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Rotating optical tubes for vertical transport of atoms

Anwar Al Rsheed,1,* Andreas Lyras,1 Omar M. Aldossary,1,2 and Vassilis E. Lembessis1

1Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2The National Center for Applied Physics, KACST, P.O. Box 6086, Riyadh 11442, Saudi Arabia

(Received 2 September 2016; published 29 December 2016)

The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated
by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The
rotation of the HOT induces a vertical motion for an atom initially at rest. The motion is a result of the action of two
inertial forces, namely, the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in
a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom’s
global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at
large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported
along the axis of the HOT. In this case, the rotating HOT operates as an optical Archimedes’ screw for atoms.
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I. INTRODUCTION

The optical lattice is a standing wave that can be realized
by the interference of two counterpropagating beams, which
form a periodic pattern of intensity (alternating low- and high-
intensity regions) [1,2]. However, if the counterpropagating
beams have different optical frequencies, then the periodic
intensity pattern can be transported; i.e., it can act as an optical
atomic conveyor if an atom is trapped at one of the minima of
the optical lattice [3].

The trapped atom oscillates around a minimum in the
optical conveyor, while the minimum itself is transported. In
this case, the optical conveyor acts as a moving frame for the
trapped atom, where the speed of the moving frame depends
on the difference between the optical frequencies of the beams
that form the optical lattice. For example, a one-dimensional
optical lattice is formed by two counterpropagating beams
and then the atom trapped in this lattice can be transported
linearly [3,4]. The optical Ferris wheel is an optical lattice
with cylindrical symmetry. It is formed by two copropagating
Laguerre-Gaussian (LG) beams with opposite helicities ±l. An
atom trapped in this lattice can be transported along a circular
orbit [5] if the two beams have slightly different frequencies.

Trapped neutral atoms in an optical lattice are one of the
most promising candidates for realizing quantum information
systems [6]. An optical lattice system was used to trap (or
address) single ultracold neutral atoms in each potential well
to form qubits, which are needed for a quantum register [7].
The goal of a quantum register is to transport selected qubits
coherently [8] (the atomic coherence persists while moving the
atom back and forth over a macroscopic distance by shifting
the optical conveyor [9]) into the interaction zone [10] to create
a quantum gate.

The interference of two counterpropagating LG beams with
opposite helicities ±1 produces double helical optical tubes
(HOTs) [11,12]. A static HOT can be produced if the angular
frequencies of the LG beams are equal. This scheme has
been proposed as an atomic guide along a helical path where
the atom oscillates globally between two turning points [13].
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However, a slight difference in the angular frequencies of the
LG beams produces a rotating HOT [12], which has been
used to study the flow of a cold bosonic ensemble (superfluid)
that is trapped in the helical pattern [14]. The rotation of the
reference frame (the helical pattern) can be used as laboratory
equipment with which we can demonstrate the difference
between quantum and classical fluids [15]. The rotating helical
pattern can also be used as a detector of the slow rotation of
an interferometer [16].

The atomic movement along the axis of a static HOT
depends on the initial velocity of the atom and the parameters
defining the dipole potential [13]. However, in this work, we
will study a rotating HOT which allows us to control the
direction of the atomic motion along the axis of the HOT
by varying the direction and the magnitude of the angular
velocity of the HOT, for the same initial atomic velocity
and the same dipole potential parameters as for a static
HOT. Thus, the rotating HOT offers an additional control
knob on the motion of the trapped atom. Moreover, while
in the static HOT case the balance between the optical dipole
potential and the gravitational one determines the values of the
atomic oscillation’s turning points, in the rotating HOT case
the turning points can be controlled by the angular velocity
of the HOT irrespective of the relative strength of the two
antagonistic potentials. These and other interesting features
exhibited by the motion of an atom in a rotating HOT justify
the present study as a worthy follow-up of our earlier study of
the static HOT case.

The structure of this paper is as follows: The derivation
of the dipole potential of an atom inside a rotating HOT is
described in Sec. II, while in Sec. III we describe the equations
of motion of an atom trapped in the rotating HOT which are
integrated numerically. In Sec. IV, we describe the parameters
of our numerical calculations and the trajectory of an atom
inside a rotating HOT. Moreover, we investigate how the
turning points of the trapped atomic motion depend on the
angular velocity of the HOT. In Sec. V, we show that under
certain conditions a rotating HOT can be used as an optical
Archimedes’ screw (OAS). We were inspired by the famous
setup, known since thousands of years ago, with which people
were pumping water from rivers and lakes to higher places
by just rotating a spiral device. In the same way, by rotating
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a HOT we can elevate atoms against gravity from a sample
of atoms at a lower position. Moreover, in the same section
we investigate how radial and global oscillations of the atom
depend on the angular velocity of the HOT. Finally, in Sec. VI
we present our conclusions.

II. DIPOLE POTENTIAL FOR A TWO-LEVEL ATOM
INSIDE A ROTATING HELICAL OPTICAL TUBE

As we have previously mentioned, the helical optical
potential tube is formed by the interference of two counter-
propagating LG beams along the z direction, with opposite
helicities ±l and of the same polarization, power, and beam
waist. If the wave vectors of the counterpropagating beams
are almost equal, k1 ≈ k2 = k, then the difference between the
angular frequencies �ω = ω1 − ω2 �= 0 is such that �ω =
ω1 − ω2 � ω1 ≈ ω2 ≈ ω. The resultant HOT can be rotated
counterclockwise if �ω > 0 or clockwise if �ω < 0. If we
consider that the atom moves close to the beam focus then the
dipole potential for a two-level atom trapped inside a rotating
HOT is given, in cylindrical coordinates, by

Udip(r,ϕ,z,t) = �P�2

2�πw2
0Is

[
ul

p(r,z)
]2

cos2[l(ϕ − �Rt) + kz],

(1)

where P is the power of one of the two beams, � the excited
state spontaneous emission rate, � is the frequency detuning,
and Is the saturation intensity which depends on the specific
atomic transition chosen [1]. Finally, �R(= �ω/2l) is the
angular velocity of the HOT rotation (see Fig. 1) that depends
on the sign of �ω.

FIG. 1. A rotating HOT that is formed by LG beams with l = 1
and p = 0.

In Eq. (1) the quantity ul
p(r,z) is given by

ul
p(r,z) =

√
p!

(|l| + p)!

w0

w(z)

[√
2r

w(z)

]|l|

× exp

[ −r2

w2(z)

]
L|l|

p

[
2r2

w2(z)

]
, (2)

where L
|l|
p [2r2/w2(z)] is an associated Laguerre polynomial

and w(z)(= w0

√
z2/z2

R + 1) is the beam waist at position z,
where w0 is the beam waist at z = 0 and zR is the Rayleigh
range, which is equal to zR = πw2

0/λ, with λ the wavelength
of the beam.

III. EQUATIONS OF MOTION OF A SINGLE TWO-LEVEL
ATOM INSIDE A ROTATING HOT

We will describe the motion of the atom inside the
rotating HOT by equations of motion derived from a classical
Lagrangian. This semiclassical approach is valid provided that
the atom can be considered as a pointlike particle. To this end,
the position and momentum of the atom should be well defined
without violating the Heisenberg uncertainty principle. Using
as a length scale the laser field wavelength and as a time scale
the natural lifetime of the atom one can conclude that the
semiclassical approximation is justified when the following
constraints are obeyed [17,18]: First, the momentum width
�p should be large compared with the photon momentum
�k, i.e., �p � �k, and, second, the atoms should travel a
small distance (compared to the optical wavelength λ) during
the internal relaxation time �−1; i.e., v/� � λ. These two
constraints are compatible when �� � Er = �

2k2/2m, where
Er is the atomic recoil energy, m is the mass of the trapped
atom, k is the field wave number, and � the natural linewidth of
the excited atomic state that participates in the electric dipole
interaction with the field. We will further discuss the validity
of this constraint for the parameters employed in our numerical
calculations in Sec. IV.

The Lagrangian of a cold atom trapped inside the HOT in
the laboratory frame, using cylindrical coordinates, is

L = m

2
{ṙ2 + r2ϕ̇2 + ż2} − U (r,ϕ,z,t), (3)

where U is the total potential energy which is equal to the
sum of the dipole potential Udip and gravitational potential,
Ug = mgz, energies.

We consider that the HOT is rotating about the z axis
with angular velocity �R = �R ẑ. If we consider that the
coordinates of the lab frame are (r,ϕ,z) and the coordinates of
a frame attached to the HOT, which is known as the rotating
frame, are (r ′ = r,ϕ′ = ϕ − �Rt,z′ = z), then the Lagrangian
in the coordinates of the rotating frame is expressed as follows:

L = m

2
{ṙ ′2 + r ′2(ϕ̇′ + �R)2 + ż′2} − U (r ′,ϕ′,z′), (4)

where U (r ′,ϕ′,z′) is the total potential given as follows:

U (r ′,ϕ′,z′) = �P�2

2�πw2
0Is

[
u|l|

p (r ′,z′)
]2

cos2(lϕ′ + kz′)

+mgz′, (5)
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where the first term is the dipole potential of a static HOT
while the second term is the gravitational potential.

Now we can use the Euler-Lagrange equations to obtain the
following equations of motion:

mr̈ ′ = −∂U

∂r ′ + mr ′ϕ̇′2 + 2mr ′�Rϕ̇′ + mr ′�2
R, (6a)

mr ′2ϕ̈′ = −∂U

∂ϕ′ − 2mr ′ṙ ′ϕ̇′ − 2mr ′ṙ ′�R, (6b)

mz̈′ = −∂U

∂z′ . (6c)

The third term in the right-hand side of Eq. (6a) and the
last term in Eq. (6b) are Coriolis forces, while the last term in
Eq. (6a) is a centrifugal force. These are well known forces
that appear because of the rotation of the HOT.

The above three equations of motion are coupled nonlinear
differential equations of the second order for which it is very
hard to find an exact analytical solution. We can solve these
equations numerically using the fourth-order Runge-Kutta
method.

IV. ATOMIC TRAJECTORY INSIDE THE ROTATING HOT

We consider a 85Rb atom interacting with the HOT field
via the optical transition 5 2S1/2 → 5 2P3/2. The interaction is
characterized by the following parameters: λ = 780.24 nm,
Is = 1.64 mW/cm2, and �/2π = 5.98 MHz [1]. These char-
acteristic parameters satisfy the relation �� � Er which en-
sures the compatibility of the constraints for the semiclassical
treatment of the atomic motion inside the HOT field as we
mentioned before. We also assume the following values for the
beam power, the detuning, and the beam waist: P = 80 mW,
� = −2.57 × 1013 Hz, and w0 = 5 μm [19]. The light field is
red detuned with respect to the atomic transition (� < 0),
so the atom is attracted by the potential well towards the
high-intensity regions. The initial position of the cold atom
can be chosen at the maximum intensity location (

√
l/2w0,0,0)

inside the tube with index n = 1, as shown in Fig. 1.
In Figs. 2(a) and 2(b) we present the trajectories of a 85Rb

atom, initially at rest, in the rotating HOT frame of reference.
On the other hand, in Figs. 3(a) and 3(b) we present the
trajectories of the 85Rb atom, initially at rest, in the lab frame of
reference. In Figs. 3(a) and 3(b) we can see that the tapped atom
in the lab frame has faster azimuthal rotation velocity equal
to ϕ̇ + �R . Moreover, the atomic trajectories in Figs. 2(a)
and 3(a) show that the 85Rb atom is elevated when the HOT
rotates counterclockwise with �R = 70 kHz. On other hand,
the 85Rb atom in Figs. 2(b) and Fig. 3(b) follows a downwards
path when the HOT is rotated clockwise with �R = −70 kHz.
Consequently, the cold atom, which is initially at rest, will
acquire an induced clockwise azimuthal velocity if it is trapped
inside a counterclockwise rotating HOT, while it will acquire
an induced counterclockwise azimuthal velocity if it is trapped
inside a clockwise rotating HOT. In other words, the angular
momentum that is transferred from the rotating HOT to the
atom is directed opposite to the angular velocity of rotation
of the HOT, in agreement with the prediction by Bekshaev
et al. [20].

FIG. 2. The trajectory of a 85Rb atom with respect to the HOT
frame of reference: (a) �R = 70 kHz, represented by the black line
and (b) �R = −70 kHz, represented by the red line.

The induced motion of the atom that is trapped inside a
rotating HOT can be explained in terms of the inertial forces.
Initially, the atom inside a rotating HOT will experience a
centrifugal force Fr = mr0�

2
R . Consequently, the atom will

move along the radial direction. After an infinitesimal time
interval �t , the atom will have a nonzero radial velocity ṙ ′ =
r0�

2
R�t . As a result, a Coriolis force Fϕ = −2mṙ ′�R will

be exerted on the atom along the azimuthal direction which
drives the atom to rotate in a direction opposite to that of the
angular velocity �R of the HOT. Finally, the atom will have
a global motion along the HOT due to the coupling between
the motions along the z and the azimuthal directions [13]. In
Fig. 4 we see that the magnitude of the average transferred
angular momentum (L = mr0vϕ,av , where vϕ,av is the average
atomic angular velocity), in units of �, to a 85Rb atom, initially
at rest, increases with the cube of the angular velocity of the
HOT. This result confirms the previous results and what we

FIG. 3. The trajectory of a 85Rb atom with respect to the lab frame
of reference: (a) �R = 70 kHz, represented by the black line and (b)
�R = −70 kHz, represented by the red line.
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FIG. 4. The variation of the average of the transferred angular
momentum (in units of �) to a 85Rb atom as a function of the angular
velocity of the HOT, where the atomic initial velocity is (vx = 0,vy =
0,vz = 0), w0 = 5 μm, and l = 1.

can expect from the relation between the average transferred
angular momentum and the angular velocity of the HOT: L =
r0Fϕ�t = −2mr2

o�3
R(�t )2.

The preceding discussion is very instructive but not real-
istic, since an atom, no matter how cold, will always have a
nonzero velocity. In fact, when an atom is very cold we must
treat its center-of-mass motion quantum mechanically. In the
following we consider the case of an atom with nonzero initial
velocity such that a semiclassical treatment of its motion is
justified.

In Fig. 5 we see the variation of the atomic elevation
as a function of time for many different angular rotational
velocities of the HOT �R and an initial atomic velocity (vx =
5 cm/s,vy = −5 cm/s,vz = 0). This is a typical velocity for
cold atoms in a magneto-optical trap (MOT) that also satisfies

FIG. 5. The variation of a 85Rb atom elevation (the initial velocity
of the atom is vx = 5 cm/s, vy = −5 cm/s, vz = 0) for different
angular rotation velocities of the HOT �R: 70 krad/s (red solid line),
static HOT (black dashed line), −70 krad/s (blue dash-dotted line),
and −97 krad/s (brown dotted line).

FIG. 6. The variation of the first turning point of a 85Rb atom
as a function of the angular velocity of the HOT for different
initial atomic velocities: (vx = 7.6 cm/s,vy = −7.6 cm/s,vz = 0)
pink dash-dotted line, (vx = 5 cm/s,vy = −5 cm/s,vz = 0)
red dashed line, (vx = 2.4 cm/s,vy = −2.4 cm/s,vz = 0) blue
dash-dot-dotted line, (vx = 0,vy = 0,vz = 0) black line, and
(vx = −5 cm/s,vy = 5 cm/s,vz = 0) green dotted line (w0 = 5 μm
and l = 1).

the constraints for a semiclassical description of the gross
atomic motion [13]. This figure shows that the turning point in
the atomic elevation depends on the value and direction of �R .
Specifically, the value of the upper turning point of the trapped
atom (with ϕ̇o < 0) increases as the value of �R increases,
if �R is counterclockwise, or decreases if �R is clockwise.
This is so because the transferred angular momentum from the
rotating HOT is opposite to the direction of the atom’s rotation.
Moreover, if �R ≈ 97 krad/s in the clockwise direction and
ϕ̇o = −14.14 krad/s, then the atom can be localized within a
size �z � λ around the minima z = 0 which is represented
by the brown dotted line in Fig. 5.

In Fig. 6 we present the variation of the value of the
first turning point in the atomic motion along the z axis
as a function of the angular rotational velocity of the HOT
�R , for different values of the initial atomic velocity. From
the shape of the different curves we can conclude that the
effect of the initial velocity is only to shift the curve up
(if ϕ̇o is clockwise; see the red dashed line) or down (if ϕ̇o

is counterclockwise; see the green dotted line). This figure
confirms the statement that the rotating HOT carries angular
momentum opposite to the direction of the atom’s rotation
and the transferred angular momentum to the atom during
the interaction between the HOT and the trapped atom is
proportional to the cube of the angular velocity of the HOT
−�3

R as expected from Fig. 4. The chosen range of velocities
is determined by the following considerations. The cold atoms
are usually trapped in a MOT and their velocities obey
a two-dimensional Maxwell-Boltzmann distribution. If we
assume that the average atomic speed is 5

√
2 cm/ s we deduce

an atomic temperature of 30 μK. Subsequently, the variance of
the speed distribution can be employed to determine a range of
speeds around the average one. The upper (v = 7.6

√
2 cm/ s)

and lower limits (v = 2.4
√

2 cm/ s) of this range have been
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FIG. 7. The variation of a 85Rb atom elevation with initial velocity
(vx = 5 cm/s,vy = −5 cm/s,vz = 0) for different angular rotation
velocities of the HOT: 147 krad/s (black solid line), 146 krad/s(red
dashed line), −151 krad/s (blue dash-dotted line), and −150 krad/s
(brown dotted line) (w0 = 5 μm and l = 1).

employed in Fig. 6 to produce the pink dash-dotted line and
the blue dash-dot-dotted lines, respectively. Thus, for a rather
wide range of initial atomic speeds, consistent with the current
experimental data, the turning points of the atomic motion are
also bounded within a limited, well defined range, following
the same dependence on the HOT rotational frequency. We
must also point out that all the above chosen speed values
satisfy the constraints for the validity of the semiclassical
approximation of the atomic motion.

V. ROTATING HOT AS AN OPTICAL ARCHIMEDES’
SCREW (OAS) FOR ATOMS

We will now demonstrate that the rotating HOT can be
used for elevating atoms if we make a proper choice of the
involved parameters. We must note that elevation has two
prerequisites: first, the atom must be able to “escape” from
the oscillations along the vertical z direction and, second,
it must simultaneously be kept trapped in the potential tube
without escaping along the radial r direction. In Fig. 7 we
present the vertical displacement of the atom as a function
of interaction time. We see that the atom, for the chosen
initial velocity, can be elevated along the z axis when the
HOT rotates at angular velocities greater than 146 krad/s
counterclockwise. It can also move downwards when the HOT
rotates at angular velocities greater than 150 krad/s clockwise.
For other values of the rotational angular velocity it clearly
performs an oscillation along the z axis, which means that it
remains trapped in this direction. From Fig. 8 we can check the
state of the atomic motion in the radial direction. We see that if
the HOT rotates with �R greater than 279 krad/s clockwise or
307 krad/s counterclockwise, then the atom will escape from
the helical tube along the radial direction.

Let us now try to understand analytically the effect of the
angular rotation of the HOT �R on the frequencies of the
global oscillation. We introduce the Frenet coordinates ρ, ξ ,

FIG. 8. The variation of a 85Rb atom radial wiggling with
initial velocity (vx = 5 cm/s,vy = −5 cm/s,vz = 0) for different
angular rotation velocities of the HOT:307 krad/s (red dotted
line), 308 krad/s (blue dash-dotted line), −279 krad/s (brown
dash-dotted-dotted line), and −280 krad/s (dashed pink line) (the
black solid line represents radial minima of the potential; w0 = 5 μm
and l = 1).

and ν, defined as

ρ = r −
√

|l|
2

w(ξ ), (7a)

kν = lϕ + kz, (7b)

ξ = −ϕ = z

h
, (7c)

where 2πh(= |l|λ) is the helical pitch of the HOT, w(ξ ) =
w0

√
αξ 2 + 1 the beam waist as function of the helical

parameter ξ , and α(= h2/z2
R).

The Taylor expansion of the dipole potential around its
minima, using the Frenet coordinates, is as follows:

U (ρ,ξ ) = −ε

{
− k2ν2 + (1 − αξ 2 + α2ξ 4 + · · ·)

− (1 − 2αξ 2 + 3α2ξ 4 + · · ·)4ρ2

w2
0

+ · · ·
}
. (8)

Note that we keep only one term from the expansion of
cos2(kν) because kν � 1. The constant ε in Eq. (8) is

ε = − �P�2

2�πw2
0Is

|l||l|
|l|! e−|l|, (9)

and represents the depth of the dipole potential [13].
The relation between cylindrical unit vectors and Frenet

unit vectors (one of them is tangent to the helix, the second
normal to the helix, and the third one is binormal to the helix)
is [21]

r̂ = ρ̂, (10a)

ẑ = sin(θ )ξ̂ + cos(θ )ν̂, (10b)

ϕ̂ = − cos(θ )ξ̂ + sin(θ )ν̂, (10c)

where θ [= tan−1(h/r)] is the pitch angle. In our calculation
of the kinetic energy of the atom inside the HOT we should
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consider the following: r � h, w′(ξ ) � w(ξ ), and ξ < α−1

(in Fig. 6 we can see the maximum value of the turning point
that the atom can reach and still be trapped globally between
two turning points is |zT | = 38λ and recalling that zR = 129λ,
then |zT |/zR ≈ 0.3, which means that z < zR). The kinetic
energy of the atom can be approximated as follows:

T (ρ,ξ,ρ̇,ξ̇ ,ν̇) = m

2

{
ρ̇2 +

[√
|l|
2

w(ξ ) + ρ

]2

(�R − ξ̇ )
2

+h2
(
ξ̇ 2 − �2

R

) + (h�R + ν̇)2

+ 2

√
|l|
2

w′(ξ )ρ̇ξ̇

}
. (11)

The equation of motion along ξ can be formulated from
the Euler-Lagrange equation as follows [22] (we present only
the terms that include �R and show its effect on the global
oscillations):

2β(ξ,ρ)ξ̈ + 2β

{
ω2

s − λ4

4π4

|l|2
w4

0

�2
R

}
ξ

= −mgh + m

√
|l|
2

w′(ξ )�2
R ρ

+ 2m

[√
|l|
2

w(ξ ) + ρ

]
�Rρ̇ + nonlinear terms, (12)

where β(ξ,ρ) = m{[√|l|/2w(ξ ) + ρ]
2 + h2}/2.

This equation of motion for the global oscillation can
show easily the effect of the inertial forces on the global
motion because the term m

√|l|/2w′(ξ )�2
R ρ corresponds to

the centrifugal force, while the term 2m[
√|l|/2w(ξ ) + ρ]�Rρ̇

corresponds to the Coriolis force. The Coriolis force term
reveals the effect of the sign of �R on the global motion: The
atom is elevated when the HOT rotates counterclockwise while
it moves downwards when the HOT rotates clockwise, which
confirms the results in Fig. 2.

From Eq. (12), which cannot be solved analytically, we can
draw some qualitative conclusions, which support the findings
of our numerical calculations. The frequency of the oscillations
along the helix is mainly determined by the term in the curly
brackets of Eq. (12). So we could say that this term defines a
frequency given by

ω′
s ≈

√
ω2

s − λ4

4π4

|l|2
w4

0

�2
R, (13)

where ωs = √
αε/β is the frequency of the global oscillation

of an atom that is trapped in a static HOT [13] and β =
m{|l|w2

0/2 + h2}/2. This expression can give us an explana-
tion for the decay of the effective global frequency ω′

s with
�R (as depicted in Fig. 9). Moreover, Eq. (13) shows that the
effective global frequency does not depend on the sign of �R ,
because it depends on �2

R , which explains why the effective
global frequency graph has a parabolic shape with �R as is
clearly shown in Fig. 9. The value of ω′

s when �R = 0 as
shown in the figure is, for the same parameters, exactly equal
to the values given in [22,13] where we investigated the atom
dynamics in a static HOT.

FIG. 9. The variation of ω′
s (red dashed line) and ω′

r (black solid
line) of a trapped 85Rb atom as a function of �R . The atom started
the motion from rest, the beam waist of LG beams is w0 = 5 μm, and
the orbital angular momentum number is l = 1.

Moreover, in Fig. 9 we can see the variation of the effective
radial frequency ω′

r with �R . It is evident that also the effective
radial frequency does not depend on the sign of �R . It was
very hard to find an analytic expression for ω′

r as a function of
�R , because the atomic motion along the r direction couples
strongly with the motion along the z direction. This coupling
can be seen clearly in Fig. 9: The value of the effective radial
frequency ω′

r initially increases slowly with �R , it attains its
maximum value when the values of ω′

s becomes zero, and then
decreases sharply with �R following a similar dependence as
ω′

s .
The important feature in Fig. 9 is that there are values

of the HOT angular frequency �R for which the oscillation
frequencies along the axial and radial direction, ω′

s and ω′
r ,

respectively, become equal to zero. These values are denoted
with the symbols �s

R and �r
R , respectively, and they are very

crucial in our analysis since they determine the range of HOT
rotation frequency values for which we can achieve elevation
of atoms along the axial direction.

From Fig. 9 we see that the atomic radial frequency ω′
r is

always larger than the atomic global frequency ω′
s . However,

we can choose the global and radial frequency resonances to
use the HOT as an optical Archimedes’ screw (OAS). If the
HOT rotates within the following range of angular velocities:∣∣�s

R

∣∣ < |�R| <
∣∣�r

R

∣∣, (14)

then the atom can be elevated to any desired height along the
z axis while simultaneously remaining trapped in the radial
direction. Moreover, the atom can be transported upwards
or downwards along the HOT by changing the direction of
rotation of the HOT. The values of �s

R and �r
R can be controlled

by changing the dipole potential parameters such as the orbital
angular momentum number l (see Fig. 10), the beam waist w0

(see Fig. 11), the beam power P (see Fig. 12), and the detuning
� (see Fig. 13). Figures 10–13 all show three regions: the
region below the red dashed line including the values of �R for
which the atom inside the rotating HOT still undergoes a global
oscillation. The region between the black and red dashed lines
corresponds to values of �R for which the rotating HOT can
be used as an OAS. Finally, the region above the black dashed

063423-6



ROTATING OPTICAL TUBES FOR VERTICAL TRANSPORT . . . PHYSICAL REVIEW A 94, 063423 (2016)

FIG. 10. The variation of �r
R and �s

R as a function of the orbital
angular momentum number l for a 85Rb atom initially at rest, where
w0 = 5 μm, P = 80 mW, and � = −25.7 THz.

line corresponds to values of �R for which the atom will
gain enough kinetic energy to escape from the rotating HOT.
Additionally, the figures show that �s

R and �r
R can have large

values if the dipole potential becomes stronger and smaller
ones if the dipole potential becomes weaker.

Moreover, the range between the values of �s
R and �r

R

can be controlled by changing the dipole potential parameters
such as the orbital angular momentum number l, the beam
waist w0, the beam power P , and the detuning �. This range
becomes wider when the dipole potential becomes stronger
and narrower when the dipole potential becomes weaker, as
evident in Figs. 10–13.

In trapping experiments it is inevitable to have some losses
due to collisions with background air molecules since one
cannot achieve an ideal vacuum. The trap loss rate due to

FIG. 11. The variation of �r
R and �s

R as a function of the beam
waist w0 for a 85Rb atom initially at rest, where l = 1, P = 80 mW,
and � = −25.7 THz.

FIG. 12. The variation of �r
R and �s

R as a function of the beam
power P for a 85Rb atom initially at rest, where l = 1, w0 = 5 μm,
and � = −25.7 THz.

collisions has been estimated by the relation [23]

γc
∼= 6.8

Pr

(kBT )2/3

(
C

m

)1/3

(εm)−1/6, (15)

where Pr is the background pressure, T is the ambient
temperature, m is the mass of the 85Rb atoms, ε is the maximum
depth of the trapping potential, and C is the coefficient of van
der Waals interaction between the 85Rb atoms (C = 4430 in
Hartree atomic units). In the cited experiment they considered
a pressure Pr = 10−7 N/m2 and an ambient temperature T =
300 K. In our numerical simulations, the maximum depth of
the trapping potential, from Eq. (9), ranges from 0.4 × 10−26

up to 1.7 × 10−25 J. This means that the quantity γc ranges
from 0.7 to 0.13 s−1 which leads to trapping lifetimes τ = γ −1

c

ranging from 7.6 up to 14.28 s, orders of magnitude longer
that the typical time scales of our numerical simulations (see
Fig. 5).

FIG. 13. The variation of �r
R and �s

R as a function of the detuning
� for a 85Rb atom initially at rest, where l = 1, w0 = 5 μm, and
P = 80 mW.
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VI. CONCLUSIONS

In our work we investigated the motion of a two-level atom
inside a rotating HOT. The HOT rotation is induced when
there is a frequency difference between the two beams that
are superposed to generate the HOT and can be clockwise
or counterclockwise depending on the sign of the frequency
difference. A cold atom with an appropriately small initial
velocity can be guided along the rotating helical tube thanks to
an induced motion along the radial direction due to an initial
centrifugal force and an induced motion along the azimuthal
direction due to the coupling with the radial motion, which
gives rise to an initial Coriolis force.

In general, the atomic motion inside the rotating HOT is of
an oscillatory type. It is characterized by a global oscillation
along the HOT axis and a local oscillation in the radial
direction. The turning points of the global oscillation can
be manipulated by the magnitude and direction of the HOT
angular frequency �R . To be able to induce unidirectional
motion of the atom along the HOT axis we must release
the atom from the global oscillation while simultaneously it
remains trapped in the radial direction so it cannot escape from
the optical tube. As our numerical work showed, this can be
achieved when the HOT angular frequency has a certain range
of values |�s

R| < |�R| < |�r
R|. The values of �s

R and �r
R can

be controlled and manipulated by changing the dipole potential
parameters such as the orbital angular momentum number l,
the beam waist w0, the beam power, and the detuning from the
atomic resonance.

Furthermore, the cold atom can be guided either upwards
or downwards depending on the direction of the HOT rotation.
It is found that if the HOT rotates counterclockwise �R >

0 (clockwise �R < 0), then clockwise angular momentum
(counterclockwise) will be transferred to the atom which will
enable the atom to move along the left-handed helical tube
upwards (downwards). This result is consistent with the work
of Bekshaev et al. [20] where it was found that the net orbital
angular momentum transferred by the HOT is opposite to the
direction of the HOT rotation.

In our earlier study of the static left-handed HOT case we
found that a trapped atom with nonzero initial velocity will
be elevated upwards to a specific turning point (with fixed
values of the dipole potential’s parameters) due to the coupling
between the motions in the axial and azimuthal directions [13].
However, if the same atom with the same initial conditions is
trapped in a rotating left-handed HOT (with the same values
for the dipole potential parameters), then the position of the
turning point can be manipulated by the value and direction of
the angular velocity �R of the HOT. Additionally, the effective
frequency of the trapped atom oscillations can be manipulated
by changing only the value of the angular velocity �R of
the HOT. This constitutes an important and potentially useful
qualitative difference between a static and a rotating HOT.

When the HOT rotates with �s
R , the value of the effective

global frequency ω′
s drops to zero. In this case, there are

no more oscillations of the atom along the z direction. The
rotating HOT provides the trapped atom with enough energy
to escape from oscillations and start elevating. Furthermore,
if the HOT rotates faster, up to �r

R , the value of the effective
radial frequency ω′

r drops to zero. In this case, there are no
more oscillations of the atom along the r direction and this
means that the atom escapes from the optical potential tubes.

As a conclusion if the HOT is rotated within a range
|�s

R| < |�R| < |�r
R| then the rotating HOT acts as an optical

Archimedes’ screw (OAS) for atoms. The values of �s
R and

�r
R and the range between these values can be controlled

and manipulated by changing the dipole potential parameters
such as the beam power, the detuning, the orbital angular
momentum number l, and the beam waist w0.
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J. Chabé, and R. Kaiser, Phys. Rev. A 86, 053412 (2012).

063423-9

https://doi.org/10.1364/OL.35.002164
https://doi.org/10.1364/OL.35.002164
https://doi.org/10.1364/OL.35.002164
https://doi.org/10.1364/OL.35.002164
https://doi.org/10.1016/j.optcom.2005.01.046
https://doi.org/10.1016/j.optcom.2005.01.046
https://doi.org/10.1016/j.optcom.2005.01.046
https://doi.org/10.1016/j.optcom.2005.01.046
https://doi.org/10.1103/PhysRevA.86.053412
https://doi.org/10.1103/PhysRevA.86.053412
https://doi.org/10.1103/PhysRevA.86.053412
https://doi.org/10.1103/PhysRevA.86.053412



