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Relativistic calculations of the nonresonant two-photon ionization of neutral atoms
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The nonresonant, two-photon, one-electron ionization of neutral atoms is studied theoretically in the framework
of relativistic second-order perturbation theory and independent particle approximation. In particular, the
importance of relativistic and screening effects in the total two-photon ionization cross section is investigated.
Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms.
The relativistic effects significantly decrease the total cross section; for the case of U, for example, they reduce
the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of
the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total
photon energies equal to the ionization threshold; for the case of Ne, for example, the cross section drops there
by a factor of three.
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I. INTRODUCTION

Two-photon, one-electron ionization is one of the fun-
damental nonlinear processes in the light-matter interaction
with various spectroscopic applications. In the past, however,
most experiments were focused on the two-photon ionization
of atomic outer shell electrons [1–4]. Only with the recent
advancements in free-electron lasers (FEL) has the study
of nonlinear processes in atoms and molecules at extreme
ultraviolet and x-ray energies become feasible [5] and renewed
an interest in inner-shell excitation and ionization processes.
One of the first experiments utilizing FEL facilities used elec-
tron or ion spectrometers to study the two-photon ionization
of 4d electron of the neutral Xe atom [6] and 1s electron
of the heliumlike Ne8+ ion [7]. Meanwhile, modern FEL
facilities reach beam intensities of about I ≈ 1020 W/cm2,
although the nonresonant two-photon ionization of inner-
shell electrons still remains a challenge due to small cross
sections. Experimentally, the two-photon ionization can be
measured by collecting the K fluorescence. This fluoresce
radiation emitted by bound electrons decaying into the K-shell
vacancy is a direct signature of the two-photon ionization
process. This experimental approach has been utilized in
the case of K-shell ionization of neutral Ge [8] and Zr [9]
atoms.

The first detailed calculations of the two-photon ioniza-
tion of atomic hydrogen were performed by Zernik within
nonrelativistic dipole approximation [10] more than 50 years
ago. In this work, he also introduced the well-known Z−6

scaling of the total cross section with the nuclear charge Z

for nonresonant two-photon ionization and, hence, provided
an estimate of a total cross section for all hydrogenlike
ions. However, later in Refs. [11–13], complete relativistic
calculations were carried out which demonstrated that quite
strong deviation from this scaling occurs due to relativistic
effects. Recently, in Refs. [14,15], the relativistic effects have
also been investigated in the two-photon above-threshold
ionization of low-Z hydrogenlike ions. Although the rel-
ativistic effects have been found to be rather important,
no systematic relativistic calculations have been carried

out until now for the two-photon ionization of neutral
atoms.

In this paper, we investigate the relativistic and screening
effect contributions to the total two-photon K-shell ionization
cross section of neutral atoms. In particular, we consider
photon energies below the ionization threshold so that no
single-photon K-shell ionization is possible. In Sec. II, we first
formulate the relativistic second-order perturbation theory,
based on the Dirac equation for describing the nonresonant
two-photon ionization. By using, in addition, the independent
particle approximation and particle-hole formalism, we are
able to reduce the many-electron transition amplitude to an
effective single-electron amplitude, from which an expression
for the total two-photon ionization cross section is obtained.
In Sec. III, we then outline the numerical procedure that
is employed in this work. Detailed calculations are carried
out for the nonresonant two-photon K-shell ionization of
neutral Ne, Ge, Xe, and U atoms. The total cross section as a
function of energy is compared for hydrogenlike and neutral
systems in Sec. IV. In this section, we also demonstrate that
the relativistic effects need to be taken into account in the
two-photon ionization cross-section calculations of neutral
atoms, especially for high-Z atoms. Moreover, we show that
although screening effects tend to increase the cross section,
they result in an unexpected minimum of the total cross
section in the near-threshold ionization energy region. Finally,
a summary is given in Sec. V.

Relativistic units (� = c = m = 1) are used throughout the
paper, unless stated otherwise.

II. THEORETICAL BACKGROUND

We here consider the two-photon, one-electron ionization
of neutral atoms. This process can be expressed as follows:

|αiJiMi〉 + γ1 + γ2 → |αf Jf Mf 〉 + | peme〉, (1)

where the atom is initially in the many-electron state |αiJiMi〉,
with total angular momentum Ji and its projection Mi , where
αi denotes all further quantum numbers that are needed for
unique characterization of the state. After the simultaneous
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interaction of the atom with two photons γ1 and γ2 with
energies ω1 and ω2, respectively, the system is in a final
state |αf Jf Mf , peme〉. The system now consists of a singly
charged ion |αf Jf Mf 〉 with a hole in the substate |a〉,
as well as a continuum electron | peme〉, with well-defined
asymptotic momentum pe and spin projection me. In the
following subsection, we will use the particle-hole formalism
and the independent particle approximation in order to reduce
the many-electron transition amplitude to a one-electron
transition amplitude. Then, employing the density matrix

formalism, we derive an expression for the total nonresonant
two-photon ionization cross section.

A. Evaluation of transition amplitude

In second-order perturbation theory, the transition am-
plitude for the two-photon single-electron photoionization
of an atom in the initial state |αiJiMi〉 into a final state
|αf Jf Mf , peme〉 under the simultaneous absorption of two
photons with wave vectors k1,k2 and polarization vectors
ε̂λ1 ,ε̂λ2 can be written as

M
λ1λ2
JiMiJf Mf me

=
∫∑
ν

〈αf Jf Mf , peme|R̂
(
k2,ε̂λ2

)|ανJνMν〉〈ανJνMν |R̂
(
k1,ε̂λ1

)|αiJiMi〉
Ei + ω1 − Eν

+ (
k1 ↔ k2,ε̂λ1 ↔ ε̂λ2 ,ω1 ↔ ω2

)
. (2)

For the general case of two inequivalent photons, the addi-
tional term (k1 ↔ k2,ε̂λ1 ↔ ε̂λ2 ,ω1 ↔ ω2) arises from the
interchange of the interaction sequence of the two photons
with the atom. The evaluation of expression (2) requires a
summation to be carried out over the complete spectrum of
intermediate states |ανJνMν〉. The operator R̂ denotes the
one-particle transition operator describing the electron-photon
interaction. This operator can be represented in the second
quantization formalism (see, e.g., Ref. [16]) as

R̂(k,ε̂λ) =
∑
n1n2

〈n2|αμA
μ
λ (ω)|n1〉a†

n2
an1 , (3)

where |n1〉,|n2〉 are the single-electron initial and final states,
a
†
n2 and an1 are the corresponding electron creation and

annihilation operators, αμ denotes the four-vector of the Dirac
matrices, and A

μ
λ = (φλ,Aλ) is the photon wave function.

Due to the interaction of the atom with the two photons,
an electron from a substate |a〉 ≡ |najalama〉 of the atom is
promoted into a continuum state, leaving a hole (or vacancy) in
the atomic subshell. Here, na is the principal quantum number,
la is the orbital angular momentum, and ja and ma are the total
angular momentum and its projection, respectively. According
to the particle-hole formalism, a state with a hole in a substate
|najalama〉 has angular momentum properties of a particle with
angular momentum ja and its projection −ma . Then, within
the independent particle approximation, the final state after an
ionization process is obtained by applying the electron creation
(a†

peme
) and annihilation (anaja lama

) operators to the initial state
and coupling the initial atom and hole angular momenta using
a Clebsch-Gordan coefficient 〈....|..〉. Hence, the final state of
the system can be expressed as

|αf Jf Mf , peme〉 =
∑
maM

〈ja, − ma,Ji,M|Jf Mf 〉

× (−1)ja−maa†
peme

anaja lama
|αiJiM〉. (4)

If we therefore insert expressions (3) and (4) into Eq. (2), apply
the electron creation and annihilation operators, and carry out
the summation over the magnetic quantum number M , the
many-electron transition amplitude reduces to an amplitude
which only depends on one-electron wave functions of the

active electron

M
λ1λ2
JiMiJf Mf me

=
∑
ma

(−1)ja−ma 〈ja, − ma,Ji,Mi |Jf ,Mf 〉

×
∫∑
n

〈 peme|αμA
μ
λ2

(ω2)|n〉〈n|αμA
μ
λ1

(ω1)|a〉
Enaja

+ ω1 − Ennjn

+ (
k1 ↔ k2,ε̂λ1 ↔ ε̂λ2 ,ω1 ↔ ω2

)
, (5)

where a summation is carried out over the complete energy
spectrum of the single-electron intermediate states |n〉. Em-
ployment of the independent particle approximation allows us
to turn from many-electron wave functions to one-electron
ones. Further simplification of the one-electron transition
amplitude can be achieved using the multipole decomposition
of the photon field Aλ(ω) into spherical tensors [17]

Aλ(ω) = 4π
∑
JMp

iJ−p
[
ε̂λ · Y (p)∗

JM (k̂)
]
a(p)

JM (r), (6)

where Y (p)
JM is a vector spherical harmonics and the index p

describes the electric (p = 1) and magnetic (p = 0) compo-
nents of the electromagnetic field. In addition, we also perform
an expansion of the continuum electron wave function into its
partial waves [18]

| peme〉 = 1√
εe| pe|

∑
jmj

∑
lml

ile−i
jl

×〈l,ml,1/2,me|j,mj 〉|εej lmj 〉Y ∗
lml

( p̂e), (7)

with εe = √
p2

e + m2 being the electron energy, 
jl being the
phase factor [18], and Y ∗

lml
( p̂e) being the spherical harmonics

that depends specifically on the direction of the emitted
electron. In the expansion, the summation runs over all total
and orbital angular momentum quantum numbers j and l,
and |εej lmj 〉 are partial waves of the free electron with
well-defined electron energy εe and quantum numbers j, l,
and mj .

The transition amplitude M
λ1λ2
JiMiJf Mf me

from Eq. (5) can be
further simplified using the expansions (6) and (7). Moreover,
by assuming two identical photons, we can write their
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momenta as k1 = k2 = k and polarization vectors as ε̂λ1 =
ε̂λ2 = ε̂λ. Then by choosing k̂ as the quantization axis, the dot
product of the polarization vector and the spherical harmonics
in the multipole expansion (6) can be written as ε̂λ · Y (p)

JM (k̂) =√
[J ]/8π (−λ)pδλM , where [J ] = 2J + 1. Furthermore, by

employing the Wigner-Eckart theorem, the amplitude (5) can

be expressed in terms of the reduced transition amplitude,
which describes the two-photon interaction with the electron
independently of the magnetic quantum numbers ma,mn, and
mj . By carrying out all the above simplifications, we can
express the many-electron two-photon amplitude (2) within
the independent particle approximation by

M
λ1λ2
JiMiJf Mf me

=
∑
p1J1

∑
p2J2

∑
nnjnlnmn

iJ1−p1+J2−p2

√
[J1,J2]

[jn,ja]
(−λ1)p1 (−λ2)p2

∑
jmj

∑
lml

(−i)lei
jl 〈l,ml,1/2,me|j,mj 〉

×Yl,ml
( p̂e)(−1)j−mj 〈j,mj ,J2,−λ2|jn,mn〉

∑
ma

〈ja, − ma,Ji,Mi |Jf ,Mf 〉

× 〈jn,mn,J1,−λ1|ja,ma〉
〈εej l‖α · a(p2)

J2
‖nnjnln〉〈nnjnln‖α · a(p1)

J1
‖najala〉

Enaja
+ ω1 − Ennjn

. (8)

Having the two-photon transition amplitude for the inter-
action of the atom with the radiation field, we can employ the
density matrix theory to obtain the corresponding two-photon
ionization cross section. Here, the density matrix of the overall
system (ion + outgoing electron) is applied to deal efficiently
with the degrees of freedom of the two subsystems and to
easily trace out all those degrees, which are not observed
experimentally.

B. Total cross section

The density matrix of the final system state contains
complete information about both the singly ionized atom and
the free electron, and can be expressed in terms of the transition
amplitude (8):

〈αf Jf Mf , peme|ρ̂f |αf Jf M ′
f , pem

′
e〉

=
∑

Miλ1λ2

∑
M ′

i λ
′
1λ

′
2

〈αiJiMi,kλ1kλ2|ρ̂|αiJiM
′
i ,kλ′

1kλ′
2〉

×M
λ1λ2
JiMiJf Mf me

M
λ′

1λ
′
2∗

JiM
′
i Jf M ′

f m′
e
, (9)

where 〈αiJiMi,kλ1kλ2|ρ̂|αiJiM
′
i ,kλ′

1kλ′
2〉 refers to the den-

sity matrix of the initial state of the system. As the atom and
the incident radiation are initially independent, the initial-state
density matrix can be written as a direct product of the neutral
atom and the two-photon density matrices as follows [19]:

〈αiJiMi,kλ1kλ2|ρ̂|αiJiM
′
i ,kλ′

1kλ′
2〉

= 〈αiJiMi |ρ̂i |αiJiM
′
i〉〈kλ1|ρ̂γ |kλ′

1〉〈kλ2|ρ̂γ |kλ′
2〉. (10)

Here, the 〈kλ|ρ̂γ |kλ′〉 are the photon helicity density matrices
which allow us to conveniently parametrize the polarization of
the photons by means of Stokes parameter

〈kλ|ρ̂γ |kλ′〉 = 1

2

(
1 + P3 P1 − iP2

P1 + iP2 1 − P3

)
. (11)

In this formalism, it is indeed easy to express any degree of
polarization with the linear (P1,P2) and circular (P3) Stokes
parameters and to calculate the corresponding total cross
section. As mentioned before, we assume equal momenta

of the two photons; however, the photon helicities λ (spin
projections onto the k̂ direction) may still differ. Below, we
shall assume that the atom is initially unpolarized and that the
density matrix of the neutral atom is simply given by

〈αiJiMi |ρ̂i |αiJiM
′
i〉 = 1

[Ji]
δMiM

′
i
. (12)

To extract the observable quantity from the density ma-
trix (9), we can define a (so-called) detector operator P̂ which
characterizes the experimental detector system as a whole.
This operator determines the probability for an event to be
recorded at the detector. Then, the probability is simply given
by the trace of the product of the detector operator and
the density matrix. Here, we consider an electron detector
insensitive to the electron polarization detecting electrons in
4π solid angle. The detector can be thus described by the
operator P̂ = ∫

d p̂e

∑
me

| peme〉〈 peme|. Moreover, as we do
not observe the final ionic state, we have to sum over the
corresponding quantum numbers Jf and Mf . Then, the total
cross section for nonresonant ionization of an atom by two
photons with k1 = k2 = k and k̂|| ẑ is given by

σ (ω) = 32π5α2

ω2

∑
Jf Mf

Tr(P̂ ρ̂f )

= 32π5α2

ω2

1

[Ji]

∑
λ1λ2λ

′
1λ

′
2

〈kλ1|ρ̂γ |kλ′
1〉〈kλ2|ρ̂γ |kλ′

2〉

×
∫

d p̂e

∑
Jf MiMf me

M
λ1λ2
JiMiJf Mf me

M
λ′

1λ
′
2∗

JiMiJf Mf me
. (13)

As this expression represents the second-order cross section,
it has the units of [L4T ].

III. COMPUTATIONS

From the theoretical description above, it can be seen that
the main computation challenge lies in the infinite summations
of the reduced matrix elements (8) over all multipole orders
and infinite number of intermediate states. To deal with this
numerically, the infinite summations over the multipoles of
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FIG. 1. The total two-photon K-shell ionization cross section σ as a function of excess energy ε (in units of K-shell binding energy) for
ionization by linearly polarized photons. Results are shown for the two-photon ionization of hydrogenlike (dash-dotted red) ions and neutral
atoms calculated in three different potentials: core-Hartree (solid black), Salvat (long-dashed blue), as well as Salvat E

exp
bind (short-dashed green)

potentials. Calculations were performed for neon, germanium, xenon, and uranium atoms (as labeled).

each of the two photons were restricted to a maximum value
of Jmax = 5. This limit is sufficient to obtain convergence
of the corresponding total cross section at less than 0.001%
level. To sum over the infinite number of intermediate states,
finite basis set [20] constructed from B splines by applying
the dual-kinetic-balance approach [21] was employed. This
technique allows us to reduce infinite sum over the inter-
mediate states in (8) to finite sum over pseudospectrum.
This approach has been previously successfully applied, for
example, in the calculations of two-photon decay rates of
heliumlike ions [22,23] or cross sections of x-ray Rayleigh
scattering [24]. The continuum-state wave functions were
obtained by numerical solutions of the Dirac equation with
help of the RADIAL package [25].

In order to account for the screening effects, we solve
the Dirac equation with a screening potential, which partially
accounts for the interelectronic interaction. We use the core-
Hartree potential, which corresponds to a potential created by
all bound electrons except of the active electron. The core-
Hartree potential reproduces the electron binding energies in
excellent agreement with the experimental values [26] within
±0.2% error for all atoms under consideration. To analyze
the sensitivity to the choice of potential, in addition to the
core-Hartree potential, two different screening potentials were
also used: the potential taken from Ref. [27], to which we refer

as the Salvat potential, and Salvat potential modified in a way
to reproduce experimental binding energies E

exp
bind, referred to

as Salvat E
exp
bind. All results presented were calculated using the

core-Hartree potential, except for Fig. 1, where results from
the different potentials are compared.

In addition, in order to check the consistency of our results,
we carried out the calculations in length and velocity gauges.
The results for both gauges were in a perfect agreement, as
expected for any local potential. Even though the agreement
of the two gauges does not prove validity of the results, it shows
that the effective single-electron amplitudes (8) are properly
implemented in our codes.

IV. RESULTS AND DISCUSSION

Even though the formalism derived in Sec. II applies gener-
ally for neutral atoms as well as ions, detailed calculations have
been carried out for K-shell two-photon ionization of neutral
neon, germanium, xenon, and uranium atoms. Specifically,
the contributions of relativistic and screening effects to the
total cross section have been investigated. In this section,
we will compare cross sections for K-shell ionization of
hydrogenlike and neutral atoms. Since there are two electrons
in the K-shell of neutral atoms but only one electron in the
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K-shell hydrogenlike ions, we introduce an additional factor of
two in the hydrogenlike calculation for the sake of comparison.

We begin by comparing the ionization of hydrogenlike
and neutral atoms in terms of the total cross section as a
function of so called excess energy. Excess energy represents
the factor by which the combined photon energy exceeds the
ionization threshold, i.e., ε = 2ω/Ebind. Figure 1 presents the
total cross sections for ionization of neutral (solid black)
as well as for H-like (dashed-dotted red) neon, germanium,
xenon, and uranium by linearly polarized photons. We can
notice that the first resonant behavior in the total cross section
occurs in lower excess energy for H-like ions than for neutral
atoms. This resonant behavior occurs when the single photon
energy reaches the 1s → 2p transition energy. Although the
2p state is generally occupied for neutral atoms, the resonant
two-photon ionization can be understood as follows: The 2p

electron is ionized by the first photon and the corresponding
vacancy is then filled by excitation of the 1s electron by
the second photon. Since the present work is devoted to the
nonresonant ionization, the 1s → 2p resonant energy and the
ionization threshold define the energy range of current interest.

The more significant difference between neutral and H-
like systems lies in the decrease of the total cross section
towards the ionization threshold. This cross-section reduction
is strongest for elements with nuclear charge Z = 7–12 and
becomes much less significant for heavy atoms. In the case of
H-like ions, no such behavior has been predicted and the total
two-photon ionization cross section is slowly decreasing in
nonresonant energy regions [11,13], which we also confirm by
the present calculations. This means that the change of the total
cross section for light neutral elements close to the ionization
threshold can be directly linked to the deviation of the binding
potential from the Coulomb potential created by the nucleus.
In the next subsection, we will investigate these effects (which
we refer to as screening effects) further by looking at the s

and d partial waves of the free electron. These partial waves
strongly dominate others as they are the only allowed by two
electric dipole (E1E1) transitions.

Figure 1 shows also the comparison between the three
screening potentials (solid black, dashed green, and blue
curves) introduced in Sec. III. We see that for low-Z and
medium-Z atoms, the core-Hartree and Salvat potentials differ
in the magnitudes of the total cross section by less than 25%.
This is partially caused by the calculated value of the binding
energy. When the Salvat potential was modified to reach
perfect agreement with the experimental binding energies, the
cross-section difference from the core-Hartree calculation was
reduced to about 10%. Therefore, even though part of the
difference between the cross sections as predicted by each
potential arises from the difference of binding energies, the
distinct potential formulations also result in a deviation. De-
spite the small magnitude differences, all screening potentials
predict similar energy dependence of the total cross section.
The agreement of these potentials justifies that the obtained
behavior and magnitude is not very sensitive to the choice of
potential. We ascribe the difference between the core-Hartree
and Salvat calculations as an uncertainty of presented results.
The uncertainty decreases from 25% for Ne to 10% for U.
We restrict all further discussion to the use of core-Hartree
potential.

A. Partial-wave analysis

To gain deeper understanding of the total cross section
results, we now wish to look at the dominant E1E1 ionization
channels. In this approximation, only the J = 1 multipole of
each of the two photons is considered. Since we are interested
in ionization of a 1s electron with zero orbital angular mo-
mentum l = 0, the E1E1 transition allows only two possible
ionization channels; s → p → s and s → p → d. Therefore,
only s and d partial waves of the free electron are allowed in
dipole approximation. While both of these channels are open
for linear and unpolarized light, only the s → p → d channel
is open for circularly polarized light. This restriction comes
from the conservation of the angular momentum projection.
Since we are considering two equally circularly polarized
photons, the angular momentum projection must change by
±2, and then |mj | > 1/2 is always the case, making the final
s state forbidden. This is a point worth remembering. As we
will soon see, the absence of the s → p → s channel leads to
a magnification of the screening effects, which increases the
probability of experimental detection of these effects.

Figure 2 shows the plots of the partial-wave cross sections
considering only the s or d partial waves of the continuum
electron as a function of excess energy. Results are presented
for ionization of H-like (dash-dotted red and short-dashed
orange) and neutral (solid black and long-dashed green) neon,
germanium, xenon, and uranium atoms by linearly polarized
light. We can see that the energy dependence of the partial-
wave cross section of H-like ions fulfils our expectation we
gained from Fig. 1. The cross sections of the s → p → d

channel always dominates the s → p → s channel and the
two curves remain approximately parallel. Analogously to the
total cross section, both channels can be considered constant in
nonresonant energy region up to the proximity of the 1s → 2p

resonant energy. Similar behavior can be seen in the case
of neutral uranium. However, for neutral atoms with lower
nuclear charge, we observe a competition of the two partial
waves in near-threshold energy region. A drop of the dominant
channel occurs and creates a minimum of the cross section,
analogous to the Cooper minimum in single-photon ionization
process. We investigated the behavior of the dominant d-partial
wave near the ionization threshold energy, both with and
without a screening potential, and found out that the d-partial
wave in the presence of other electrons expands much further
from the atom. That is why the d-partial-wave contribution
to the total cross section changes so drastically in this energy
region. An opposite behavior, i.e., a wave function collapse,
was observed in Refs. [28,29], where a strong increase of
the single photon absorption cross section was predicted. The
cross-section minimum in our results is most pronounced for
neon, for which the cross section of the s → p → s channel
is greater than the dominant s → p → d channel in an energy
region from the ionization threshold up to a crossing point
of the channels at ε = 1.12. This crossing of the ionization
channels is present for atoms with nuclear charges in the range
Z = 5–13. Although for elements in this range other than
neon, the crossing point lies in lower energies and the effects
are thus weaker.

In the top left of each panel in Fig. 2, the ratios of total
cross section for ionization by circularly σ circ and linearly
σ lin light are also presented. According to the known estimate
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FIG. 2. The partial-wave cross section as a function of excess energy compared for the s → p → s (long-dashed green) and s → p → d

(solid black) ionization channels of neutral atoms by linearly polarized light. Results for the s → p → s (short-dashed orange) and s → p → d

(dash-dotted red) ionization channels of H-like ions are also shown. As a consequence of screening effects, the s → p → s channel becomes
dominant for low-Z atoms in near-threshold photon energies. The ratio of cross sections corresponding to ionization by circularly and linearly
polarized light is presented in the top left corner of each figure. The screening effects also result in a deviation of this ratio from the known
estimate σ circ/σ lin ≈ 3/2.

σ circ/σ lin ≈ 3/2 [30], the ratio should be always approxi-
mately equal to 3/2 in the nonresonant energy region. While
this holds true for the H-like ions (dash-dotted red curve), in the
case of neutral atoms (solid black curve), the screening effects
result in a strong deviation from the estimated value. This
follows directly from the discussion of partial waves above.

B. Screening and relativistic effects

In previous subsections, we already saw that one needs
to take screening effects into account for low- and medium-
Z elements. Moreover, in Ref. [11] it is shown that in two-
photon ionization of H-like ions, the relativistic effects cannot
be neglected for heavy atoms. It is, therefore, reasonable to
expect similar behavior for ionization of neutral atoms. It is
the purpose of this subsection to show the relative strengths
and nuclear charge dependences of both these effects as well
as their contributions to the total cross section.

In nonrelativistic theory, the nonresonant cross section for
the two-photon ionization of H-like ions in dipole approxi-
mation scales with the nuclear charge as σ (Z,ωZ2) = σ (Z =
1,ω)Z−6 [10]. We will use the same method as in Ref. [11] and
introduce so-called scaling factor ζ to the above expression,

i.e., σ (Z,ωZ2) = ζ (Z)σ (Z = 1,ω)Z−6. The deviation of the
scaling factor from the value 1 then represents various effects
arising from the full relativistic description and/or the inter-
electronic interaction. For nonrelativistic E1E1 calculation in
Coulomb potential, the scaling factor is ζ (Z) = 1 for all Z

values and is almost independent of the excess energy in the
nonresonant region.

Figure 3 shows the plot of the scaling factor ζ (Z) as a func-
tion of nuclear charge for two-photon ionization by linearly,
circularly, and unpolarized light. The results are shown for
nonrelativistic (dashed green) and relativistic (dash-dotted red)
calculations for ionization of H-like ions as well as relativistic
calculation for ionization of neutral atoms at ε = 1.05 (solid
black) and ε = 1.40 (long-dashed blue) excess energies. We
can see that for neutral atoms, there are two distinct deviations
of the scaling factor from the constant nonrelativistic value.
One of the deviations stretches between the medium- and
high-Z region and is also present for the case of hydrogenlike
atoms. The second deviation lies in the low-Z region and
is present only for the ionization of neutral atoms. Let us
start with the deviation in the low-Z region. This deviation
results from the interelectronic interaction, which decreases
the electron binding energies and as a result, increases the total
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FIG. 3. The scaling factor ζ as a function of nuclear charge
for ionization of a 1s electron of neutral atoms (Z = 4–92) by
two linearly (top), circularly (middle), and unpolarized (bottom)
photons at the excess energies ε = 1.05 and ε = 1.40. According to
the nonrelativistic scaling of H-like ions (dashed green), the cross
section scales with Z−6. The deviation from this scaling due to
relativistic effects is clearly visible for H-like (dash-dotted red) as
well as neutral (solid black and short-dashed blue) atoms. Moreover,
further deviation of the scaling factor in low-Z region is present for
neutral atoms due to screening effects.

cross section. We can see that this is indeed the case for the
ε = 1.40 excess energy, where the screening effects increase
the total cross section in the low-Z region. This increase

rapidly weakens with increasing nuclear charge as we would
expect. However, for ε = 1.05, the screening effects result
in decrease of the cross section, with a maximum at Z = 10.
This trough in the scaling factor directly reflects the decrease of
cross section we have seen in Figs. 1 and 2. The sharpness of the
trough is a result of the discrete values of the nuclear charge Z

values. For photon energies exceeding the ionization threshold
by more than 15%, i.e., ε > 1.15, the trough disappears. From
Fig. 3, we can see that the screening effects are strongest for
the case of ionization by circularly polarized light. We can
understand this from the partial-wave analysis in Sec. IV A. If
we look at the partial-wave cross sections for neon in Fig. 2, we
can see that the dominant s → p → d channel drops strongly
near the ionization threshold. For ionization by linearly and
unpolarized light, it is partially balanced by the increase of
the s → p → s channel. However, as explained before, for
ionization by circularly polarized light the E1E1 transition
allows only the dominant s → p → d channel to be open.
Therefore, due to the lack of the final s partial wave, the drop
of the cross section does not get balanced out and the screening
effects become stronger.

The second deviation of the scaling factor in medium- and
high-Z region in Fig. 3 comes from the relativistic effects. The
importance of these effects continuously grows with increasing
nuclear charge Z. We can also see that unlike screening effects,
relativistic effects are independent of polarization. This means
that relativistic effects influence all partial waves in a same
way. For ionization of uranium by light of any polarization,
the relativistic effects decrease the total cross section by about
a factor of two. We would expect that the relativistic effects
would be stronger for the ionization of hydrogenlike ions than
for ionization of neutral atoms, since the electron binding
energies of hydrogenlike ions are higher. However, from Fig. 3,
we can see that the deviation of the scaling factor (and therefore
the cross section itself) for neutral atoms due to relativistic
effects is similar as for H-like ions.

C. Comparison with experiment

Due to the relativistic and screening effects, corrections to
the nonresonant two-photon ionization scaling law σ (Z) =
σ (Z = 1)Z−6 increase in complexity. The magnitude of these
effects depends mainly on the nuclear charge but screening
effects also depend on the incident photon energies and
polarizations. That is why we present the Z dependence of
the total cross section in addition to the scaling factor given in
previous subsection. Figure 4 shows calculated cross sections
for elements in the range Z = 4–92 for two energies, ε = 1.05
(solid black) and ε = 1.40 (long-dashed green), as well as
the scaling law (short-dashed red). Total cross sections for
other photon energies 1.05 < ε < 1.40 lay in between the two
corresponding lines in Fig. 4. The cross-section difference
between the two energies arises due to the screening effects
as explained before. Figure 4 also shows experimental values
for the K-shell ionization of neutral Ge and Zr atoms. We
can see that our result for Ge is close to the experimental
value as well as for Zr, which lies within the experimental
uncertainty. However, in another experiment, Doumy et al. [7]
measured the two-photon ionization of heliumlike Ne to be
7 × 10−54 cm4 s. Theoretical calculations [13,31,32] of this
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FIG. 4. The total cross section for two-photon ionization for
linearly (top) and circularly (bottom) polarized light as a function
of nuclear charge. The cross section is plotted for two excess energy
values, ε = 1.05 (solid black) and ε = 1.4 (long-dashed green). The
Z−6 scaling law (short-dashed red) and experimental values for
germanium [8] and zirconium [9] atoms are also shown.

cross section resulted in a discrepant value, lower by about
three orders of magnitude. We applied our formalism for
the case of Ne8+ as well, and obtained a cross section of
3.1 × 10−57 cm4 s, which is in an agreement with previous
calculations [13,31,32]. Thus, the three orders of magnitude
deviation obtained suggests a resonant enhancement of the

cross section and can be explained by broader spectral
bandwidth of the FEL employed.

V. SUMMARY AND OUTLOOK

The nonresonant two-photon ionization of neutral atoms
has been described in fully relativistic theory based on second-
order perturbation theory and the Dirac equation. Using the
independent particle approximation and particle-hole formal-
ism, the many-electron transition amplitude describing the
electron-photon interaction has been simplified to one-electron
amplitude. An expression of the total two-photon ionization
cross section has been obtained using the framework of
density matrix theory and the transition amplitude. Detailed
calculations of the total cross section have been carried out
for ionization of neon, germanium, xenon, and uranium atoms
using three screening potentials. Our results show that both
relativistic as well as screening effects need to be considered
in the calculation of two-photon ionization cross section.
Relativistic effects significantly decrease the total cross section
for heavy atoms; for the case of uranium, they decrease the
cross section by a factor of two. Screening effects are highly
sensitive to the photon energy and polarization as well as to
the nuclear charge of the atom. In general, screening effects
increase the cross section for low-Z atoms by a factor of
up to 1.5. However, for near-threshold photon energies, we
observe a minimum in the total cross section which has
pure screening origin. Due to a single allowed ionization
channel, screening effects are most pronounced for ionization
by circularly polarized light. For ionization of Ne, the cross
section drops by a factor of three in the near-threshold energy
region. Both the relativistic as well as the screening effect
will likely affect the photoelectron angular distribution of the
two-photon ionization of neutral atoms. Therefore, it would
be of great interest to use the theoretical formalism described
above to also investigate the angular distribution, especially in
the case where the minimum of the cross section occurs. This
will be the concern of our further study.
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S. Fritzsche, Phys. Rev. A 93, 023418 (2016).

[25] F. Salvat, J. M. Fernandez-Varea, and W. Williamson Jr.,
Comput. Phys. Commun. 90, 151 (1995).

[26] A. C. Thompson et al., X-ray Data Booklet, 3rd ed. (Lawrence
Berkeley National Laboratory, University of California,
Berkeley, CA, 2009).

[27] F. Salvat, J. D. Martinez, R. Mayol, and J. Parellada, Phys. Rev.
A 36, 467 (1987).

[28] K. T. Cheng and C. Froese Fischer, Phys. Rev. A 28, 2811
(1983).

[29] K. T. Cheng and W. R. Johnson, Phys. Rev. A 28, 2820 (1983).
[30] P. Lambropoulos, Phys. Rev. Lett. 28, 585 (1972).
[31] S. Novikov and A. Hopersky, J. Phys. B 34, 4857 (2001).
[32] A. Sytcheva, S. Pabst, S.-K. Son, and R. Santra, Phys. Rev. A

85, 023414 (2012).

063412-9

https://doi.org/10.1103/PhysRevA.84.033425
https://doi.org/10.1103/PhysRevA.84.033425
https://doi.org/10.1103/PhysRevA.84.033425
https://doi.org/10.1103/PhysRevA.84.033425
https://doi.org/10.1103/PhysRevA.86.033413
https://doi.org/10.1103/PhysRevA.86.033413
https://doi.org/10.1103/PhysRevA.86.033413
https://doi.org/10.1103/PhysRevA.86.033413
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevA.81.042510
https://doi.org/10.1103/PhysRevA.81.042510
https://doi.org/10.1103/PhysRevA.81.042510
https://doi.org/10.1103/PhysRevA.81.042510
https://doi.org/10.1103/PhysRevA.83.062508
https://doi.org/10.1103/PhysRevA.83.062508
https://doi.org/10.1103/PhysRevA.83.062508
https://doi.org/10.1103/PhysRevA.83.062508
https://doi.org/10.1103/PhysRevA.93.023418
https://doi.org/10.1103/PhysRevA.93.023418
https://doi.org/10.1103/PhysRevA.93.023418
https://doi.org/10.1103/PhysRevA.93.023418
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1103/PhysRevA.36.467
https://doi.org/10.1103/PhysRevA.36.467
https://doi.org/10.1103/PhysRevA.36.467
https://doi.org/10.1103/PhysRevA.36.467
https://doi.org/10.1103/PhysRevA.28.2811
https://doi.org/10.1103/PhysRevA.28.2811
https://doi.org/10.1103/PhysRevA.28.2811
https://doi.org/10.1103/PhysRevA.28.2811
https://doi.org/10.1103/PhysRevA.28.2820
https://doi.org/10.1103/PhysRevA.28.2820
https://doi.org/10.1103/PhysRevA.28.2820
https://doi.org/10.1103/PhysRevA.28.2820
https://doi.org/10.1103/PhysRevLett.28.585
https://doi.org/10.1103/PhysRevLett.28.585
https://doi.org/10.1103/PhysRevLett.28.585
https://doi.org/10.1103/PhysRevLett.28.585
https://doi.org/10.1088/0953-4075/34/23/327
https://doi.org/10.1088/0953-4075/34/23/327
https://doi.org/10.1088/0953-4075/34/23/327
https://doi.org/10.1088/0953-4075/34/23/327
https://doi.org/10.1103/PhysRevA.85.023414
https://doi.org/10.1103/PhysRevA.85.023414
https://doi.org/10.1103/PhysRevA.85.023414
https://doi.org/10.1103/PhysRevA.85.023414



