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Shortcut to adiabatic population transfer in quantum three-level systems: Effective two-level
problems and feasible counterdiabatic driving
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Shortcuts to adiabaticity in various quantum systems have attracted much attention with their wide applications
in quantum information processing and quantum control. In this paper, we concentrate on a stimulated Raman
shortcut-to-adiabatic passage in quantum three-level systems. To implement counterdiabatic driving but without
additional coupling, we first reduce the quantum three-level systems to effective two-level problems at large
intermediate-level detuning, or on resonance, apply counterdiabatic driving along with the unitary transformation
and eventually modify the pump and Stokes pulses for achieving fast and high-fidelity population transfer.
The required laser intensity and stability against parameter variation are further discussed, to demonstrate the
advantage of shortcuts to adiabaticity.
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I. INTRODUCTION

Coherent manipulation of internal state in various quantum
systems plays a significant role in atomic and molecular
physics with applications in metrology, interferometry, quan-
tum computing, quantum information processing, and control
of chemical interaction; see reviews [1–5]. Quite often, one
of the most important goals is to achieve state preparation or
transfer with high fidelity. So adiabatic approaches such as
rapid adiabatic passage (RAP), stimulated Raman adiabatic
passage (STIRAP), and their variants [3–5] have been pro-
posed and widely applied in different quantum two- or three-
level systems. These adiabatic protocols are robust against the
fluctuations of control parameters, as compared to the resonant
pulses. However, though recently robustness of adiabatic
processes has been proven in some specific schemes with
two- and three-level systems [6,7], it is preferable and safer
to reduce the time required for the state manipulation when
dissipation and decoherence effects are considered. Therefore,
in order to achieve fast and high-fidelity quantum state control,
optimal control theory [8–11] and composite pulses [12–14]
have been proposed, by reducing the time consumption and
diabatic loss or minimizing systematic errors.

Alternatively, several works on “shortcut to adiabatic-
ity” (STA), including counterdiabatic, inverse engineering,
and fast-forward approaches, have been devoted recently to
mimicking adiabatic population transfers but within a short
time [15–28]. Among them, the counterdiabatic driving [15]
(equivalent to transitionless quantum algorithm [16]) provides
a powerful method to design complementary interaction appro-
priately, so that diabatic transition can be suppressed and the
system evolves exactly following the adiabatic reference. Such
a shortcut protocol has been experimentally demonstrated
in (effective) two-level quantum systems, e.g., accelerated
optical lattice [29] and spin of a single NV center in a
diamond [30]. In the three-level atomic systems, additional
coupling between initial and target levels can be implemented
by a magnetic dipole transition [17,31], which might be
problematic in practice. In other systems, it might be even
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unfeasible. The way out is to apply the unitary transformation
for canceling the additional coupling but keeping the same
dynamics [26,32,33] or the (generalized) inverse engineering
for pulse shapes [21,28]. However, in many cases the examples
of a three-level system on one-photon resonance have been
worked out for simplicity.

In this paper, we shall concentrate on the construction
and implementation of stimulated Raman shortcut-to-adiabatic
passage (STIRSAP) in quantum three-level systems; see Fig. 1.
In particular, large intermediate-level detuning or one-photon
resonance are assumed here, since STIRAP in these cases
can be reduced to effective two-level problems [34]. This
allows us to utilize the counterdiabatic technique along with
unitary transformation proposed in two-level systems [32],
thus implementing STIRSAP without additional coupling by
only modifying pump and Stokes pulses. In detail, in the case
of large detuning, we first reduce the quantum three-level
system to an effective two-level system by using “adiabatic
elimination,” apply counterdiabatic driving along with the
unitary transformation, and finally design pump and Stokes
pulses. For the sake of completeness, the counterdiabatic
driving in the one-photon resonance case and the connection
with other shortcut methods is studied. Finally, the stability
with respect to the parameter fluctuation is also discussed,
showing the advantage of STA. STIRSAP proposed here can be
demonstrated in recent experiments for speeding up SITRAP
with cold atom [35] and solid-state spin systems [36].

II. MODEL AND HAMILTONIAN

Considering the Hamiltonian for a STIRAP system within
the rotating wave approximation [1,5,21]

H0 = �

2

⎛
⎝ 0 �p(t) 0

�p(t) 2� �s(t)
0 �s(t) 2δs

⎞
⎠. (1)

Here �p(t) and �s(t) are Rabi frequencies of pump and Stokes
laser fields, shown in Fig. 1, where � = (E2 − E1)/� − ωp,
�s = (E2 − E3)/� − ωs , and δs = � − �s , ωp and ωs are the
laser frequencies of a pump and Stokes laser, respectively, and
Ej ,j = 1,2,3 are bare-basis state energies. On two-photon
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FIG. 1. �-type three-level system for STIRAP, where the Rabi
frequencies �p,s present the pump and Stokes pulses, � and �s are
the detunings.

resonance (δs = 0), the Hamiltonian (1) reads

H0 = �

2

⎛
⎝ 0 �p(t) 0

�p(t) 2� �s(t)
0 �s(t) 0

⎞
⎠, (2)

whose instantaneous eigenstates are

|n0〉 = cos θ |1〉 − sin θ |3〉,
|n+〉 = sin θ sin ϕ|1〉 + cos ϕ|2〉 + cos θ sin ϕ|3〉,
|n−〉 = sin θ cos ϕ|1〉 − sin ϕ|2〉 + cos θ cos ϕ|3〉,

with eigenvalues E+(t) = �� cot(ϕ/2), E0 = 0, and E−(t) =
−�� tan(ϕ/2). Two mixing angles are defined by tan θ =
�p(t)/�s(t) and tan(2ϕ) = �/�(t), with � = [�2

p(t) +
�2

s (t)]1/2. The wave functions of this three-level system, c(t) =
[c1(t),c2(t),c3(t)]T , denoted by |1〉, |2〉, and |3〉, is governed
by the time-dependent Schrödinger equation i�dc(t)/dt =
H0c(t). Once these conditions for adiabatic following θ̇ � �

(local) and �tf � 1 (global) are satisfied [1,5], the solution of
the above Schrödinger equation coincides with the adiabatic
approximation; thus the population can be transferred |1〉 to
|3〉 along the “dark state” |n0〉, where tf is the pulse duration
or the so-called operation time.

In order to reproduce STIRAP but within a short time, that
is, to achieve fast population transfer from |1〉 → |3〉, one can
apply the counterdiabatic driving [15] (equivalent to quantum
transitionless algorithm [16,17]),

Hcd = i�
∑

|∂tn〉〈n|, (3)

to design the supplementary interaction in the form of [17]

Hcd = �

2

⎛
⎝ 0 0 i�a(t)

0 0 0
−i�a(t) 0 0

⎞
⎠, (4)

with �a(t) = 2[�̇p(t)�s(t) − �̇s(t)�p(t)]/[�2
p(t) + �2

s (t)].
The additional coupling between |1〉 and |3〉, implemented
by microwave dipole transition in an atomic system [31], can
completely suppress the diabatic transition. However, such
coupling might be difficult or even impossible to implement
in various systems. For instance, the phase mismatch between
laser and microwave fields causes the infidelity [35]. Moreover,
generating the grating for such coupling is doable in an optical

multimode waveguide, but not in coupled wave guides [37].
In general, when � �= 0 under the two-photon resonance
condition, the cancellation of counterdiabatic interaction
becomes more challenging by using unitary transformation, as
compared to the case of one-photon resonance (� = 0), since
the eight Gell-Mann matrices are involved in the dynamics of
such three-level systems satisfying SU(3) Lie algebra [38]. In
what follows we shall propose the method of implementation
of counterdiabatic driving in three-level systems. Following
Ref. [34], we reduce STIRAP to the effective two-level
problems by considering the adiabatic elimination under large
detuning (� � �) or one-photon resonance (� = 0), which
enables us to implement STIRSAP without additional coupling
by using the similar strategy originally proposed in two-level
systems [32].

We shall deal with two different examples with the
assumption of large detuning and one-photon resonance. It
is unavoidable to repeat some symbols, such as Hcd , �a(t),
θ , Heff, H̃eff, �eff(t), �eff(t), �̃eff(t), �̃eff(t), and �̃p,s(t). So
consistency is strictly guaranteed only within each case. The
details of how this comes about will be clarified in the context.

III. FEASIBLE SHORTCUT DESIGN

A. Large detuning (� � �)

At large intermediate-level detuning, � � �, level |2〉 is
scarcely populated (ċ2(t) � 0), and it can be adiabatically
eliminated to obtain the following effective two-level Hamil-
tonian in the subspace of levels |1〉 and |3〉 [34]:

Heff = �

2

(−�eff(t) �eff(t)
�eff(t) �eff(t)

)
, (5)

where the effective detuning �eff(t) and Rabi frequency �eff(t)
are

�eff(t) = �2
p(t) − �2

s (t)

4�
, (6)

�eff(t) = −�p(t)�s(t)

2�
. (7)

Once the effective two-level Hamiltonian (5) is obtained,
we can calculate the counterdiabatic driving, from the defini-
tion (3), as [17]

Hcd = �

2

(
0 −i�a(t)

i�a(t) 0

)
, (8)

where �a(t) = [�eff(t)�̇eff(t) − �̇eff(t)�eff(t)]/[�2
eff(t) +

�2
eff(t)]. Assisted by the counterdiabatic term (8), the

system can be driven along the adiabatic path of reference
Hamiltonian (5) within a short time. The total Hamiltonian,
H = Heff + Hcd , is constructed as

H = �

2

⎛
⎝ −�eff(t)

√
�2

eff(t) + �2
a(t)e−iφ√

�2
eff(t) + �2

a(t)eiφ �eff(t)

⎞
⎠,

(9)
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where φ(t) = arctan[�a(t)/�eff(t)]. By applying the unitary
transformation,

U (t) =
(

e−iφ(t)/2 0
0 eiφ(t)/2

)
, (10)

we can further obtain H̃eff = U †HU − i�U †U̇ ,

H̃eff = �

2

(−�̃eff(t) �̃eff(t)
�̃eff(t) �̃eff(t)

)
, (11)

with �̃eff(t) = �eff(t) + φ̇ and �̃eff(t) =
√

�2
eff(t) + �2

a(t).
Obviously the unitary transformation means the rotation along
z axis, which results in the cancellation of σy term in the
Hamiltonian (9). In principle, the population dynamics of
Hamiltonian (11) is the same as the previous one (9), up to the
global phase. When the boundary condition U (0) = U (tf ) = 1
is satisfied, the initial and final population is the same as the
adiabatic reference. Now let us go back to the three-level
system and design the modified pump and Stokes fields by
comparing the Hamiltonian (11) and (5). Like Eqs. (6) and (7),
we impose

�̃eff(t) = �̃2
p − �̃2

s

4�̃
, (12)

�̃eff(t) = − �̃p(t)�̃s(t)

2�̃
, (13)

and calculate inversely the modified fields as

�̃p(t) =
√

2�̃
[√

�̃2
eff(t) + �̃2

eff(t) + �̃eff(t)
]
, (14)

�̃s(t) =
√

2�̃
[√

�̃2
eff(t) + �̃2

eff(t) − �̃eff(t)
]
. (15)

In order to guarantee that the problem of a two-level system
with counterdiabatic term can be transformed back to a three-
level system with modified Stokes and pumping pulses, we
should have �̃ � �̃p,s(t). Here it is reasonable to assume
�̃ = �, since the original detuning � is on the order of GHz,
but the (modified) Rabi frequency is on the order of MHz; see
the parameters in Fig. 2. Substituting the expressions of �̃eff(t)
and �̃eff(t) into Eqs. (14) and (15), we finally obtain newly
designed laser fields to drive the state following the dynamics
of effective two-level Hamiltonian (11), thus implementing
STIRSAP at large intermediate-level detuning.

To illustrate how shortcut protocol works for STIRAP, we
assume the original pump and Stokes pulses [see Fig. 2(a)] as
an adiabatic reference,

�p(t) = �0 exp

[
− (t − tf /2 − τ )2

σ 2

]
, (16)

�s(t) = �0 exp

[
− (t − tf /2 + τ )2

σ 2

]
, (17)

with full width at half maximum σ , separation time between
the two pulses τ , and the amplitude �0. We set the detuning
� = 2π × 2.5 GHz to guarantee large detuning, � � �0,
for the validity of “adiabatic elimination.” In this case,
the operation time required for an adiabatic process should
be larger than the resonant π pulse, tf � tπ = 2π�/�2

0.
Under the parameters �0 = 2π × 5 MHz, tf = 400 μs (tπ =

FIG. 2. Different Rabi frequencies for STIRAP (a) and STIRSAP
(b), where Stokes (solid red) and pump (dashed blue) pulses are
shown. The state evolutions of STIRAP (c) and STIRSAP (d) are
also compared, where population of levels |1〉 (dashed blue), |2〉
(dotted black), and |3〉 (solid red) is presented. Parameters: �0 =
2π × 5 MHz, � = 2π × 2.5 GHz, tf = 400 μs, τ = tf /10, and σ =
tf /6.

100 μs), τ = tf /10, and σ = tf /6, the dynamics of original
Hamiltonian (2) with pump and Stokes pulses [see Eqs. (16)
and (17)] is not adiabatic at all, and population is not
completely transferred from |1〉 to |3〉; see Fig. 2(c). By using
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FIG. 3. Operation time tf versus the peak value of Rabi frequency
�max for STIRSAP (solid red) and STIRAP (dashed blue) when the
fidelity is above 99%. Parameters are the same as those in Fig. 2.

modified pulses predicted from Eqs. (14) and (15), the perfect
population transfer can be achieved within a short time, as
shown in Figs. 2(b) and 2(d). The shapes of the modified
pump and Stokes pulse are smooth enough to generate in
the experiment with cold atoms [35], though they are slightly
different from the original Gaussian ones.

Importantly, we have to point out the energy cost for the
acceleration of STIRAP. By comparing the pulses in STIRAP
and STIRSAP, we see that the peak value of modified Rabi
frequencies is larger than original ones. It is reasonable that
more laser intensity is required to shorten the operation time,
and the relation between energy (laser intensity) and operation
time, in general, satisfies �max ∝ 1/tf . To quantify it, we plot
the operation time versus maximum value of laser intensity
�max in Fig. 3. Given the fidelity above 99.99%, the maximum
laser intensity required for shortcuts is less than that for
STIRAP. In other words, when an allowed laser intensity is
fixed, the operation time for STIRSAP is less than that for
conventional STIRAP. For example, if the maximum value of
laser intensity is �max = 2π × 10 MHz, the time required for
STIRSAP is tf = 145 μs, which is about 4.3 times faster than
the original STIRAP, tf = 620 μs.

B. One-photon resonance (� = 0)

On one-photon resonance, � = 0, the three-level system
is similarly reduced to the following effective two-level
system [34],

Heff = �

2

(−�eff(t) �eff(t)
�eff(t) �eff(t)

)
, (18)

with effective Rabi frequency and detuing, �eff(t) = �p(t)/2
and �eff(t) = −�s(t)/2. We note that the Hamiltonian (2)
on resonance (� = 0) has the same form as the op-
tical Bloch equations for such effective two-level sys-
tem (in units � = 1) [39,40]. The probability amplitudes
cj (t) of the three-level system with Hamiltonian (2) are
related to the corresponding two-level amplitudes bj (t)
by c1(t) = |b1(t)|2 − |b2(t)|2, c2(t) = 2iIm[b∗

1(t)b2(t)], and
c3(t) = −2Re[b∗

1(t)b2(t)], where j denotes the number of
states. Again, the total Hamiltonian is H = Heff + Hcd , where

the counterdiabatic term is calculated as [17]

Hcd = �

2

(
0 −i�a(t)

i�a(t) 0

)
. (19)

with �a(t) = [�̇p(t)�s(t) − �̇s(t)�p(t)]/[�2
p(t) + �2

s (t)].
After z-axis rotation by using unitary transformation (10), we
can obtain

H̃eff = �

2

(−�̃eff(t) �̃eff(t)
�̃eff(t) �̃eff(t)

)
, (20)

with the new definition, �̃eff(t) = �eff(t) + φ̇, �̃eff(t) =
[�2

eff(t) + �2
a(t)]1/2, and φ(t) = arctan[2�a(t)/�p(t)]. Sup-

posing the two-level problem can be transformed back to a
three-level problem, we can impose �̃eff(t) = �̃p(t)/2 and
�̃eff(t) = −�̃s(t)/2, and the modified pump and Stokes Rabi
frequency can be inversely calculated as

�̃p(t) =
√

�2
p(t) + 4�2

a(t), (21)

�̃s(t) = �s(t) − 2φ̇(t). (22)

Figures 4(a) and 4(b) show the newly designed pump and
Stokes pulses, as compared to the original ones. The evolution
of state in Figs. 4(c) and 4(d) demonstrates that by using
STIRSAP the population transfer can be achieved with fidelity
1, while the previous STIRAP does not work perfectly. The
parameters are �0 = 2π × 5 MHz, tf = 1 μs, τ = tf /8, and
σ = tf /6. The operation time used here is very short, and
not much larger than tπ = √

2π/�0 � 0.14 μs for a resonant
π pulse. So the influence of spontaneous emission might be
negligible, though the level |2〉 is populated.

Figure 5 shows that the final population transfer is sen-
sitive to the variation of separation time τ , described by
(1 + δ)τ . When decreasing τ , the fidelity becomes worse.
However, in the case of large detuning, the fidelity is robust
against the fluctuation of severation time τ [35]. As a
matter of fact, it is relevant to the mapping between two-
and three-level problems. When the total Hamiltonian H =
Heff + Hcd for the effective two-level system is transformed
back to the three-level problem, the Hamiltonian will have
the direct coupling �a(t) between levels |1〉 and |3〉. But
after applying the unitary transformation U , the population
dynamics of the Hamiltonian H̃eff is determined by b̃(t) =
[b′

1(t)eiφ/2,b′
2(t)e−iφ/2]T , where b′

j (t) is the probability ampli-
tudes of two-level systems with Hamiltonian H = Heff + Hcd .
When going back to three-level system, we can calculate the
probability amplitudes of three-level problem from c̃1(t) =
|b′

1(t)|2 − |b′
2(t)|2, c̃2(t) = 2iIm[b′∗

1(t)b′
2(t)e−iφ], and c̃3(t) =

−2Re[b′∗
1(t)b′

2(t)e−iφ]. This provides the population of
level |3〉,

P3(t) ≡ |̃c3(t)|2 = cos2[φ(t)]. (23)

Clearly, when φ(tf ) = 0, the full population transfer,
P3(tf ) = 1, can be achieved. This suggests the condition
that the two-level problem can be transformed back to the
three-level problem on the resonant case. For example, the
phase φ(tf ) saturates to null when τ increasing (see the inset in
Fig. 5), and the final population becomes irrelevant to the shift
of separation time. In fact, the condition, U (0) = U (tf ) = 1,
guarantees that the populations at initial and final time are
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FIG. 4. Different Rabi frequencies for STIRAP (a) and STIRSAP
(b), where Stokes (solid red) and pump (dashed blue) pulses are
shown. The state evolutions of STIRAP (c) and STIRSAP (d) are
also compared, where population of levels |1〉 (dashed blue), |2〉
(dotted black), and |3〉 (solid red) is presented. Parameters: �0 =
2π × 5 MHz, tf = 1 μs, τ = tf /8, and σ = tf /6.

the same before and after the unitary transformation [32]. So
one can further choose other functions of adiabatic reference,
satisfying φ(0) = φ(tf ) = 0, instead of Eqs. (16) and (17).

Furthermore, as we know, a three-level system on one-
photon resonance satisfies intrinsic SU(2) Lie algebra, which

FIG. 5. Fidelity (solid blue) versus the variation of separation
time (1 + δ)τ . Inset: Dependence of phase φ (solid red) versus δ for
further explanation. Parameters are the same of those in Fig. 4.

simplifies the shortcut design. To clarify it, we rewrite the total
Hamiltonian, H = H0 + Hcd , on resonance, as

H = 1
2 [�p(t)λ1 + �s(t)λ6 − 2�a(t)λ5], (24)

where the Gell-Mann matrices,

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

λ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

are introduced, and satisfy the commutation relation,
[λ1,λ5] = −iλ6, [λ5,λ6] = −iλ1, and [λ6,λ1] = −iλ5. To get
rid of the counterdiabatic term, we introduce the unitary
transformation U (t) = e−iφ(t)λ6 , that is,

U (t) =
⎛
⎝1 0 0

0 cos φ(t) −i sin φ(t)
0 −i sin φ(t) cos φ(t)

⎞
⎠, (25)

so that the Hamiltonian, H̃ = U †HU − iU †U̇ , becomes

H̃ = 1
2 [�̃p(t)λ1 + �̃s(t)λ6 − �̃a(t)λ5], (26)

where the Rabi frequencies are

�̃p(t) = �p(t) cos φ(t) + 2�a(t) sin φ(t), (27)

�̃s(t) = �s(t) − 2φ̇(t), (28)

�̃a(t) = 2�a(t) cos φ(t) − �p(t) sin φ(t). (29)

Imposing �̃a(t) = 0 gives φ(t) = arctan[2�a(t)/�p(t)],
which exactly results in Eqs. (21) and (22). By choosing
alternative unitary transformation, U (t) = e−iφ(t)λ1 , we have
the modified pump and Stokes pulses accordingly in the form
of

�̃p(t) = �p(t) − 2φ̇(t), (30)

�̃s(t) =
√

�2
s (t) + 4�2

a(t). (31)
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Clearly, STIRSAP is achieved with the appropriate boundary
condition U (0) = U (tf ) = 1. This argument is consistent with
the condition that the two-level problem can be transformed
back to the three-level problem on resonance. Otherwise,
the population cannot be exactly transferred from |1〉 to
|3〉 (see Fig. 5) due to the transformation. It turns out
that it is not necessary to reduce the three-level system on
one-photon resonance to the effective two-level problem,
since the system has symmetry of SU(2). As a matter of
fact, we can further choose a general unitary transformation
U (t) = exp {−i[α(t)λ1 + β(t)λ5 + γ (t)λ6]} and have more
flexibility to design the optimal shortcut, similar to the
proposal in the literature [28]. This suggests that shortcut
methods are mathematically equivalent [18,21], though their
physical implementation is totally different. In addition, high-
order iteration can be applied, in terms of superadiabtic
concept [26].

IV. DISCUSSION

In this section, we turn to discuss the stability of STIRSAP
with respect to different systematic errors. Figure 6(a) shows
that such a shortcut protocol on one-photon resonance is more
robust than the resonant π pulse (with constant Rabi frequency

FIG. 6. (a) Population of level |3〉 at final time, P3(tf ), versus
the variation of laser intensity, where STIRSAP at large detuning:
tf = 1000 μs (solid purple) and tf = 400 μs (dot-dashed blue);
STIRSAP on one-photon resonance: tf = 1 μs (dashed red); resonant
π pulse: tf = 1 μs (dotted black). (b) P3(tf ) versus the variation
of detuning, where STIRSAP at large detuning: tf = 400 μs (solid
blue); STIRSAP on one-photon resonance: tf = 1 μs (dashed red);
resonant π pulse: tf = 1 μs (dotted black). Other parameters are the
same as those in Figs. 2 and 4.

�0 = √
2π/tf ), when the fluctuation of laser intensity is

induced, described by (1 + δ)�s,p or (1 + δ)�̃s,p. On the
contrary, the shortcut protocol at large detuning is not as stable
as the shortcut on one-photon resonance and resonant π pulse,
especially when the operation time is short, tf = 400 μs.
However, the stability is improved when tf = 1000 μs and
better than other protocols. From the point view of experiment
with cold atoms [35], STIRSAP at large detuning shows
several advantages: (i) level |2〉 is not populated, which
avoids spontaneous decay from excited state; (ii) it is not
sensitive to the separation time τ , as compared to the case
of one-photon resonance; and (iii) resonant π pulse does not
work perfectly, due to inhomogeneity of the atomic cloud [35].
Figure 6(b) also demonstrates STIRSAP is more robust against
the detuning error. Particularly, at large detuning the results
are not affected by small vibration of detuning. In addition,
we should mention the original STIRAP is accelerated, so
the improvement of fidelity by decreasing operation time
is expected, in the presence of spontaneous emission and
dephasing noise (calculated by using a three-level Lindblad
master equation). Of course, the robustness also depends on
the shapes of pump and Stokes fields, and their optimization
will be left for further investigation [19].

Finally, we introduce two kinds of experiments, which are
ready to demonstrate our STIRSAP. The parameters through
the whole paper are oriented to an STIRAP experiment
with cold atoms, where the laser-atom three-level coupling
scheme are presented, and two ground states |F = 1,mF =
0〉 = |1〉 and |F = 2,mF = 0〉 = |2〉, and one excited state
52P3/2(=|3〉) of 87Rb are selected as a typical three-level
system. One part of the results on STIRSAP at large detuning
has been verified in the current experiment [35], and definitely
the one-photon resonance case can be tested experimentally
as well. On the other hand, the shortcut protocol designed
by generalized inverse engineering [28] has been utilized
to control solid-state spin state in the NV center [36]. This
�-type three-level system includes three spin levels: |ms = 0〉,
|ms = 1〉, and |ms = −1〉. Such a system is available to achieve
fast spin manipulation by using STIRSAP with the applications
in quantum information processing.

V. CONCLUSION

In summary, we have developed a method to implement
STIRSAP without additional coupling by using the counter-
diabatic driving in three-level systems. Considering two cases
of large detuning and one-photon resonance, we can reduce
the three-level system to an effective two-level problems by
using “adiabatic elimination” or SU(2) Lie algebra. Thereafter,
the shapes of pump and Stokes fields are modified to
achieve the fast and high-fidelity population transfer without
additional coupling between initial and final levels under
certain conditions. This strategy is extremely helpful when
we are faced with difficulty in the experiments. All results
can be extended to accelerate the variants of STIRAP, e.g.,
fractional STIRAP [41] or to other adiabatic passages in
multilevel systems [8]. The STIRSAP might be also interesting
for other analogous quantum three-level systems; see recent
review [42].
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