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Two recent experimental papers reported the first measurements of absolute two-photon-ionization cross
sections σ (2) of helium, for EUV wavelengths, using free-electron laser (FEL) pulses [Sato et al., J. Phys. B 44,
161001 (2011); Fushitani et al., Phys. Rev. A 88, 063422 (2013)]. The wavelengths correspond to transitions
that are off resonance as well as on resonance with the 1s2p and 1s3p 1P o Rydberg states. Inspection of their
results reveals considerable discrepancies, while their comparison with theoretical results obtained earlier from
time-independent calculations, one perturbative and two nonperturbative ones, cannot lead to secure conclusions
as to the true values of σ (2). We examined this prototypical problem by implementing a time-dependent approach,
which utilizes the nonperturbative solution of the time-dependent Schrödinger equation. This solution was
obtained in terms of the state-specific expansion approach, in an upgraded version where the coupling matrix
elements are computed using the full electric operator of the multipolar Hamiltonian. The σ (2) were obtained for
pulses of 300 fs, as in the 2011 FEL experiment. Their computation was achieved by fitting the time-dependent
ionization survival probability to e−�t , where � is the rate of ionization. The wavelengths and intensities are
those of the FEL experiments, as well as others, such as the wavelengths 52.22 and 51.56 nm, for which
the 1s4p 1P o and 1s5p 1P o levels are on resonance with the initial 1S state. Apart from the predictions for
these wavelengths, the paper contains characteristic comparisons among all the results on these EUV σ (2),
experimental and theoretical. In general, the trends predicted by nonperturbative methods are confirmed by the
FEL measurements. However, discrepancies exist among the absolute numbers. Furthermore, comparison among
the results of the three nonperturbative approaches (present time-dependent and two earlier time-independent
ones published in 1999 and 2005) indicates an overall consistency, although quantitative differences for individual
cases are apparent.
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I. TWO RECENT EXPERIMENTS USING EUV
FREE-ELECTRON LASER

The quantitative description of the interaction of strong
pulses with atomic and molecular states is a very demanding
and challenging many-electron problem. Its solution pre-
supposes the existence of suitable theories and appropriate
formalisms that not only explain the phenomenology in a
descriptive way, but also, and especially, allow the credible and
accurate calculation of the observable quantities. In all cases,
the success of this general goal hinges on the possibility of
incorporating and handling computationally the key electronic
structures and the corresponding electron correlations of the
states contributing the most to the phenomenon under consid-
eration, and of providing a transparent picture of the interplay
between the parameters of the pulses and the characteristics
of the spectra. In this endeavor, the exchange of quantitative
information between theory and experiment is indispensable.

For example, in the quantitative study of multiphoton-
ionization (MPI) phenomena, as the field strength (intensity)
increases the a priori adoption of the conventional lowest-
order perturbation theory (LOPT) approach loses its formal
credibility, since, at some unknown point, higher-order terms
may start contributing in a significant way. This is the boundary
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between weak and strong fields, where the LOPT formula
starts breaking down even if the calculation is (could be)
done accurately. For each problem of interest (many-electron
states plus laser parameters), the prediction and quantitative
understanding of this breakdown is quantitatively vague
and precarious without systematic many-electron theory and
computations which are nonperturbative and which can be
implemented with sufficient accuracy. By “nonperturbative” it
is meant that the formalism and the calculations of a particular
property incorporate, at least in principle, the significant
contributions from the interactions described by the total
Hamiltonian to all orders of perturbation theory. In fact, only
then, by comparing results as the field strength is increased,
can one assess the relevance and/or the degree of reliability of
properly executed LOPT calculations for the same parameters
of the pulse. Obviously, accurate experimental information,
which in principle may become available, is the alternative or
complementary reference point for the assessment of the limits
of applicability and relevance of LOPT for each problem.

The helium atom has a ground state with a very sim-
ple electronic structure, labeled by the single-determinantal
configuration 1s2 1S, while its energy spectrum has channels
of Rydberg or scattering states as well as doubly excited
states (DES) above its ionization threshold of 24.59 eV. As
such, it offers convenient opportunities for theoretical and
experimental studies of important aspects of MPI caused by
the interaction with electromagnetic pulses with various values
of field strength, of duration, and of wavelength.
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Two recent publications [1,2] reported results of the first
measurements of the absolute cross sections for the two-
photon ionization of helium by free-electron laser (FEL)
extreme-UV (EUV) pulses. The values of the intensity were
3 × 1012 W/cm2 in [1] and in the range 5 × 1012–5 × 1013,
with emphasis on 1 × 1013 W/cm2, in [2]. The wavelengths
were in the range 53–62 nm. The pulse duration was estimated
to be about 100 femtoseconds (fs) in [1] and about 300 fs
in [2].

Although both groups utilized the same FEL facilities in
Japan, the experimental techniques for measurement are differ-
ent. According to Fushitani et al. [1], their technique, namely
the “shot-by-shot” analysis of photoelectron spectra, produced
results that are more reliable than those reported in 2011 by
Sato et al. [2], since it corrects for the “jitter” that afflicted
the earlier measurements. For example, when discussing the
case of the nonresonant ionization measured in their two-
color experiment, they state, “ . . . we obtain a jitter-free cross
section for nonresonant two-color two-photon ionization of
He, σ (2) He(20.8 eV, 4.63 eV) = 4.1(6) × 10−52 cm4 s, from
Eq. (7). It should be noted that without the timing-jitter
correction, we obtain a significantly smaller value, 1.6(3) ×
10−52 cm4 s”(p. 5 of [1]).

Discrepancy between results of the two experiments [1,2]
is observed for other cases as well. It underlines the fact
that such FEL measurements are new and under evolving
understanding of their quantitative details (e.g., concerning
the precise characteristics of the pulses as they interact with
the atomic or molecular state of interest).

Apart from the issue of the level of accuracy of the FEL
measurements of MPI absolute cross sections for wavelengths
in the EUV and beyond, there is also another significant aspect
in [1,2] which contributed to our motivation to carry out the
present work. This has to do with the fact that measurements
such as those of [1,2] allow the assessment of formalisms and
of related methods for the calculation from first principles of
quantities representing the physics of the nonlinear response
of atoms and molecules to high-frequency strong pulses.

Indeed, in both papers [1,2], and especially in [2], the
authors compared their results for the one-color, two-photon
absolute cross section σ (2) with theoretical ones that were pub-
lished in 2001 [3] and in 2005 [4]. The results of Nikolopoulos
and Lambropoulos [3] were obtained from calculations that
used the formula of LOPT. The calculations of van der
Hart and Bingham [4] go beyond LOPT. They applied the
time-independent nonperturbative “R-matrix Floquet” theory,
introduced and demonstrated in the 1990s; see references
in [4]. Comparison of the two sets of results is made in Table II
of [2] and is repeated in our Table I.

To the results and corresponding conclusions in [1–4] on
the helium EUV σ (2), here we add those published in 1999
by Mercouris et al. [5], which are missing from the reference
lists of [1–4]. In fact, the main conclusions stated by Sato
et al. [2] regarding the behavior of σ (2) as a function of
increasing intensity are consistent with the predictions made
in [5]. However, there are discrepancies of quantitative nature;
see the next section. The results of [5] were obtained via
the non-Hermitian, time-independent, nonperturbative “many-
electron, many-photon” theory (MEMPT), which was first
introduced and applied in the late 1980s; see references in [5].

TABLE I. Two-photon-ionization cross sections of He, σ (2), for
four EUV wavelengths and for peak intensity 1 × 1013 W/cm2, in
units of 10−52 cm4 s. The values 58.4 and 53.4 nm are on resonance
with the 1s2p and 1s3p 1P o Rydberg states. Two recent FEL
measurements [1,2] are compared with the theoretical results of [3]
(LOPT) and of [4] (R-matrix Floquet). The significant discrepancies
motivated the present theoretical work, which is based on the non-
perturbative solution of the METDSE using the SSEA. (The SSEA
results are listed in Table III). Additional results from nonperturbative
time-independent MEMPT calculations [5] are presented in Table II;
see text.

λ (nm) 61.4 58.4 56.0 53.4

Experiment [2] 2.6(6) 23(7) 0.9 7(5)
Experiment [1] 150(30)
(extrapolated from
3 × 1012 W/cm2)
Theory (time-independent)
LOPT [3] 8.0 360 2.7
R-matrix Floquet [4] 8.5 63 3.5 6.9

The main results of [1–5] and their comparison regarding
the EUV σ (2) are put together in Sec. II.

The three theoretical investigations [3–5], implemented
formalisms that are time independent, implying that the pulse
is sufficiently long so as to produce an averaged result.
The present approach is nonperturbative and time dependent,
using pulses whose duration follows from those used in
the experiments. It is based on the direct solution, �(q,t),
of the many-electron time-dependent Schrödinger equation
(METDSE), which is obtained by implementing the state-
specific expansion approach (SSEA) [6,7].

The σ (2) have been extracted by fitting the time-dependent
probability, P (t), of the atom remaining in states of the discrete
spectrum, to the form e−�t , where � is the rate of ionization.
The pulses are of sin2 shape and have duration of 300fs,
with ramp-on and ramp-off parts of 20 cycles. The peak
intensity is in the range 3 × 1012–1 × 1014 W/cm2, for the
EUV wavelengths that were used in the FEL experiments [1,2].
These wavelengths correspond to nonresonant ionization as
well as to ionization that evolves resonantly, via the transition
to the 1s2p (λ = 58.4 nm) or the 1s3p (λ ≈ 53.4 nm) 1P o

Rydberg states.
We also calculated σ (2) for λ = 52.22 nm (“weak” field

of 3 × 1012 W/cm2) and for 51.56 nm (“strong” field of
1 × 1014 W/cm2), which bring on resonance the 1s4p 1P o and
1s5p 1P o Rydberg states with the initial ground state. These
predictions can be tested in future FEL experiments.

II. CRITICAL ASSESSMENT OF THE EXPERIMENTAL
AND THEORETICAL RESULTS REPORTED IN [1–5]

In Sec. I, we drew attention to Fushitani et al. [1], whose
arguments imply that, in the emerging experiments using
high-energy FEL, there are still critical points regarding the
conditions and techniques that are needed to guarantee the
credibility of measured quantities concerning the MPI of atoms
and molecules. At the same time, the comparison with earlier
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theoretical results [3,4] which was made in [1,2] suggests that
there is need for additional quantitative information. We glean
the following examples from [1,2].

Fushitani et al. [1] measured σ (2) = 5(±1) × 10−50 cm4 s,
with a pulse of about 100 fs, at �ω = 21.2 eV and intensity
I = 3 × 1012 W/cm2. The energy �ω = 21.2 eV (wavelength
58.4 nm) is on resonance with the 1s2p 1P o state. Based on rea-
sonable arguments, they extrapolated to I = 1 × 1013 W/cm2

and obtained σ (2) = 15(±3) × 10−51 cm4 s. They wrote that
this value “agrees” within a factor of ∼2.5 with the theoretical
value of the R-matrix Floquet calculation [4], which is
σ (2) = 6.3 × 10−51 cm4 s. Also, they referred to the previous
experiment of Sato et al. [2] and stated, “Recently, a smaller
experimental value, 2.3(7) × 10−51 cm4, was reported by ion-
mass spectrometry using FEL [2]. The origin of the large
discrepancy from the present value is not clear, but it is partly
attributed to the temporal integration factors T(1) and T(2)
omitted in the previous study.”

In addition, the comparison first published by Sato et al. [2],
and repeated in our Table I, between their measurements
and the theoretical results of [3,4], also reveals quantitative
differences. For example, for I = 1 × 1013 W/cm2 and wave-
length λ = 56 nm, which is not on resonance with a discrete
state, Sato et al. [2] determined σ (2) = 0.9 × 10−52 cm4 s,
whereas the theoretical results are 2.7 × 10−52 cm4 s [3]
and 3.5 × 10−52 cm4 s [4]. On the other hand, again for
I = 1 × 1013 W/cm2 but for the on-resonance wavelength
λ = 58.4 nm, the value produced by the LOPT calculation
of [3] is 360 × 10−52 cm4 s, in striking disagreement with that
of [4], which gave 63 × 10−52 cm4 s.

For the reader’s convenience, the results on the He σ (2) that
were compared in [1,2], are collected in our Table I. We note
that for the wavelength of 53.4 nm (�ω = 23.2 eV), the uncer-
tainty in the measurements is large, and so their comparison
with the theoretical results [3,4] cannot be conclusive.

A. Higher-order effects. Additional information from the early
study of the problem via the MEMPT [5]

In order to complete the critical assessment of the available
information on the EUV σ (2) of helium, we recall a subset
of the predictions made in [5] using the MEMPT, which is
a time-independent approach formulated as a non-Hermitian
problem for field-induced resonance states decaying into the
continuum (see the review [8]).

The nonperturbative calculations in [5] permitted, among
other things, the identification of regions of values of frequen-
cies and intensities where the validity of LOPT for the I k power
“law” breaks down when the multiphoton process does not
encounter intermediate states (Table I of [5]). In addition, the
effects of intermediate states (a theme that is discussed in the
experimental papers [1,2]), or of states that cannot participate
in LOPT, were also explored quantitatively.

The above statement, apart from its general scope, covers
material that was also discussed in [4] and in [1,2], and so we
elaborate on it by giving an example:

Figure 5 of [5] depicts the two-photon-ionization rate of He
as a function of frequency and of intensity. A characteristic
feature is that, for about �ω = 20.1 eV and as the intensity
increases beyond about 3.5 × 1012 W/cm2, a peak emerges

from the smooth background, while the structure due to
1s2p 1P o starts decreasing and, at larger intensities, eventually
disappears. The peak in the continuous spectrum is “a man-
ifestation of a higher-order effect, whereby the autoionizing
state 2s2p 1P o, whose field-free position is 60.2 eV, is coupled
resonantly with the He 1S ground state via a three-photon
process” (p. 9 of [5]). In other words, even though in lowest
order the two-photon-ionization process from the 1S state
reaches only 1S and 1D states of even parity, as field intensity
increases the higher-order aspect of dynamics manifests itself
via, on the one hand, the disappearance (due to coupling with
the 1S states) of the structure corresponding to the 1s2p 1P o

intermediate state and, on the other hand, the appearance of
the lowest 1P o DES inside the continuous spectrum.

Such results and conclusions were also reported in [4]
(e.g., compare Fig. 5 of [5] with Fig. 4 of [4]), based again
on nonperturbative calculations. Indeed, van der Haart and
Bingham confirmed our earlier observations, which were
recalled in the previous paragraph, by stating, “ . . . the fig-
ure clearly demonstrates that excitation of the resonance
(2s2p 1P o) is a higher-order process: with increasing intensity
the resonance becomes more pronounced.” (p. 241 of [4]).

The theoretical prediction [5] that, when the wavelength
is on resonance with the 1s2p 1P o state the cross section
decreases as the intensity increases, was observed experimen-
tally [2].

Furthermore, according to the results of [4,5], when the
intensity increases beyond 1013 W/cm2, the accurate determi-
nation of σ (2) becomes more complicated and demanding,
especially if the photon energy reaches 1snp 1P o states with
n � 3, and the results become very sensitive to the mixing
of states and to the details of their wave functions. This
complexity must be reflected in measurements as well.

For reasons of economy, we do not discuss additional
cases. Instead, we converted to σ (2) the values given in
the graphs of [5] as rates, and prepared Table II, which in-
cludes the experimental σ (2) [1,2]. The MEMPT calculations
were done for seven values of intensity: 3.5 × 1012, 1.4 ×
1013, 3.15 × 1013, 5.6 × 1013, 8.75 × 1013, 1.26 × 1014, and
1.72 × 1014 W/cm2. Fortunately, they included two of the
wavelengths that were used in [1,2], and so comparison can be
made. These are 61.4 nm (off resonance with an intermediate
1P o state) and 58.4 nm (on-resonance with the 1s2p 1P o state).

Although the reader can draw conclusions by inspect-
ing Table II, we note, as an example, that for 58.4 nm
and I = 3.5 × 1012 W/cm2, the MEMPT value is 156 ×
10−52 cm4 s, about a factor of 3 smaller than the experi-
mental one at the slightly lower I = 3 × 1012 W/cm2, which
is 500(±100) × 10−52 cm4 s [1]. At 1.4 × 1013 W/cm2, the
result from the R-matrix Floquet calculations [4], σ (2) = 63 ×
10−52 cm4 s, is consistent with the MEMPT value, σ (2) =
44.5 × 10−52 cm4 s.

In conclusion, the rough quantitative picture of the helium
σ (2) emerging from the FEL experiments [1,2] and from the
time-independent calculations of [3–5] is the following:

Regarding wavelength-dependent trends and intensity-
dependent higher-order effects, the predictions from our earlier
nonperturbative study [5] have been confirmed during the
past 15 years by both the calculations of [4] and the recent
measurements [1,2].
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TABLE II. Collection of results from [1,2,5] on the helium σ (2),
in units of 10−52 cm4 s, for wavelengths 61.4 nm (off resonance)
and 58.4 nm (on resonance with the 1s2p 1P o Rydberg state). The
values from the FEL experiments [1,2] are for peak intensities
3 × 1012 W/cm2 and 1 × 1013 W/cm2. The nonperturbative MEMPT
values from figure 5 of Ref. [5], published here as numbers,
were obtained for seven values of intensity, in the range 3.5 ×
1012–1.715 × 1014. For the off-resonance wavelength, λ = 61.4 nm,
the MEMPT results exhibit the constancy expected from LOPT.

λ (nm) 61.4 58.4

Experiment [1]
3 × 1012 W/cm2 500(100)
1 × 1013 W/cm2 150(30)
(extrapolated from 3 × 1012 W/cm2)
Experiment [2]
1 × 1013 W/cm2 2.6(6) 23 (7)
Theory (MEMPT) [5]
3.5 × 1012 W/cm2 9.3 156
1.4 × 1013 W/cm2 9.3 44
3.15 × 1013 W/cm2 9.0 23
5.6 × 1013 W/cm2 8.7 15
8.75 × 1013 W/cm2 8.5 11
1.26 × 1014 W/cm2 8.3 9
1.72 × 1014 W/cm2 8.7 8

However, when it comes to quantitative answers, for cases
where the wavelength is on resonance with a Rydberg state
and/or the field intensity starts getting strong, there are
challenging open issues. This is because the FEL measure-
ments [1,2] disagree with each other, while, in characteristic
cases, both deviate significantly from the time-independent
calculations of [3–5] (Tables I and II).

The present work is aimed at obtaining quantitative infor-
mation for the σ (2) of helium by EUV photons, in terms of a
nonperturbative approach which is time dependent. The theory
uses a pulse of finite duration, just like the FEL measurement
does. This task is important in its own right. At the same
time, given the aforementioned existing uncertainty as to what
values of σ (2) represent reality more closely, it is expected
that the results will be helpful to current research with FEL
measurements of MPI cross sections of many-electron atoms
and ions.

III. CALCULATION OF THE HELIUM EUV σ (2)

The problem at hand is to extract the σ (2) from a description
which includes the time-dependent interaction of the initial
state of helium with weak or strong pulses of EUV wavelengths
with duration of about 300fs. Some of the frequencies are
on resonance with the excitation energies to Rydberg states
1snp 1P o, n = 2,3,4,5, while their intensities are high enough
so as to induce nonlinear effects from real and virtual
transitions in the discrete and the continuous spectrum, the
latter labeled by 1sε�, � = 0,1,2, . . ..

The approach that we adopted, which is validated by
the results which are presented in the next section, was to
compute nonperturbatively the corresponding time-dependent
probabilities for the system to remain in the discrete spectrum,

P (t), and to average by fitting them to e−�t , where � is the
ionization rate. From the rate one obtains σ (2).

Accordingly, first and foremost the theory requires the
accurate solution �(t) of H(t)�(t) = i� ∂�(t)

∂t
, for a time-

dependent Hamiltonian,

H(t) = HHe + V (ω,t), (1)

where V (ω,t) is the interaction operator containing the
relevant characteristics of the pulse. The following paragraphs
describe the main features of our approach towards this goal.

A. State-specific expansion approach (SSEA)

The solution �(�r1, �r2, t) was calculated via the SSEA,
which was introduced in the early 1990s as a systematic
and general methodology for the nonperturbative solution of
the METDSE. It has been reviewed recently in [6,7]. We
outline its main characteristics and connect them to the present
calculation.

The theoretical foundation is the quantum mechanical
principle of the expansion of a many-electron nonstationary
state, �(t), in terms of the complete set of stationary states of
the discrete and the continuous spectrum of the atomic (molec-
ular) Hamiltonian, with time-dependent complex coefficients.
When it comes to implementation to real, N-electron systems,
the crucial requirement is that this expansion be represented
by wave functions which are state specific. Hence, the initial
state, and the multitude of excited discrete and, especially,
scattering states, which are of significance to the problem,
enter into the expansion in terms of wave functions which
have been optimized to represent each one of them as well as
possible.

The initial state may have an arbitrary electronic structure,
since the formalism is not restricted to simple closed-shell,
single-determinantal singlet states. For each bound state in
the expansion, the wave function is constructed and computed
according to the scheme “state-specific Hartree-Fock (HF) or
multiconfigurational HF (MCHF) plus the remaining impor-
tant electron-correlation components of the wave function.”
The level and the method of the calculation depend on
the state. Descriptions and references regarding the state-
and property-specific theory and its methodologies for the
production of such wave functions can be found in [6–8].

Since the SSEA requires the use of state-specific N-electron
wave functions, each obtained in terms of its own function
space, it allows one to first make an approximate analysis of
the apparent requirements in terms of the characteristics of the
spectrum of the stationary states and of the pulse. Accordingly,
the N-electron SSEA wave function |�SSEA(t)〉 is constructed
and computed in the form (we omit the index for each possible
channel)

|�SSEA(t)〉 =
∑
m

am(t)|m〉 +
∫

0
bε(t)|ε〉dε. (2)

The |m〉 represent the relevant state-specific bound N-
electron wave functions and the |ε〉 are energy-normalized,
state-specific, scattering (free) wave functions. Resonance
states are represented by their localized (bound) component.
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The choice of the wave functions in Eq. (2) for each
stationary state of physical significance and their numerically
reliable calculation constitute the backbone of our proposal
for the nonperturbative solution of the METDSE from first
principles.

Substitution of (2) into the METDSE produces a system
of integrodifferential coupled equations containing energies,
bound-bound, bound-free, and free-free matrix elements, and
the unknown complex coefficients. For the present problem,
the number of equations was 10 030.

In the process of the solution of this system of equations
for each point in time [6], one can monitor and evaluate with
transparency and economy the dependence of the evolution of
|�SSEA(t)〉, and of the final quantity of interest, on each |m〉
and |ε〉. For example, one may follow the effect of a particular
Rydberg state by including its wave function in Eq. (2) or by
taking it out. For reasons of accuracy, in the case of atoms the
Rydberg wave functions are obtained numerically, as solutions
of the state-specific HF equations, with a term-dependent (N–
1)-electron core. Rydberg states affect the physics of valence-
electron excitation mainly via their outer electron, and so they
may be considered as being effectively one-electron systems
for a given term-dependent potential. Nevertheless, additional
care must be taken so as to achieve good numerical accuracy
in the asymptotic region.

Of special importance is the proper representation of the
multichannel (in general) continuous spectrum, especially
when the field becomes strong and all types of transition
couplings on and off resonance occur. As regards radial
accuracy for each angular momentum, the channel-dependent,
energy-normalized scattering orbitals are calculated in the
potential of the term-dependent HF (N–1)-electron core.
As regards the effect of angular momentum states in the
continuum, convergence tests lead to the final choice of their
number. An example of their significance in nonperturbative
calculations was demonstrated some time ago in the case of
MPI of helium by strong laser pulses of 5 eV [9].

For the present problem, the SSEA wave function was
constructed in the form

�SSEA(t) =
∑

�=0,n=�+1

an,�(t)
(1sn� 1L)

+
∑
�=0

∫
dεaε,�(t)
(1sε� 1L). (3)

At t = 0, the coefficient of the initial, ground-state wave
function 
(1s2 1S) is a1,0(0) = 1. This wave function was
obtained from a numerical MCHF calculation consisting of
the 1s2, 2s2, 2p2, 3s2, 3p2, 3d2, 4s2, 4p2, 4d2, and 4f 2

configurations. The first three coefficients are the most impor-
tant: 0.996, -0.062, and 0.062.The other discrete states, 1sn�,
are represented by numerical HF wave functions, with � =
0, . . . ,4 and n = 2,3,4,5,6,7. As we have already mentioned
above and in earlier publications, it is important for problems
such as the one treated here to use numerically accurate
Rydberg wave functions, since, for frequencies on resonance
they act as real intermediate states and the corresponding
matrix elements must be accurate.

The energies of the scattering orbitals ε� were in the range
from 0 to 2.0 a.u. above threshold with � = 0, . . . ,4. The

energy step was 0.001 a.u. Given the pulse parameters and
the problem of interest, it was unnecessary to include doubly
excited states embedded in the continuum. Time propagation
was done on steps from 0.1 to 0.01 a.u., depending on the
magnitude of the intensity.

Once the coefficients an,�(t) and aε,�(t) have been calcu-
lated, the MPI survival probability (probability for the system
remaining in the discrete spectrum) is given in a transparent
and accurate way by

P (t) =
∑
n,�

|an,�(t)|2 = 1 − Pion(t), (4)

where the summation is restricted to the bound (Rydberg)
states of He and Pion(t) symbolizes the ionization probability.

B. Choice and treatment of the interaction operator

An innovation that was introduced in the present SSEA
calculation is the use in V (ω,t) of the full electric operator,
Hel(ω,t), of the multipolar Hamiltonian, HMP(t), in terms of
which the bound-bound, bound-free, and free-free coupling
matrix elements were calculated. An excellent source for the
description of the formal characteristics of HMP(t) are the
treatises [10,11].

Our initial point of reference is the expression for the full
electric operator, written here as Hel(ω,t), which is given in
Eq. (5.35) of [10]:

Hel(ω,t) = e
∑

j

∫ 1

0
�rj · �E(t,λ�κ · �rj )dλ, (5)

where �κ is the wave vector of the EUV pulse (κ = ω/c), and
j sums over the electrons. �E(t,λ�κ · �rj ) is the electric field and
λ is a dummy variable.

In a series of papers, e.g., [12,13] and references therein,
we have shown how this Hamiltonian [Eq. (5)] can be
reduced to forms which are suitable for computation of
matrix elements with numerical bound as well as authentic
(i.e., energy normalized with correct asymptotic boundary
conditions) scattering wave functions in spherical symmetry,
as used, e.g., in atomic physics.

The key reasons for the choice of HMP(t) as the perturbing
interaction operator are, briefly, the following:

(1) The theoretical necessity to use, instead of the con-
ventional electric dipole approximation (EDA), the full atom-
radiation interaction for the solution of the METDSE, comes to
the forefront not only for cases where the radiation wavelength
becomes very small, but also for MPI processes where the
interactions between extended wave functions, such as those of
high-n Rydberg states and of the unbound orbitals of scattered
states, may play a crucial role. In this case, the conventional
argument leading to the adoption of the EDA, i.e., invoking
the “dimensions” of the atom with respect to the radiation
wavelength, cannot be justified a priori.

(2) In the SSEA, the energy-normalized scattering orbitals
are computed and used numerically, subject to the rigorous
asymptotic boundary conditions. When it comes to the
numerical calculation of free-free matrix elements, on and off
resonance, one is faced with the calculation of integrals over
unbound, strongly oscillatory numerical functions, multiplied
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by (N–1)-electron overlap integrals. Singularities occur as
ε → ε′, where ε and ε′ are the free-electron energies in two
different orbitals. Since for strong-field problems the number
of free-free matrix elements (on and off resonance) may be
huge, no discounts on their numerical accuracy ought to be
made, if the final result is to be considered reliable. Therefore,
it is important for theory to account for these singularities
accurately and consistently. We have shown [12,13] that the
mathematical structure of the free-free matrix elements of
Hel(ω,t), on and off resonance, is simpler than that of its
EDA limit, which is the r operator. Therefore, it is easier to
handle numerically and accurately.

(3) Apart from the preceding reasons having to do with the
mathematics and computation of free-free matrix elements
of energy-normalized scattering functions, there is also a
fundamental quantum mechanical reason for choosing HMP(t)
when it comes to the nonperturbative solution of the METDSE
from first principles. It has to do with the issue of the possible
gauge dependence of the sought-after quantity [14–16]. We
have explained in [12,13] and their references, that the choice
of HMP(t), which contains the gauge-invariant electric field,
and the use of Hel(ω,t) in the METDSE, guarantees that the
time-dependent complex coefficients in the expansion (2) can
be interpreted directly as probability amplitudes.

IV. RESULTS

The calculations were done for a laser-pulse envelope,

g(t) =
⎧⎨
⎩

sin (πt/2Tr )2 0 � t � Tr

1 Tr � t � Tf

sin [π (t − Tf + Toff)/2Toff]2 Tf � t � Tf + Toff

⎫⎬
⎭, (6)

where Tr is the time during which intensity rises, (Tf − Tr ) is the period with constant intensity, and Toff is the interval in which
intensity falls to zero.

We obtained the two-photon-ionization rate �(ω,F ) by
performing a nonlinear fitting of e−�t to the time-dependent
curve of the survival probability.

The relationship between �(ω,F ) and the cross section is

σ (n) = ωn[�(ω,F )/�]/In, (7a)

in units of cm2n sn−1. Therefore, for two-photon ionization, the
cross section σ (2) is given by

σ (2) =
(

ω

I

)2

�(ω,F )7.857 × 10−19 cm4 s, (7b)

in which ω and � should be given in a.u. and I in W cm–2.
Figure 1 depicts the survival probability P (t) of Eq. (4),

for λ = 58.4 nm and I = 1013 W cm−2. The thick gray line
corresponds to the fitted exponential form, e−�t , with � =
1.05 × 10−6 a.u. According to Eq. (7b) this value gives σ (2) =
50.2 × 10−52 cm4 s.

The oscillations of P (t) are a manifestation of the Rabi
oscillation between the He ground state, 1s2, and the excited
state 1s2p 1P o, since for λ = 58.4 nm these two states come
into resonance. The period of the SSEA oscillations is TSSEA =
900 a.u. = 21.2 fs, and is equal to the theoretical Rabi value
given by TRabi = 2π

F 〈1s2|z|1s2p 1P o〉 .
Figure 2 depicts P (t) for λ = 61.4 nm and I =

1013 W cm−2. The deduced two-photon cross section is σ (2) =
9.5 × 10−52 cm4 s. No Rabi oscillations are present, in accor-
dance with the fact that, for this wavelength, the 1S ground
state is not on resonance with any 1P o Rydberg state.

Figure 3 is our last example of the determination of σ (2)
from the fit of the computed P (t). Here, λ = 52.2 nm and
I = 1014 W cm−2. Now, there is resonant coupling of the 1S

ground state with the 1s4p 1P o Rydberg state. The period of the
computed oscillations is TSSEA = 908.4 a.u. = 22 fs, which is,
again, the value expected from the Rabi expression.

A. Nonlinear effects of Rydberg states

A look at Figs. 1–3 reveals an increased complexity in
the structure of Fig. 3 (excitation of the 1s4p 1P o state) as
compared to that of Fig. 1 (excitation of the 1s2p 1P o state).

The structure and methodology of the SSEA makes pos-
sible the explanation of this difference in a systematic and
quantitative way. The complexity of the additional oscillations
of P (t) is due to the proximity of the 1s4p 1P o state to other
Rydberg states. These are the 1snp 1P o, as well as the 1sn� 1L

FIG. 1. The survival probability P (t) for λ = 58.4 nm and I =
1013 W cm−2 as a function of time in atomic units (a.u.). The thick
gray line corresponds to the fitted e−�t , with � = 1.05 × 10−6 a.u..
The resonant coupling of the He ground state 1s2 with the excited
state 1s2p 1P o causes a Rabi oscillation between them. The calculated
period of oscillation of P (t) is TSSEA = 900 a.u. = 21.2 fs, a result
which is in perfect agreement with the Rabi formula.
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FIG. 2. As in Fig. 1, but for λ = 61.4 nm. Rabi oscillations do not
exist since, for this wavelength, the ground state 1s2 is not resonantly
connected to any excited state.

(1L 	= 1P o), n = 3–7 states, all of which are coupled (including
the ground state, 1S) through the full Hamiltonian during the
nonperturbative calculation.

As we explained in Sec. III, the inclusion of the state-
specific Rydberg wave functions into the SSEA expansion of
Eq. (2) is explicit. They are computed numerically for each
value of n and �. Therefore, they can be added or subtracted at
will, thereby allowing the study of the influence of each one
of them on the final solution.

Given the problem of interest here, we carried out a
series of calculations for the case λ = 52.2 nm and I =
1 × 1014 W cm−2, where the Rydberg states 1sn� 1L, n =
� + 1,..., except the 1s4p 1P o, were removed successively.
An interesting picture emerged, and this is shown in Fig. 4.

FIG. 3. As in Fig. 1, but for λ = 52.2 nm and I = 1014 W cm−2.
Again, the resonant coupling of the ground state with the 1s4p 1P o

state is manifested as oscillations of period TSSEA = 908.4 a.u. =
22 fs, which is in agreement with the Rabi formula.

FIG. 4. As in Fig. 3, without the Rydberg states 1sn� 1L,

n = � + 1, . . ., except the 1s4p 1P o. The remaining structures, which
are of small amplitude, should be attributed to the contribution of the
scattering states just above threshold.

Now, the Rabi oscillations are smoother compared to those of
Fig. 3. The remaining small structures should be attributed to
the contribution of the scattering states just above threshold.

This computational test also demonstrates the nonlinear ef-
fect of the Rydberg series on the observable σ (2). Specifically,
when the Rydberg states 1sn� 1L, n = � + 1,... are taken out
(except of course the 1s4p 1P o), the cross section from Fig. 4 is
1.7 × 10−52 cm4 s compared to the accurate 0.9 × 10−52 cm4 s
which corresponds to Fig. 3 and is reported in Table III.

In conclusion, the calculations which led to Figs. 3
and 4 demonstrate the indirect, nonlinear effects on the
time-dependent ionization probability of the Rydberg states
neighboring the 1s4p 1P o state at λ = 52.2 nm. Of course, it is
Fig. 3, for which the calculation includes all the Rydberg states
up to n = 7 and � = 4, that represents the accurate picture.

B. Cross sections from the SSEA, and comparison
with those of the FEL experiments [1,2] and of

the R-matrix Floquet method [4]

The SSEA results for σ (2) are shown in Table III, where
they are compared with the values from the FEL experi-
ments [1,2] and with the results from the time-independent R-
matrix Floquet calculations [4]. For λ = 52.22 and 51.56 nm,
for which the 1s4p 1P o and 1s5p 1P o levels are on resonance,
respectively, the σ (2) of [4] were deduced from their Fig. 1,
where the two-photon-ionization rates are given for I =
1 × 1013, 2 × 1013, 5 × 1013, and 1 × 1014 W cm−2.

The numbers in Table III show the following. When the
SSEA results are compared with the experimental values, only
for two cases (1 × 1013 W cm−2 and λ = 53.4 nm, and 5 ×
1013 W cm−2 and λ = 58.4 nm) is there agreement. As regards
the results from the two nonperturbative calculations ([4]
and the present SSEA work), there is satisfactory agreement
for most cases where the intensity is 1 × 1013, 2 × 1013,
and 5 × 1013 W cm−2. For the relatively weak intensity at
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TABLE III. Two-photon-ionization cross sections σ (2) of He, for
six EUV wavelengths and for intensities beyond the perturbative
regime. The values from the recent FEL experiments [1,2] are
compared with the results from the time-independent R-matrix
Floquet calculations [4] and from the fitting of the present SSEA time-
dependent probabilities to e−�t , where � is the two-photon-ionization
rate. Wavelengths marked with asterisks correspond to resonance
frequencies with the Rydberg states, 1snp 1

P
o, n = 2,3,4,5. In units

of 10−52 cm4 s.

λ (nm) 51.56∗ 52.22∗ 53.4∗ 56.0 58.4∗ 61.4

3 × 1012 W/cm2 32.6a 165.8a

500b

1 × 1013 W/cm2 3.7a 7.4a 6.8a 3.1a 50.2a 9.5a

6.1c 9.5c 6.9c 3.5c 63.0c 8.5c

7.0d 0.9d 23.0d 2.6d

2 × 1013 W/cm2 2.4a 3.8a 4.9a 3.1a 25.3a 9.2a

3.7c 5.7c 5.0c 3.5c 30.0c 8.5c

3.4d 0.85d 16.0d 2.4d

5 × 1013 W/cm2 0.67a 1.8a 3.1a 2.9a 11.1a 8.8a

3.3c 3.0c 3.2c 10.0c 8.0c

1.4d 0.77d 10.0d 2.2d

1 × 1014 W/cm2 0.58a 0.9a

1.8c

aThis work. From the solution of the METDSE using the SSEA.
bFushitani et al. [1]. FEL experiment.
cvan der Hart and Bingham [4]. R-matrix Floquet method.
dSato et al. [2]. FEL experiment.

3 × 1012 W cm−2, there is no R-matrix Floquet result [4] with
which to compare.

When intensity is set at 1 × 1014 W cm−2, we carried out
two indicative calculations. For the one at 51.56 nm (on
resonance with the 1s5p 1P o state), there is no reported result
in [4], and so the SSEA number constitutes a quantitative
prediction for future experiments reaching the upper Rydberg
states. For the one at 52.22 nm (on resonance with the 1s4p 1P o

state), the R-matrix Floquet value which we deduced from
Fig. 1 of [4] deviates from the SSEA result by a factor of 2.

V. SYNOPSIS

Two recent experiments, both using FEL, produced abso-
lute values of two-photon-ionization cross sections, σ (2), of
the helium 1S ground state, for pulses of EUV wavelengths
which are on and off resonance with the 1P o Rydberg states
1s2p and 1s3p [1,2]. The measurements of [1,2] offer
the important opportunity for testing advanced theoretical
methods that have been introduced in recent decades for the
nonperturbative treatment and the quantitative understand-
ing of multiphoton processes in polyelectronic atoms and
molecules.

In Secs. I and II, we discussed the situation concerning
the published results for the EUV σ (2) of helium. We
pointed out that the experimental results of [1] are not in

satisfactory agreement with those of [2], while both sets differ
quantitatively from the results of two theoretical works, one
based on LOPT [3] and the other on the nonperturbative
R-matrix Floquet theory [4], with which the authors of [1,2]
compared their findings. The deviation from each other of most
of the σ (2) values of the four sets (two experimental and two
theoretical) is so distinct that no conclusion as to their accuracy
and physical relevance can be drawn without additional data
(see Table I). We also presented the results from our earlier
calculations using the MEMPT [5] for weak and for strong
pulses in the EUV range, and compared them with the results of
the FEL experiments [1,2] and of the nonperturbative method
of [4] (Table II). Certain conclusions and results from [1,2,4]
confirm those of the MEMPT predictions [5].

The present work is based on a time-dependent framework,
and aims at determining the MPI cross sections by fitting
the time-dependent ionization probabilities P (t) to e−�t .
These were computed from the nonperturbative solution
of the METDSE via the state-specific expansion approach
(SSEA) [6,7]. The features of the state-specific N-electron
basis wave functions were explained in Sec. III. For the
He bound states, they were computed numerically at the
MCHF (ground state) or HF level (Rydberg states), thereby
eliminating the possibility of inaccuracies that are created
when Rydberg states are represented by a single analytic basis
set. The energy-normalized scattering wave functions for the
He+ 1s + εl channels were computed at the frozen-core HF
level for each value of the angular momentum and each value
of the free-electron energy, from 0.0 to 2.0 a.u., in steps of
0.001 a.u.

Wavelengths corresponding to one-photon excitations that
are off and on resonance with the 1s2p, 1s3p, 1s4p, and
1s5p 1P o Rydberg states were considered. Using the resulting
�(t), we computed the survival probability, P (t), defined in
Eq. (4). This P (t) is then fitted to e−�t , where � is the two-
photon-ionization rate. The cross section σ (2) is computed
from Eq. (7b). For transitions on resonance, the period of
oscillations of the SSEA P (t) agrees quantitatively with that
predicted by the Rabi formula (Figs. 1–3).

As explained and justified in Sec. III, in the present case,
the SSEA formalism and implementation were generalized
by making possible the calculation of bound-bound, bound-
free, and free-free coupling matrix elements of the full
electric operator of the multipolar Hamiltonian, Eq. (5). The
calculations were carried out subject to the electric-dipole
selection rules, which generate the overwhelmingly dominant
parts of the free-free matrix elements [12,13].

The numerical values for the SSEA σ (2) and their compari-
son with those from the experiments [1,2] and from the theory
of [4] are presented in Table III. The values for the weak
field 3 × 1012 W/cm2 at λ = 52.22 nm (on resonance with
the 1s4p 1P o state), and for the strong fields 5 × 1013 W/cm2

and 1 × 1014 W/cm2 at λ = 51.56 nm (on resonance with the
1s5p 1P o state), are predictions of this work. They can serve
as reference numbers in future FEL experiments.
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