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Metastability of Bose and Fermi gases on the upper branch
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We study three-dimensional Bose and Fermi gases in the upper branch, a phase defined by the absence of bound
states in the repulsive interaction regime, within an approximation that considers only two-body interactions.
Employing a formalism based on the S matrix, we derive useful analytic expressions that hold on the upper
branch in the weak coupling limit. We determine upper branch phase diagrams for both bosons and fermions
with techniques valid for arbitrary positive scattering length.
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I. INTRODUCTION

It is well known that the two-body interactions of a
nonrelativistic quantum gas in three spatial dimensions can
be fully described by the s-wave scattering length as . For
as > 0, interactions are repulsive and the S matrix has a pole
corresponding to a bound state or “molecule.” Thus if one starts
with a sample consisting of only the fundamental particles,
they will start to combine into molecules, which complicates
the thermodynamics. The “upper branch” corresponds to
as > 0 with the assumption that the molecules are absent. This
situation has been realized in experiments [1–6] and has also
been studied theoretically [7–15]. It is thus natural to inquire
under what conditions the upper branch is metastable.

In this paper we will study this question based on the
formalism developed in [16]. It provides an expression of the
free energy at finite temperature and density built on an integral
equation for the pseudoenergy with a kernel based on the
logarithm of the two-body S matrix at zero temperature. This
integral equation is reminiscent of the Yang-Yang equations
used in the thermodynamical Bethe ansatz [17]. The formalism
is well suited to studying the upper branch since it is based on
the S matrix and the molecules are easily eliminated from the
thermodynamics by simply not including a pseudoenergy for
them.

For both bosons and fermions, the limit as → ±∞ is the
so-called unitary limit, where the theory is scale invariant.
The unitary limit has been explored extensively within this
formulation of statistical mechanics in [18–20], and will
therefore not be discussed in this work. Although we will
restrict our analysis of the upper branch to as > 0, it is
nevertheless important to mention that for bosons the upper
branch phase is believed to extend smoothly across unitarity.

In order to determine the boundary between the stable and
unstable regions of the upper branch, we will use the criterion
put forward in [11,13], namely that the compressibility κ

vanishes. The phase diagram will be determined as a function
of the dimensionless ratios,

α = λT

as

, x = μ

T
, (1)

where λT = √
2π/mT is the de Broglie thermal wave length,

μ the chemical potential, and � = kB = 1.
In the following section we give a brief summary of the

formalism (for further detail see [16]) and the conventions

used in this paper. We then present our results on the stability
of the upper branch, and provide an analytic treatment of the
integral equation in the weak coupling limit.

II. FORMALISM AND CONVENTIONS

In this section we review the main result of [16]: Consistent
resummation of two-body scattering leads to an integral
equation for a pseudoenergy, whose solution can be used
to calculate thermodynamic quantities of interest. We will
analyze the upper branch for both bosons and fermions. The
Bose gas will be described by the action,

S =
∫

d3xdt

(
iφ†∂tφ − |∇φ|2

2m
− g

2
(φ†φ)2

)
, (2)

while for fermions we consider the two-component model
defined by

S =
∫

d3xdt

⎛
⎝ ∑

α=↑,↓
iψ†

α∂tψα − |∇ψα|2
2m

− gψ
†
↑ψ↑ψ

†
↓ψ↓

⎞
⎠.

(3)

For the nonrelativistic theories we will consider, the two-body
S matrix can be calculated exactly, i.e., to all orders in the
coupling. Therefore although contributions from many-body
(n > 2) interactions are difficult to calculate, and thus not
considered, some nonperturbative aspects are included within
this framework.

The filling fractions in this formalism are parametrized in
terms of a pseudoenergy which has the same form as the free
theory. In other words, the density can be expressed by

n =
∫

d3k
(2π )3

1

eβε(k) − s
, (4)

where β = 1/T is the inverse temperature, s is 1 for bosons
and −1 for fermions, and ε(k) the pseudoenergy. ε can be
interpreted as a self-energy correction in the presence of all the
particles of the gas that takes into account multiple scatterings.

Summation of all two-body scattering terms results in an
integral equation satisfied by ε which we now describe. We
define the quantity,

y(k) = e−β(ε(k)−ωk+μ), (5)
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with ωk = k2/2m, m being the mass of the nonrelativistic
particles. In terms of y, the aforementioned integral equation
reads

y(k) = 1 + β

∫
d3k′

(2π )3
G(k,k′)

z

eβωk′ − szy(k′)
, (6)

where z is the fugacity. The kernal,

G(k,k′) = − 16πσ

m.|k − k′| arctan

(
as.|k − k′|

2

)
, (7)

is derived from the logarithm of the two-body S matrix:

Smatrix(|k − k′|) = 2/as − i|k − k′|
2/as + i|k − k′| . (8)

The factor σ in (7) is 1/2 for fermions and 1 for bosons.
In order to distinguish between the stable and unstable

regions of the upper branch, the isothermal compressibility,

κ = − 1

V

(
∂V

∂p

)
T

= −n

(
∂n−1

∂p

)
T

, (9)

where V is the volume and p the pressure, will be needed.
The second equality above follows since n = N/V with N

fixed. The compressibility and particle density can be more
conveniently expressed in terms of a scaling function q of the
dimensionless ratios x and α:

n λ3
T = q(x,α) (10)

κ = 1

nT

∂xq

q
= 1

T

(
mT

2π

)3/2
∂xq

q2
. (11)

It will also prove useful to define the Fermi surface wave vector
kF = (3π2n)1/3, where n is the two-component density, and
the Fermi temperature TF = k2

F /2m in terms of q:

T

TF

=
(

4

3
√

π q

)2/3

,
1

kF as

= λT

as

(6π2q)−1/3. (12)

Both of the above expressions also hold for bosons [19].
Before moving on to a discussion of our results on the upper

branch we will put the integral equation and q in more conve-
nient forms. Rotational invariance demands y be a function of
|k|2, thus after rescaling k → √

2mT k, the angular integrals
in the integral equation (6) can be performed analytically (see
Appendix A in [19]). The result is the following:

y(k) = 1 + 8

π

∫ ∞

0
dk′k′ z

ek′2 − szy(k′)

{
α

2k
√

π
log

[
α2/π + (k + k′)2

α2/π + (k − k′)2

]
−

(
k′

k
+ 1

)
arctan

(√
π

α
(k + k′)

)

−
(

k′

k
− 1

)
arctan

(√
π

α
(k − k′)

)}
. (13)

Similarly, q can be expressed as follows:

q = 4√
π

∫ ∞

0
dk k2 y(k)z

ek2 − s y(k)z
. (14)

Finally, note that since the fermion model has two components,
in Eq. (10), q → 2q while Eqs. (12) and (14) remain valid.
Henceforth q will refer to one of the two components.

III. ANALYSIS OF THE UPPER BRANCH

As described in the introduction, the upper branch for Bose
and Fermi gases refers to as > 0 with the exclusion of the
formation of bound states. In the S-matrix-based formalism
considered in this paper, removing these states (and the
resultant pole in the S matrix) amounts to simply not including
a bound state pseudoenergy. Below we present both boson
and fermion phase diagrams for as > 0, as well as an analytic
expression for y in the weak coupling limit.

A. Phase diagrams

To determine the metastable region of the upper branch,
we have calculated the compressibility as a function of the
dimensionless variables x and α. This has been achieved by
solving the integral Eq. (13) and calculating q numerically,
from which (11) is used to determine the stability of the
upper branch phase. The curve where the compressibility
vanishes provides the boundary between the stable and

unstable phases [11,13]. Our upper branch phase diagram for
fermions (bosons) is shown in Fig. 1 (Fig. 2). We emphasize
no assumption about the coupling strength has been made in
obtaining these phase diagrams.

For fermions we find the phase boundary gradually slopes
towards T/TF = 0 as 1/kF as increases. This is consistent

0 0.5 1 1.5 2 2.5 3 3.5 4
1/(kFas)
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T
/T

F

FIG. 1. Upper branch phase diagram for the Fermi gas. The
dashed red curve corresponds to κ = 0, which defines the boundary
between stable and unstable phases. Below this curve the upper
branch is unstable. The blue crosses are values of the phase transition
estimated from the data presented in [11].
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FIG. 2. Upper branch phase diagram for the Bose gas. The dashed
red curve corresponds to κ = 0, which defines the boundary between
stable and unstable phases. Below this curve the upper branch is
unstable. The blue crosses are values of the phase transition estimated
from the data presented in [13].

with the expectation that the upper branch should be stable
in the limit of zero coupling. Whereas we find that T/TF ap-
proaches zero asymptotically in the latter limit, in contrast, for
the Nozieres-Schmitt-Rink (NSR) based approach employed
in [11], it was found that after approximately 1/kF as = 2.5
the upper branch phase is metastable for all T/TF (see Fig. 1).
Although our treatments of the upper branch are quite different,
it is encouraging that our results generally agree within the
range 0.5 < 1/kF as < 2.0. Yet another contrasting result is
given in [21], where it’s found that the upper branch is always
metastable, even at unitarity.

In order to provide a possible explanation for our weak
coupling discrepancy with the excluded molecular pole ap-
proximation (EMPA) of Shenoy and Ho, we will consider the
limit of very weak coupling, kF as → 0. Much of the following
analysis is heavily borrowed from section B and Appendix A
of [21], where it’s shown that the EMPA, which begins with
the low-fugacity density expansion,

nE(T ,μ) = n0(T ,μ) + ∂P (2)/∂μ, (15)

is identical to an approach which starts with the NSR two-body
interaction contribution to the pressure,

P (2) =
∑

q

∫ ∞

−∞

dω

π

δ(q,ω)

eβω − 1
. (16)

Note n0(T ,μ) is the ideal gas density.
The primary obstacle in comparing an NSR-based for-

malism with our own is that the phase shift δ(q,ω) is a
complicated function whose definition on the upper branch
is not yet agreed upon. In the present limit, however, we
are concerned only with the leading contribution to the phase
shift. Within the EMPA this is simply the vacuum two-body
phase shift, δ(k) = − arctan(kas). Hence after expanding (16)
in powers of z2, changing variables using the relation k2/m =
ω + 2μ − q2/4m, and integrating we obtain

P (2) = 23/2T

λ3
T

∞∑
n=1

z2n

n5/2

∫ ∞

0

dk

π
e− nβk2

m
dδ(k)

dk
, (17)
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FIG. 3. Scaling functions vs x obtained in the kF as → 0 limit
within the EMPA (dashed blue) and with our formalism (solid red) for
α = 103. The EMPA scaling function is smooth, corresponding to the
upper branch being metastable for all T/TF at weak coupling. (Inset)
Our q attains a maximum immediately before becoming imaginary.
In other words, a bound state is formed and the integral equation no
longer has a solution.

which is Eq. (20) in [21]. Noting d
dk

δ(k) ≈ −as as kF as → 0
then gives

P (2) = − 2T

αλ3
T

Li3(z2). (18)

Inserting into (15) and multiplying through by λ3
T results in

the EMPA weak coupling scaling function,

qE = q0 − 4

α
Li2(z2). (19)

In Fig. 3 we compare qE and our result in the identical limit,
obtained by inserting (23) into (14). q and qE agree well for
small x. As x increases, the two results begin to diverge and
eventually our q experiences a maximum (where κ = 0) just
before becoming imaginary, signifying an x where the integral
equation has no solution. For α = 103 this maximum occurs
around x ≈ 30, where T/TF ≈ 0.03.

The validity of the EMPA at such large fugacities and
small temperatures is unclear, as the NSR approximation is
rooted in the virial expansion which relies upon z 
 1. We
believe this to be a possible explanation for the differences
in our phase diagram and that of [11] for fermions at weak
coupling: The upper branch phase transition occurs at a very
large fugacity, well above the low-fugacity regime where the
NSR approximation is most applicable. This also explains
why our results are in relative agreement for 1/kF as ∈ [0.5,2],
where the phase transition occurs at much higher temperatures.

In the bosonic case the κ = 0 curve is approximately linear,
approaching the T/TF axis near T/TF = 4.2. This trend is
similar to that calculated in [13], although they are able to
extend their results across unitarity, and find the T/TF intercept
to be closer to T/TF = 3.

Both of our phase diagrams take into account only two-
body scattering processes. The extent to which many-body
interactions alter our findings is presently unknown, but the
similarity we see in both the boson and fermion phase diagrams
with those of [11,13], which do include many-body effects,
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ANDRÉ LECLAIR, ITZHAK RODITI, AND JOSHUA SQUIRES PHYSICAL REVIEW A 94, 063608 (2016)

suggests the two-body interaction is dominant. For bosons in
the unitary limit, the effect of many-body interactions has
been estimated to be on the order of a few percent [14].
Unfortunately, experimental and theoretical results alike are
limited for the upper branch outside of unitarity.

B. Weak coupling limit

For repulsive interactions in the weak coupling regime
(as 
 1, or equivalently α � 1) the kernal becomes indepen-
dent of k,k′:

G(k,k′) ≈ −8πasσ

m
. (20)

Repeating the manipulations described above in going from (6)
to (13) then gives

y = 1 − 16σ√
παs

∫ ∞

0
dk′ 1

y(k′)
k′2

ek′2
/(szy(k′)) − 1

.

Since the kernal is a constant, so is y and the remaining momen-
tum integral can be expressed in terms of the polylogarithm:

y = 1 − 4σ

αsy
Li3/2(szy). (21)

Thus we have reduced the integral equation to a transcendental
equation, in terms of the scattering length and fugacity, valid
for small positive as . Generally the upper branch phase is
stable in the weak coupling limit.

For a free ideal gas y = 1, as reflected by the form of (21)
as α → ∞. Although (21) admits no analytic solution for
arbitrary μ, an approximate solution can be obtained by setting
y = 1 in the argument of the polylog. Doing so results in a
quadratic equation with solutions:

y = 1

2

(
1 ±

√
1 − 16σLi3/2(sz)

αs

)
. (22)

The positive root must be chosen in order to recover the correct
ideal gas behavior.

In the fermionic case (22) can be written

y = 1

2

(
1 +

√
α + 8Li3/2(−z)

α

)
, (23)

which suggests an alternate criterion for the stability of the
upper branch at weak coupling. For α � 1 and a given critical
x denoted xc, if

α = |8Li3/2(−exc )| ≡ αc, (24)

then the pair (xc,αc) lies on the phase boundary. If α < ac,
then y is complex and the upper branch will be unstable. In
Fig. 4 the upper branch phase boundary for weakly interacting
fermions is computed with this criterion, as well as through the
application of (11) with numerical solutions of (13) and (21).
All three curves exhibit the same asymptotic behavior as kF as

decreases. At weak coupling, critical points obtained through
solving (21) are nearly indistinguishable from those calculated
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FIG. 4. Weak coupling behavior of the upper branch phase
boundary for fermions. The solid red (dashed blue) curve of zero
compressibility was obtained through numerically solving the full
integral equation given by (13) [transcendental equation given
by (21)]. The black dash-dot curve was calculated by using (24) to
obtain the critical pair (xc,αc) corresponding to the phase boundary.

by solving the full integral equation, while the condition
provided by (24) becomes more valid as α increases.

A similar analysis for bosons is hindered by the fact that
the upper branch becomes metastable for all T/TF before the
weak coupling condition can be sufficiently met. Thus for a
weakly coupled bose gas, the primary utility of (21) and (22)
lies in computing arbitrary thermodynamic functions, rather
than assessing the stability of the upper branch.

IV. CONCLUSIONS

The formalism developed in [16] based on the two-body
S matrix, previously applied to quantum gases in the unitary
limit and to gases with arbitrary negative scattering length,
has been used to study the upper branch. Upper branch phase
diagrams for bosons and fermions have been calculated and
a simple transcendental equation for the pseudoenergy, valid
for repulsive interactions in the weak coupling limit, has been
derived. Our findings largely agree with those obtained by
other theoretical methods, namely the “excluded molecular
pole approximation” of [11,13].

Our methods are most applicable to systems in which two-
body interactions dominate. A key open question concerns the
degree to which many-body processes affect the metastability
of the upper branch [14,15]. We believe the results obtained in
this work will be useful in guiding future experiments on the
upper branch, both in answering this question and others.
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