quantum particle
interacting with an environment. In order to include such a
loss of coherence we follow the result obtained in Ref. [36]
and write the Poisson spot intensity as

I	(x,t,τ ) ≡ ρ(x = x ′,t,τ ) = N

∫∫
dx0dx ′

0

× exp

{
im

2�τ

[
x2

0 − x ′2
0 + 2x(x0 − x ′

0)
]}

× exp

[
− (x0 − x ′

0)2

2	2(τ )

]
ρ̃(x0,x

′
0,t), (17)

where

ρ̃(x0,x
′
0,t) = ψobst(x0,t,ε → 0)ψ∗

obst(x
′
0,t,ε → 0) (18)

and

	(τ ) ≡ 	0√
1 + 2�τ

3 	2
0

. (19)

Here, N is a normalization constant, ρ̃(x0,x
′
0,t) is the density

matrix in the obstacle, τ is the propagation time from the
obstacle to the screen in which we have loss of coherence,
	(τ ) is the time-dependent coherence length, and 	0 is the
coherence length in the obstacle, which is the same of the
source since we consider that the propagation from the source
to the obstacle is free, i.e., 	0 = 	(t). The parameter � encodes
decohering events such as scattering and photon emission and
	0 carries incoherence effects of the source [36].

In order to obtain the density matrix in the obstacle we have
to take the limit when ε → 0 in the parameters B(t,ε), R(t,ε),
and μs(t,ε) of the wave function given by Eq. (7). After per-
forming such limits using the expressions (11), (12), and (13),

we obtain the following results: limε→0 B(t,ε) =
√

b2(t)β2

β2+b2(t) ,
limε→0 R(t,ε) = r(t), and limε→0 μs(t,ε) = μf (t). Notice

that only the parameter B(t,ε → 0) is changed by the slit.
Using the results above we obtain the density matrix in the
obstacle ρ̃(x0,x

′
0,t).

After performing the integration in Eq. (17) and some
algebraic manipulation we obtain

I	(x,t,τ ) =
√

π

η
exp

[
− m2x2

4η�2τ 2

]
+

√
π

η′ exp

[
− m2x2

4η′�2τ 2

]

− 2
√

2π�τ√√
C[1 + (b(t)/β)2]

exp(−αx2)

× cos(δx2 + μ	), (20)

where

η(t,τ ) = b2(t)

[
1

2b2(t)

(
1

2b2(t)
+ 1

	2

)

+
(

m

2�r(t)
+ m

2�τ

)2
]
, (21)

η′(t,τ ) =
(

β2b2(t)

β2 + b2(t)

)[(
m

2�r(t)
+ m

2�τ

)2

+
(

1

2b2(t)
+ 1

2β2

)(
1

2b2(t)
+ 1

2β2
+ 1

	2

)]
,

(22)

α(t,τ ) = m2

C

(
1

b2(t)
+ 1

2β2

)

×
[(

β2 + b2(t)

4β2b2(t)

)(
1

b2(t)
+ 1

	2

)

+ 1

4	2b2(t)
+

(
m

2�r(t)
+ m

2�τ

)2
]
, (23)

δ(t,τ ) = m3

4�β2C

(
1

b2(t)
+ 1

2β2

)(
1

r(t)
+ 1

τ

)
, (24)

and

C(t,τ ) = 4�
2τ 2

⎧⎨
⎩ m2

16�2β4

(
1

r(t)
+ 1

τ

)2

+
[(

β2 + b2(t)

4β2b2(t)

)(
1

b2(t)
+ 1

	2

)

+ 1

4	2b2(t)
+

(
m

2�r(t)
+ m

2�τ

)2
]2

⎫⎬
⎭. (25)

The Poisson spot intensity given by Eq. (20) is the main result
of this paper. To our knowledge, an analytical expression
incorporating such effects for Poisson’s spot has not been
obtained. The result of Eq. (20) is useful to define the Gouy
phase for partially coherent matter waves and explore the role
of this phase in Poisson’s spot.
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Generalized Gouy phase for partially coherent
matter waves

In Ref. [31] it was shown that the matter waves’ Gouy phase
is related with the off-diagonal elements of the covariance
matrix, which indirectly enabled to extract the Gouy phase
from the beam width. It was shown that the experimental
data for the diffraction of fullerene molecules is quantitatively
consistent with the existence of a Gouy phase. Since the
fullerene molecules have to be treated as partially coherent
matter waves, in that work it was conjectured that the Gouy
phase can be obtained by integrating the inverse of the squared
beam width, as is valid for coherent case. Further, a complete
definition for the Gouy phase for partially coherent light waves
was given in Ref. [37]. In this work we use the definition of
Ref. [37] to obtain the Gouy phase for partially coherent matter
waves as

μ	(t,τ ) = arg[I	(0,t,τ )]. (26)

We have a complete analogy with the generalized definition for
the Gouy phase of Ref. [37], since here I	(0,t,τ ) ≡ ρ(0,t,τ )
is the density matrix in the propagation axis z, which is similar
to the cross-spectral density and (t,τ ) can be used to obtain
two different positions in the propagation axis since we are
substituting the propagation time by z/vz. In the case of light
waves the mechanism of loss of coherence is attributed to the
source incoherence whereas for matter waves such effects can
be attributed both to the source incoherence and environment
decoherence. We calculate the Gouy phase here and obtain the
following result:

μ	(t,τ ) = −1

2
arctan

⎡
⎣ r(t) + τ

a1 + a2 + r(t)τ
τ0

(
1 + 2β2

b2(t)

) σ 2
0

	2

⎤
⎦, (27)

where

a1(t,τ ) =
(

β2τ0

σ 2
0 r(t)τ

)
[r(t) + τ ]2 (28)

and

a2(t,τ ) = r(t)τ

τ0

(
1 + β2

b2(t)

)(
σ0

b(t)

)2

. (29)

We can observe from Eq. (27) that the Gouy phase is dependent
on the coherence length 	. The same dependence was discussed
in Ref. [37] for partially coherent light wave. We can easily
obtain that the result of Eq. (27) reduces to that of Eq. (16) for
coherent matter waves in the limit 	 → ∞. On the other hand,
in the limit of completely noncoherent matter waves 	 → 0
we have μ	 → 0.

Therefore, just as in the coherent case, the Poisson spot
intensity is changed by the Gouy phase. This can be clearly
seen in the figure below. In Fig. 3(a) we show the Gouy phase
μ	(t,τ ) as a function of the propagation time τ for t = 20 ms
and for the data of the deuterium molecules. The solid line
corresponds to 	 = 1.0 m and the pointed line corresponds to
	 = 100 μm. In Fig. 3(b) we show the normalized intensity I	

as a function of x for t = 20 ms and τ = 40 ms for the data of
deuterium molecules. For the solid line we consider the effect
of the phase μ	, and for the pointed line we do not consider
such effect.

FIG. 3. (a) Gouy for partially coherent matter waves as a function
of τ for two different values of coherence length and t = 20 ms. The
solid line corresponds to 	 = 1.0 m and the pointed line corresponds
to 	 = 100 μm. (b) Normalized intensity I	 as a function of x for 	 =
100 μm, t = 20 ms, and τ = 40 ms. For the solid line we consider
the effect of the phase μ	, and for the pointed line we do not consider
such effect.

By fixing set values of parameters, we observe that the
Gouy phase decreases when the coherence length decreases.
This is an interesting result in the context of matter waves.
The visibility of the Poisson spot tends to decrease as an effect
of the loss of coherence. We can observe this by comparing the
intensity for the coherent and partially coherent case, Figs. 2
and 3(b) respectively, which show that the minimum intensity
for the partially coherent case is not zero. The partially
coherent Gouy phase changes the intensity in a such way that
the intensity in the central peak is not observed if one neglected
this phase. The presence of the Gouy phase is a signature of the
wave behavior. Thus, the relationship between Poisson’s spot
and Gouy phase for a model of partially coherent matter waves
with analytical results as obtained in this section is useful to
treat experimental data and to elucidate the wave behavior of
the Poisson spot with matter waves. In order to test our results,
in the next section we will analyze the experimental data for
deuterium molecules of Ref. [4].

IV. ANALYSIS OF EXISTING EXPERIMENTAL DATA

In this section we compare our model with the experimental
data for deuterium molecules of Ref. [4]. We take into
account loss of coherence and the finite detection area. The

TABLE I. Parameters of analytic model and numerical results.

Coherence parameter 	 = 0.3369 μm
Detector width σD = 3.96 μm
Gaussian width σ0 = 51 μm
Disc aperturea β = 60 μm
Time before disk t = 1.4 ms
Time after disk τ = 0.606 ms
Partially coherent fit [PC]b a = 29829.11, b = −348.71
Detector convolution fit [DC]b a = 40465.09, b = −466.29
Gouy phase [PC] μ	 = 0.00060097028 rad
Gouy phase [DC] μ	 = 0.00069360626 rad

aThe physical parameters are compatible with Ref. [4].
bSee the corresponding curve on Fig. 4 and experimental data [EX]
from Ref. [4].
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FIG. 4. Comparison of experimental data in Ref. [4] with analyti-
cal model (Table 1). Black points with error bars are the experimental
data. The green line is the coherent model. The blue line is the model
with loss of coherence, and the red line is the model with loss of
coherence and detector convolution.

loss of coherence was obtained in Eq. (20). To include the
detector effect we perform a convolution to obtain the effective
intensity:

Ieff(x,t,τ ) =
∫ ∞

−∞
I	(x ′,t,τ )D(x − x ′)dx ′. (30)

Considering a Gaussian profile to the detector aperture as
D(x) = exp (−x2/2σ 2

D), where σD is the detector width, the
integral above is easily done.

In order to compare our model with experimental results
previously published in Ref. [4] we relate our model and
the one in Ref. [4] by Ieff(x,l,σD) = a + b I (x,l,σD). The
parameters a and b are necessary to convert our results in units
(rate/s) used in Ref. [4]. The numerical calculations obtained
within these units are summarized in Table 1. The obtained
results are in good agreement with the experimental values, as
we can observe in Fig. 4.

We observe by the red line of Fig. 4 that an analytical
model including loss of coherence as well as finite detector
area is in full agreement with existing experimental data. On
the other hand, the blue line shows that considering only
loss of coherence there is an agreement between the model
and the experimental data but to obtain a full agreement it is
necessary to consider the detector convolution. The green line
shows that is not possible to adjust the data by considering a
completely coherent model. In the adjustment a given value of
partially coherent Gouy phase is necessary. The small value
found here is related with the set value of parameters used in
the experiment, especially the propagation times. Therefore,
different values of partially coherent Gouy phase can be
obtained if the experiment is realized with different set values
of parameters.

V. CONCLUSIONS

We developed a theoretical model for the Poisson’s spot
problem by using the Babinet principle. It was possible to
include loss of coherence and detector convolution in the
observed intensity. First we treated the coherent model and
then we studied the effect of the loss of coherence. Based in
the previous definition of the Gouy phase for partially coherent
light waves (source incoherence) we obtained an expression
to the Gouy phase for partially coherent matter waves (source
incoherence + environment decoherence). We observed that
this phase influences the Poisson spot intensity. Therefore,
we have found a relationship between two old physical
problems (Gouy phase and Poisson’s spot). We obtained full
agreement between our results and existent experimental data.
We observed that the Gouy phase depends on the set values
of parameters used in the Poisson spot experiment. Thus, the
Poisson spot experiment can be used to measure the Gouy
phase for partially coherent matter waves.
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