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Parity-symmetry breaking and topological phases in a superfluid ring
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We study analytically the superfluid flow of a Bose-Einstein condensate in a ring geometry in the presence of a
rotating barrier. We show that a phase transition breaking a parity symmetry among two topological phases occurs
at a critical value of the height of the barrier. Furthermore, a discontinuous (accompanied by hysteresis) phase
transition is observed in the ordered phase when changing the angular velocity of the barrier. At the critical point
where the hysteresis area vanishes, the chemical potential of the ground state develops a cusp (a discontinuity in
the first derivative). Along this path, the jump between the two corresponding states having a different winding
number shows analogies with a topological phase transition. We finally study the current-phase relation of the
system and compare some of our calculations with published experimental results.
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I. INTRODUCTION

A paradigmatic manifestation of superfluidity is the exis-
tence of stationary atomic states in a ring geometry in the pres-
ence of a barrier rotating with constant angular velocity � [1].
With Bose-Einstein condensates (BECs), these states have
been recently observed experimentally [2–6] and extensively
studied theoretically [7–18]. The stationary current-carrying
states are characterized by a topological invariant given by the
phase of the superfluid accumulated around the ring ν = 2π�,
with the integer winding number � = 0, ± 1, ± 2 . . . [19]. The
winding number can be dynamically modified by sweeping
the angular velocity of the rotating barrier [5,6]. The change
in topology takes place via the creation of topological defects
(solitons in one dimension d = 1 [20] and vortices in d > 1
[10,14–16]).

In the limit of a vanishing barrier, the state with topological
defects adiabatically connects two rotation-invariant states
with different winding numbers �. A second-order phase
transition takes place two times as a function of � [20], first
as the system enters the state with topological defects from
the first rotational-invariant state �1 and then as it leaves the
former by entering the second rotational-invariant state �2. This
scenario changes in the presence of any finite-size obstacle
that breaks the rotational symmetry of the ring, wherein the
topological defects are always dynamically unstable [21], so
that, in general, two topologically different states cannot be
adiabatically connected. This has been recently confirmed ex-
perimentally with a barrier moving inside a toroidal BEC [22],
where hysteresis appears in the transition between states with
different topological winding numbers. The unstable branch
of the hysteresis loop corresponds to the state with topological
defects, and the angular velocity at which the metastable
state decays (through phase slippage [7]) into the ground
state generalizes the Landau critical velocity to the weak-link
case [16,21].

In this paper, we show that with a barrier rotating at the
angular velocity �c = �/2mR2, with R and m as the radius of
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the ring and the atomic mass, respectively, the ground state of
the system becomes degenerate when the height of the barrier
is smaller than a critical value V < Vc. The degeneration
arises from a parity-symmetry breaking that provides two
possible ground states with different topology, i.e., winding
number. In the disordered phase, V > Vc, the ground state
is unique with an undefined winding number. Furthermore,
by keeping constant the height of the barrier in the ordered
phase, V < Vc, a first-order phase transition between the two
ground states with different topological winding number and
hysteresis can be observed by varying �. The area enclosed by
the hysteresis path shrinks while increasing the height of the
barrier till eventually vanishing at the critical point V = Vc.
Hysteresis has been experimentally observed but the sudden
change in the winding number at �c was smeared out due to
shot-to-shot number and finite temperature fluctuations [22].
As order parameter of the phase, both the continuous and
discontinuous phase transitions, we choose the difference
between the phase accumulated around the ring ν and phase
drop across the barrier, a quantity which is experimental
accessible [23]. The phase drop across the barrier, together
with the current flowing through the ring, also provides the
current-phase relation [23,24]—an optimal characterization of
the ring-superfluid junction [25–29].

We finally emphasize that at the angular velocity �c and
V = Vc the transition between the two topological states is
accompanied by a discontinuity in the derivative of the ground-
state chemical potential as a function of the angular velocity.
Furthermore, at this point the transition is not associated with
the breaking of any symmetry and it cannot therefore be
characterized by a local order parameter. This carries some
similarities with a continuous topological phase transition
occurring between two degenerate ground states with different
topological winding numbers �.

II. THE MODEL

We consider a BEC confined in an effective one-
dimensional toroidal trap in the presence of a barrier rotating
with a constant angular velocity �. The barrier is a penetrable
repulsive potential with radial extension larger than the annulus

2469-9926/2016/94(6)/063601(6) 063601-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.063601


ZHANG, PIAZZA, LI, AND SMERZI PHYSICAL REVIEW A 94, 063601 (2016)

width. The system can be modeled by the Gross-Pitaevskii
equation (GPE) [30] that governs the dynamics along the
azimuthal coordinate x ∈ [−L/2,L/2], where L is the length
of the ring. We remove the time dependence of the Hamiltonian
by moving to a rotating reference frame: x ⇒ x + �Rt with
the torus radius R = L/2π . This introduces a gauge field
∝ �R into the GPE, which reads

i�
∂

∂t
�(x,t) = [Ĥ + Ng|�(x,t)|2]�(x,t),

Ĥ = �
2

2m

(
i

∂

∂x
+ m

�R

�

)2

+ V (x) − 1

2
m�2R2.

(1)

The barrier V (x) is a repulsive square well with height V > 0
and width d centered about x = 0, N is the number of atoms,
and g = 4π�

2as/m is the contact interaction with the effective
one-dimensional (1D) s-wave scattering length as . With the
further transformation �(x,t) = eı(m�Rx+m�2R2t/2)/�φ(x,t),
the gauge field can be removed from the Hamiltonian which
now reads as the usual nonlinear GPE for the order param-
eter φ(x,t) [31,32]. Following [24,28,33–37], the stationary
solutions of Eq. (1) can be written in terms of one of Jacobi
elliptical functions, SN function [38]. Two classes of solutions
which we call, for reasons that will become clear below, plane
waves (PWs) and solitons (SLs), are found for each value of the
winding number �. The circulation is ν = ∮

	(x)dx = 2π�,
where 	(x) = m�Rx/� + θ (x) is the phase in the laboratory
frame while θ (x) = (m/�)

∫
dxj/ρ(x) is the phase in the

rotating frame. The BEC density is ρ(x) = |�(x)|2 = |φ(x)|2
and in the rotating frame the current j and the chemical
potential ε are related with the current and chemical potential
in the laboratory frame by I (x) = j + �Rρ(x) and E =
ε − m�2R2/2, respectively. In absence of the barrier, V = 0,
the current for the PW solution is simply I = �I0, where
we choose I0 = R�0ρ0 and �0 = �/mR2 as units of the
current and the rotation velocity and a density normalized
as ρ0 = 1/L. The SL state has a chemical potential larger than
the chemical potential of the PW state μ0 = Ngρ0, which will
be used to define our units of the energy, time �/μ0, and length
ξ0 = �/

√
2mμ0. The presence of a repulsive barrier breaks the

rotational invariance, and the two solutions at fixed �,ν are
not purely a PW or a SL. As already mentioned, we found two
kinds of solutions that will be labeled as PW (SL) since both
continuously reduce to an exact PW (SL) as V → 0 [24].

III. CONTINUOUS PHASE TRANSITION

In the following we study the exact ground-state solutions
as a function of the order parameter

α = ν − γ, (2)

that is the difference between the circulation ν and the phase
drop across the barrier γ [38]. In the limit V = 0, the phase
difference is simply equal to the the phase accumulated around
the ring: α = ν = 2π�. This quantity has been measured
experimentally [23] from the interference fringes of two
overlapping BECs, one expanding from a ring with a barrier
and the second expanding from a disk without a barrier
providing the reference phase.

V/ 0 

/ c 

/2  

Vc 

(a)

(b) (c) (d)

FIG. 1. Order parameter α as a function of the barrier angular
velocity � and height of the barrier V . (a) At fixed � = �c,
the ground-state solution of the system becomes degenerate at
V < Vc. The black dot-dashed line (the lower branch of the pitchfork
bifurcation) and red solid line (the upper branch of the pitchfork
bifurcation) correspond to the value of α for the PW branch with
winding number � = 0 or 1, respectively, plotted as a function of V . At
V � Vc, the order parameter vanishes and the winding number of the
state is undefined, seeing the dashed line. Further solid or dot-dashed
lines running along the � direction for different values of V give α

also for the PW branch, where the different colors and line styles
correspond to different winding number � = 0 (the dot-dashed lines)
or 1 (the solid lines). Hysteresis along the closed trajectories marked
by dark-light green (the right hysteresis loop) and dark-light blue (the
left hysteresis loop) colors exists for V < Vc. (b–d) Value of α as a
function of � for three different values of V . Solid and dot-dashed
(dashed) lines correspond to the PW(SL) branch and different line
styles correspond to different winding number � = 0 (the dot-dashed
lines) or 1 (the solid lines). In (d), at V = Vc = 1.06μ0, the � = 0 and
1 PW branches are directly connected at a point where the derivative
of α as a function of � diverges. Here the parameters are the same as
in Fig. 3.

The phase diagram of the system is depicted in Fig. 1(a),
where the order parameter α is plotted as a function of the
angular velocity � and strength V . When V < Vc, the ground
state is a PW with the winding number either � = 0 or 1 and
is characterized by a nonvanishing α. This bifurcation is a
pitchfork for � = �c, with the unstable branch for V < Vc

being the SL solution [not shown in Fig. 1(a); see dashed lines
in Figs. 1(b) and 1(c)]. For � �= �c the bifurcation becomes a
saddle node (see the discussion of Fig. 4 below). The behavior
of α as a function of � is shown in Figs. 1(b)–1(d) for three
different values of V , where the solid and dot-dashed (dashed)
lines correspond to the PW (SL) branch and the different colors
and line styles correspond to different winding numbers.

It is instructive to analyze how a nonvanishing order
parameter α arises by looking at the particular spatial form
of the solutions, shown in Fig. 2. For a fixed angular velocity
�c the behavior of the density and phase of the PW solution is
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FIG. 2. Density and phase profiles of the PW solutions in the
hysteretic regime (a) and (c) and in the nonhysteretic regime (b). The
shaded area indicates the barrier region. Here the parameters are the
same as in Fig. 3.

shown both inside and outside the hysteretic region. In absence
of hysteresis, V � Vc, the ν = 0 and 2π branches share the
same density profile, characterized by a zero at the center of
the weak link: x = 0. At this singular point, the phase has a
π jump, downwards for the ν = 0 branch, upwards for the
ν = 2π branch, leading to the same value of α (see Fig. 1).
For x �= 0 the phase grows linearly with the same slope for
both branches. The presence of a singular point (topological
defect) in the PW branches indicates that the latter acquires a
solitonic character in the nonhysteretic regime. The SL and PW
branches for a given ν and �c are indeed equal for V � Vc and
the winding number � is not defined along this path [dashed
line in Fig. 1(a)].

IV. DISCONTINUOUS PHASE TRANSITION
AND HYSTERESIS

With a barrier height V below the critical value Vc

the system supports hysteresis, as already experimentally
demonstrated in [22]. In the region � < �c1 the PW state
with � = 0 has the lowest energy, while in the region � > �c2

the lowest-energy state is a PW with � = 1. In the region
�c1 < � < �c2 one of the PW solutions is stable while the
other is metastable. The metastable PW branch is connected
with the SL branch for �c1 � � � �c2, while outside this
region only a single PW branch exists. The values of �c1,c2

are determined by the interaction strength gN and the height
and the width of the barrier. The fact that the SL branch in this
region is unstable explains the hysteretic behavior [16] (see
the lower panel of Fig. 3 ): as soon as the PW branch meets the
SL branch a dynamical instability sets in whereby the system
decays into the lowest-energy PW branch having a different
winding number. This dynamical instability originates from
the underlying saddle-node bifurcation where the PW and the
SL branch merge [21] (see also Fig. 4). We remark that in this
case the change of the topological winding number �, taking
place while going from the metastable to the stable PW branch,
is discontinuous.

The situation changes when V � Vc: in this case hysteresis
is absent and the two PW branches with � = 0 and 1
are directly connected, without the intermediate unstable
SL branch. Therefore, as shown in Fig. 3, at � = �c the
topological winding number jumps between � = 0 and 1,
while the system remains in the lowest-energy stationary state.
Moreover, as evident from the upper panel of Fig. 3, if we
additionally tune the barrier height to V = Vc the chemical
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=1 PW=0 PW
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/μ
0

=0 PW

-2 0 2 4

V=0.94Vc

V≥Vc
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Ω/Ωc
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FIG. 3. Upper panel: chemical potential for three different values
of the barrier height (in units of μ0). Lower panel: topological winding
number below and over the critical barrier height. Arrows highlight
the hysteretic behavior as a function of the rotation velocity. Here
L = 20d and d = 20ξ0, similarly to the NIST experiment [23].

potential shows a discontinuous derivative at � = �c. This
resembles a topological phase transition (a transition between
two topologically distinct states) without breaking any local
symmetry. This behavior is always present, independently of
the particular form of the barrier.

The disappearance of hysteresis for high enough barriers
has been observed experimentally [22]. Yet the observed
transition between states with a different winding number
was not perfectly sharp, probably due to shot-to-shot atom-
number fluctuations. In order to verify our scenario involving
a “topological” phase transition one would need to observe
both (i) a sharp jump between � = 0,1 as a function of � and
(ii) a second-order discontinuity in some observable (like the
chemical potential shown in Fig. 3). In order to observe (i),
the temperature has to be low enough to suppress random
nucleation of topological defects [8]—as probably already
being the case of [22]—and shot-to-shot number fluctuations
need to be reduced. The measurement of a discontinuity in the
derivative of the chemical potential as required in (ii) seems a
more demanding task.

V. CURRENT-PHASE RELATION

The knowledge of the phase drop γ across the barrier,
combined with the knowledge of the (spatially constant)
current j flowing across the weak link, allows us to construct
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FIG. 4. Current-phase relation with a rotating barrier. Panels (a–c) show the order parameter α as a function of the barrier height V . Panels
(d,f) show the current-phase relation, while panel (e) reports the chemical potential vs �. In (a,d,e) the black solid line represents the ν = 0
PW branch, while the dashed and dash-dotted red line corresponds to the ν = 2π PW and SL branch, respectively. In (c,f), the red dashed line
represents the ν = 2π PW branch while the solid and dash-dotted black line corresponds to the ν = 0 PW and SL branch, respectively. In (b)
the SL branches for ν = 0,2π overlap. The blue circle and green triangles mark the special points (saddle-node bifurcations) where the PW
and SL branch meet. In the left panel, the current-phase relation is single-valued, i.e., γ < π , while in the right panel it is multivalued, namely,
for some values of the current j we have γ > π . Here the parameters are the same as in Fig. 3.

the current-phase relation of the system. This is a powerful
characterization of the weak link, allowing us for instance
to distinguish different regimes ranging from deep tunneling
to hydrodynamic flow [25–27]. In the context of BECs, the
current phase relation has been computed so far for infinite
systems with open boundary conditions, a static weak link, and
a given injected flow [24,39]. Stimulated by the experimental
results in [23], we compute here the current-phase relation
for our case of a BEC in a ring geometry. The results are
shown in Fig. 4. For a given barrier, interaction strength, and
winding number, the current-phase relation can be constructed
by varying the angular velocity �. As illustrated above, for
each fixed �, i.e., fixed current j , we obtain two solutions (PW
and SL branches) with a different value of γ . The current-phase
relation for both � = 0 and 1 is shown in Figs. 4(d) and 4(f) for
two different values of the barrier height V . The current-phase
relation is composed of the PW and SL branches, meeting at the
special points indicated by blue circles or green triangles. The
same points are marked also in the μ versus � diagram [panel
(e)], as well as in the α versus V diagram [panels (a) and (c)]. It
appears how those special points are saddle-node bifurcations,
where the PW and SL branch merge and disappear so that there
are no stationary solutions for larger (or smaller) values of V or
�. In (b) we also show that at � = �c the bifurcation becomes
a pitchfork, as previously discussed. The latter is characterized
by the merging of four branches: the two PW branches with
ν = 0,2π (black solid and red dashed lines) and the two SL
branches with ν = 0,2π (red dash-dotted line), which have the
same α.

The current-phase relation indicates the maximal current
j and the largest phase drop γ for a given barrier. In the
deep tunneling regime, the current-phase relation is sinusoidal,
while in the hydrodynamic regime of flow, achieved for
barriers much smaller than the chemical potential, the current is
quite higher and linearly proportional to the phase drop over a

broad range of phases [27]. Moreover, there is a further regime
where the phase drop can be larger than π , which implies that
the current-phase relation becomes multivalued, as shown in
the right part of Fig. 4.

VI. COMPARISON WITH EXPERIMENTS

All the predictions presented in this paper can be exper-
imentally tested within the experimental current state of the
art. In this final section we compare some of our results with
experimental results already obtained at NIST and published
in [22,23]. The comparison is summarized in Fig. 5. Apart
from the barrier width along the azimuthal coordinate, taken
from [22,23], the most relevant parameter is the dimensionless
effective nonlinearity:

η = N × Lmg/�
2.

As apparent from Figs. 5(a) and 5(b), the agreement between
our predictions and the experimental data strongly depends
on the value of η, determined by the total atom number N

and ring length L. In (a) our predictions are calculated by
taking N = 8 × 105 and L = 140 μm from [23] without any
adjustable parameters, which clearly overestimates the size of
the hysteresis loop. However, as shown in (b), a very good
agreement could be provided, after reducing the effective
nonlinearity η by 25%, as confirmed in (c) by comparing also
the variation of α with the velocity �. Quite recently, it has
been experimentally found a strong temperature dependence
of the area of the hysteresis loops [40], in concomitance
with an atom loss of about 20%. While the reduction of the
condensate atoms can be qualitatively taken into account in
our model, thermal fluctuations, that might also be crucially
related with the area of the hysteresis loop, are well beyond the
GPE approach investigated here. The fact that our purely 1D
model overestimates the nonlinearity at given N,L also arises
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FIG. 5. Comparison with the experimental measurements of [23]
for the order parameter α as a function of angular velocity �, (a)
without and (b) with the fitted nonlinear parameter η (see text). (c)
Rate of change of α as a function of barrier height V . In (d) the
size of the hysteresis loop is compared to the value measured in [22]
and to the full 3D GPE simulations (blue dotted line) employed
in [22]; the black line corresponds to the predictions without fitting
parameters, while the red lines correspond to the predictions with a
nonlinearity η also reduced by 25%. In (a,b), the barrier height is
V = 0.8μ0. In (a–c), the barrier width is chosen according to [23] to
be d ≈ 0.04L ≈ 22ξ0, while in (d) it is taken to be d ≈ 0.05L ≈ 17ξ0,
according to [22].

from the fact that the experiment is not in the one-dimensional
regime. It is still possible to reproduce the experimental
results even quantitatively by simply readjusting the effec-
tive nonlinearity, consistently with the comparison presented

in [23], where an effective one-dimensional model showed a
good agreement once the proper dimensional reduction was
performed.

VII. CONCLUSIONS

We have studied the superfluid flow of a Bose-Einstein
condensate confined in a ring geometry in presence of a
rotating barrier. The stationary solutions have been found
by solving analytically an effective one-dimensional Gross-
Pitaevskii equation. We have identified a continuous parity-
symmetry-breaking phase transition among two topological
phases. A discontinuous phase transition accompanied by
hysteresis as a function of the angular velocity of the barrier.
Hysteresis has been experimentally observed at NIST [22,23].
At the critical point where the hysteresis area vanishes,
the chemical potential of the ground state develops a cusp
(a discontinuity in the first derivative). Along this path,
the jump between the two corresponding winding numbers
shows analogies with a topological phase transition. A good
agreement between the order parameter α as a function of the
angular velocity and the rate dα/d� as a function of the height
of the barrier and the area of the hysteresis has been found
with published experimental data in [22,23] by readjusting
the effective nonlinearity to take into account the fact that the
experiment is not purely one dimensional.
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