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We simulate a one-dimensional fermionic optical lattice to analyze heating due to nonadiabatic lattice loading.
Our simulations reveal that, similar to the bosonic case, density redistribution effects are the major cause of
heating in harmonic traps. We suggest protocols to modulate the local-density distribution during the process of
lattice loading in order to reduce the excess energy. Our numerical results confirm that linear interpolation of the
trapping potential and/or the interaction strength is an efficient method of doing so, bearing practical applications
relevant to experiments.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a versatile
toolbox for the realization of strongly correlated quantum
Hamiltonians by virtue of their tunability and controllability
[1]. They allow probing of observables such as magnetic
correlations that are particularly interesting for fermionic
systems where magnetic ordering arises due to exchange
couplings between different spin components. Despite recent
progress that has been able to capture the short-range physics
[2,3], observing real long-range magnetic correlations is still a
great open challenge because of the low temperatures required
for magnetic ordering [4].

Without an optical lattice, evaporative cooling easily
reaches temperatures lower then T/TF ≈ 0.08 [5,6], but such
low temperatures have not yet been achieved in optical lattices.
In principle the process of lattice loading should be performed
adiabatically, but in practice one will always do so in a finite
time, thus deviating from the completely adiabatic regime and
incurring some heating.

The breakdown of the adiabatic lattice loading for optical
lattices has been well investigated [7,8]. Optimizing ramp
shapes [9], fast-forward loading schemes [10] where an
auxiliary potential assists in lattice loading, modulating trap
frequency and shape during loading [11–14], starting from a
low-entropy interacting state [15], introducing compensating
laser beams [16], using disordered potentials [17], and Peltier
cooling [18] are some ways to overcome effects of nonadia-
baticities and achieve lower temperatures in optical lattices.
Noninteracting fermions have been studied within superlattice
geometries in the continuum [19] for both homogeneous and
trapped setups. Density redistribution causes population of
higher Bloch bands but can be handled by optimizing the
initial part of the loading schedule until the gap to higher
Bloch bands opens up. Another way to cool down Fermi
gases in a deep optical lattice is to use a Bose-Einstein
condensate gas as a reservoir to transfer the excess entropy per
particle [20].

Numerical studies based on single-band models inherently
assume a deep optical lattice. However, loading starts from
the regime of a shallow (or no) lattice, and the important
initial phase is thus not captured by single-band models. Our

approach is based on a continuum model which is valid also
when the lattice is turned off and thus describes the entire
lattice loading process.

The study of nonadiabaticities in lattice loading and novel
cooling schemes are important to achieve the desired low
temperatures in experiments. In Ref. [14] some of the authors
studied a system of bosons in a one-dimensional (1D) optical
lattice in the continuum description. For homogenous systems
without a confining trap only minimal heating effects, less
than 1% of the effective hopping, were encountered even for
reasonably short ramp times. Moreover, the heating was seen
to decrease significantly as longer ramp times were considered.
In contrast, when the Hamiltonian included a harmonic
confinement potential, significant heating was observed and
seen to be more or less constant with ramp time. Significant
differences in the density distribution with and without an
optical lattice require major density redistributions, leading
to heating due to nonadiabaticity. This issue was overcome
by dynamically reshaping the trapping potential during the
process of lattice loading in order to reduce the need for
redistribution of particles in the lattice.

In this paper we generalize this study to spin-1/2 fermions,
considering four different target states: (i) a metallic state
throughout the trap, (ii) a band insulator in the trap center,
surrounded by metallic and Mott-insulating regions, (iii) a
Mott insulator with unit filling in the trap center, and (iv) a
central metallic core with density larger than one surrounded
by a Mott-insulating regions. The local-density distributions
of all these target states are shown in Fig. 1.

We initially show that for the metallic state and the
band-insulating core, a simple adiabatic ramp shows negligible
defects, whereas the other states, the pure Mott insulator and
one with a metallic core, suffer from heating during lattice
loading, caused by density defects. We then present revised
loading protocols that allow better redistribution of particles
during the ramping. Like in the bosonic case we dynamically
change one or more parameters of the system during loading
in order to reduce density defects. We show that this can be
achieved in a number of ways, either by dynamically changing
the trapping potential as in the bosonic case or by tuning the
interaction during loading.
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FIG. 1. Local-density distribution of the target states integrated
over each unit cell.

II. MODEL AND METHOD

We consider a continuum model of spin-1/2 fermions with
contact interaction. It can be written in as a function of the field
operators ψ̂†

σ (x) that create a fermion with mass m and spin σ

at the position x. The corresponding annihilation operator is
ψ̂σ (x). The Hamiltonian of a 1D system of size L can then be
written as

H =
∑

σ

∫ L

0
dx ψ̂†

σ (x)

[
− �

2

2m

d2

dx2
+ V (x)

]
ψ̂σ (x)

+ g

2

∑
σσ ′

∫ L

0
dx ψ̂†

σ (x)ψ̂†
σ ′(x)ψ̂σ ′(x)ψ̂σ (x), (1)

where the first term is the kinetic energy and the second one is
a site-dependent external potential energy. The four-operator
term is the contact interaction characterized by the interaction
strength g, which is obtained from the single-particle scattering
length [21]. The external potential carries the potential created
by the interfering lattice beams along with the harmonic trap
used for confining the system. It is given by

V (x) = V0 cos2(kx) + 1
2mω2x2, (2)

where V0 is the lattice depth, k = 2π
λ

is the wave vector of the
laser beam, and ω is the frequency of the harmonic trap. The
natural energy scale in the problem is the recoil energy defined
as Er = �

2k2

2m
. Our results will be presented in units of Er .

To simulate the continuum model we discretize space with
Ndiscr = 16 grid points per unit cell with length a = λ/2 of
the optical lattice. This gives a grid spacing d = a/Ndiscr. The
continuum Hamiltonian is thus mapped to a Hubbard model
written in terms of creation and annihilation operators c

†
i,σ and

ci,σ , respectively, with i being the grid site index and σ being
the spin of the fermion. Its Hamiltonian is

H = −J
∑

σ

∑
〈ij〉

c
†
i,σ cj,σ + H.c.

+
∑
σσ ′

∑
i

U

2
c
†
i,σ c

†
i,σ ′ci,σ ′ci,σ +

∑
σ

∑
i

εiniσ , (3)

where the kinetic term becomes the hopping amplitude J =
(�2/2m)/d2 between adjacent grid sites i and j , the contact
interaction turns into an on-site interaction U = g/d, and the
external potential is implemented as a site-dependent chemical
potential εi = V (x = d/2 + i d) + 2(�2/2m)/d2.

Note that in contrast to the effective single-band Hubbard
model valid in a deep optical lattice with Ndiscr = 1 lattice sites
per unit cell, our model corresponds to an effective Ndiscr-band
model, which allows accurate simulation of the initial loading
regime with no or very shallow optical lattices. By extending
some analysis with higher-discretization calculations we do
not observe any qualitative difference from Ndiscr = 8 to
Ndiscr = 32, which motivates the choice of an intermediate
discretization to draw our physical conclusions.

We simulate a fermionic optical lattice model numeri-
cally with the density-matrix renormalization-group method
(DMRG) [22,23]. DMRG is based on a variational ansatz
wave function called the matrix product state (MPS), which for
one-dimensional quantum systems reduces the exponentially
growing complexity to just a polynomial scaling by limiting
the amount of entanglement which is captured by the ansatz.
The accuracy of the algorithm is systematically improved with
an increase of the MPS bond dimension M .

To overcome convergence problems of the standard DMRG
approach in large dilute lattices we use the multigrid DMRG
algorithm [24]. Time evolution within the MPS framework is
performed while making use of the time-dependent variants
of DMRG [25–27], which split noncommuting terms in the
unitary time evolution operator via a second-order Suzuki-
Trotter decomposition on a small time step δt = 0.01 �/Er . As
our goal is to evolve the system as adiabatically as possible,
a modest bond dimension between M = 400 and M = 600
turned out to be sufficient.

Note that due to the presence of a trapping potential the
open boundary conditions of standard DMRG simulations do
not introduce any errors, as long as we keep the system size
L larger than the effective size Leff of the trapped fermionic
cloud.

III. RESULTS

A. Lattice loading protocols and observables

To simulate optical lattice loading we first calculate the
ground-state wave function |ψinit〉 in the absence of an optical
lattice, i.e., V0(t = 0) = Vi = 0. This state |ψ(t)〉 is then
evolved under a time-dependent Hamiltonian with lattice
potential V0(t). In our simulations we use a linear ramp that
interpolates between the initial depth Vi and final depth Vf of
the optical lattice as

V0(t) = Vi + (Vf − Vi)
t

tR
, (4)

where tR is the total ramp time. At the end of the lattice loading
the model is expected to have reached the target state with
lattice potential V0(tR) = Vf = 8 Er . The final state |ψfinal〉 ≡
|ψ(t = tR)〉 is then compared to the target ground state |ψtarget〉.

To quantify and understand the origin of the defects we
calculate several observables during the evolution of the wave
function |ψ(t)〉 to the final state |ψfinal〉. Of particular interest
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are the excess energy per particle,

q|(t=tR ) = (E[|ψfinal〉] − E[|ψtarget〉])/N, (5)

and the fidelity compared to the target ground state,

f |(t=tR ) = |〈ψtarget|ψfinal〉|. (6)

We also study the time evolution of the local density

nσ (x,t) = 〈ψ(t)|n̂σ (x)|ψ(t)〉. (7)

In the following results we will report only the total density
per grid point n(x) = n↑(x) + n↓(x) since the local magneti-
zation 〈Sz

i 〉 = 0 is conserved by symmetries. Additionally, we
compute the local density integrated over one optical lattice
unit cell,

nm =
Ndiscr∑
k=1

n(x)

∣∣∣∣
x=(i+k−1) a

, (8)

which simplifies the analysis in terms of the effective lattice
model; for example, one expects nm = 1 in the Mott regime
and nm = 2 in the band-insulating regime for all m = 1, . . . ,L.

In order to reduce nonadiabaticities we will propose an
improved loading schedule that dynamically changes one or
more parameters of the Hamiltonian in addition to the lattice
depth in the time-dependent Hamiltonian. The first protocol
follows the approach of Ref. [14] to dynamically reshape the
trapping potential by linearly modulating the trap frequency ω.
Starting with an initial value ωi , we increase ω linearly during
the lattice loading to reach the desired target value ωf at the
end of ramp time. At time t the trap frequency is given by

ω(t) = ωi + (ωf − ωi)
t

tR
. (9)

We perform simulations with different values of wi and
different ramp times to study the scaling behavior. Our results
for the improvements observed with this protocol are shown
in Secs. III D and III E.

Alternatively, we continuously tune the interaction strength
during the time evolution, which is more easily done in
experiments via Feshbach resonances [28,29]. Since the
density distribution of the initial state is found to be too
narrow compared to the target state, we initially use a stronger
interaction gi to broaden the atomic cloud. g(t) is then linearly
reduced to its target value gf :

g(t) = gi − (gi − gf )
t

tR
. (10)

B. Metallic target state

We begin by studying the metallic target states, where
the fermions are delocalized over the lattice. Such a state
is observed for a small number of particles N < Leff and
with a weak contact interaction. We simulated a chain of
N = 8 particles, i.e., N↑ = N↓ = 4. The interaction strength
was chosen to be g = 0.2 Erλ/2 along with a trap frequency of
ω = 0.1 (�/Er )−1. The local density of this target state and the
corresponding initial state without lattice potential are shown
in Fig. 2.

Our simulation results, shown in Fig. 3, indicate that it is
possible to reach a final state fairly close to the target state just
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FIG. 2. Local-density distribution of the initial state (Vi = 0) and
the metallic target state (Vf = V0 = 8Er ) integrated over each unit
cell.

by slow loading the lattice. For tR = 256 �/Er , we observe a
fidelity of more than 94% and reduce the heating by a factor
of 10 compared to shorter ramp times tR = 16 �/Er .

Intuitively, one might think of the metallic state as a gapless
state, with continuous excitations in momentum space. Hence
this lattice loading could be extremely capable of populating
low-lying excited states at the risk of generating a lot of excess
energy. However, given the finite system size Leff originating
from the harmonic confinement, there is always a finite gap
that drastically reduces the excitations.
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FIG. 3. Dependence on the ramp time of (a) excess energy and
(b) fidelity for a metallic target state.
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FIG. 4. Evolution of the density profile during the ramp up for
ramp time tR = 256 �/Er for a metallic target state.

Additionally, the similarity of the density profiles of the
initial and the target states allows the system to evolve almost
without any defect. This is illustrated in the Fig. 4, which
shows snapshots of the density profile that have been collected
at several time steps during the longest lattice loading up to
tR = 256 �/Er . The final state (orange curve) shows only very
minimal deviations from the target state (red curve).

C. Central band insulator

Next, we examine a target state that exhibits the coexistence
of two phases: a central band-insulating regime flanked by
Mott-insulating regions. Both these phases are incompressible
and characterized by integer values of the average local density
per unit cell. The Mott phase has one particle per lattice site,
while the band insulator has an occupancy of two particles
per site.

Here we consider a chain with a particle number N close to
(but less than) twice the effective system size Leff . Specifically,
we choose N = 20 particles (N↑ = N↓ = 10) with interaction
strength g = Erλ/2 and trap frequency ω = 0.3 (�/Er )−1.

The integrated local-density distributions for the initial and
target states are shown in Fig. 5. In the target state the bulk of
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FIG. 5. Local-density distribution of the initial state (Vi = 0) and
the Mott insulator with bulk band-insulator target state (Vf = V0 =
8Er ) integrated over each unit cell.
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FIG. 6. Dependence of the (a) excess energy and (b) fidelity on
ramp time for the case of a central band insulator.

the system shows a band-insulator phase, while the edges are
in the Mott insulator phase.

Note that, again, the density distributions of the initial state
and the target state resemble each other in two important
ways, namely, the spatial spread of the system along with the
peak value and its position in the density profile. This is the
main reason why we notice that such a system does not incur
significant heating if the lattice loading is done sufficiently
slowly.

The heating and fidelity as a function of the ramp time
are shown in Figs. 6(a) and 6(b), respectively. The fidelity
grows rather rapidly initially upon increasing the loading time
but then tends to saturate more or less around 90%. For the
shortest ramp time, the final density distribution is far from that
of the target state. The proximity to the target state increases
rapidly for the first few ramp times that we considered due
to rapid changes in the density profile during the loading.
Thereafter, the final state matches the target state to a good
degree, and further slowing down loading brings about only
slight modifications in the density profile. This leads to a
saturation of the fidelity. The evolution of the local-density
profile for the central-band-insulator state shown in Fig. 7 for
ramp time tR = 256 �/Er confirms a good match between the
final and target states.

Note that although this target state is inherently incom-
pressible as opposed to the metallic state studied in Sec. III B,
it still does not suffer from adverse heating effects. This is a
manifestation of the fact that the density distribution of the
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FIG. 7. Evolution of the density profile during the ramp up for
ramp time tR = 256 �/Er for the case of a central band insulator.

initial state that is in close qualitative correspondence in terms
of Leff and peak value, allowing an appropriate redistribution
of particles during the ramp to reach the desired target state.

D. Mott insulator

Our next choice of target state is a Mott insulator in the
center of the trap. We choose N = 12 particles (N↑ = N↓ =
6) with interaction strength g = 2 Erλ/2 and trap frequency
ω = 0.25 (�/Er )−1. The local-density profiles of the initial
state and the target state are shown in Fig. 8.

For this target state we observe that increasing ramp times
does not lead to high fidelity. Even for the longest ramp time
that we considered (tR = 256 �/Er ), the highest fidelity we
achieved is only about 15%, as shown in Fig. 9(a). However, by
further increasing the ramp time, we should be able to get better
fidelity, although possibly not an impressive increase. The
slow increase in fidelity with ramp time is a clear indication
that simulating the lattice loading with a finite ramp time is
not the main cause of heating in the system. A fermionic
Mott-insulator state in a homogenous system (without a
trapping potential) does not suffer from strong defects, and
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FIG. 8. Local-density distribution of the initial state (Vi = 0) and
the Mott-insulator target state (Vf = V0 = 8Er ) integrated over each
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FIG. 9. Dependence of the fidelity on ramp time for a Mott-
insulator target state in the (a) trapped case and (b) homogenous
case.

both the excess energy and the fidelity scale well up to, for
instance, a fidelity of 80% for ramp time tR = 256 �/Er , as
shown in Fig. 9(b). This is far from the value observed for the
trapped Mott insulator, which hints at the harmonic trap being
a plausible source of heating.

In Fig. 10(a) we show the evolution of density profile during
lattice loading. This plot reveals that the loading process is not
able to distribute particles in the desired way, thus deviating
significantly from the target state. As is evident from the figure,
the evolution tends to keep the particles close to the trap center,
and this peak remains until the end of the ramp time.

From our previous analyses in Secs. III B and III C, we
understand that a qualitative match between the density of the
initial and target states is imperative to avoid strong density
defects during lattice loading, which can be achieved by
dynamically changing system parameters during loading.

We first linearly modulate the trap frequency. Figure 11
shows the excess energy and fidelity scanning different initial
trap frequencies ωi . We observe a huge improvement in the
fidelity and a sizable decrease in the excess energy compared
to the case when the trap frequency is fixed during the lattice
loading, which corresponds to the rightmost point in the plots.

From the shape of the curves we can identify three different
scaling behaviors. Close to the target ωf the observables do
not show any appreciable variation, and the results are always
significantly different from those of the target state, while wide
initial traps (low ωi) reach the target state, but this process
scales slowly. An optimal and fast scaling is observed for
intermediate ωi . We can identify an optimal initial state marked
by a maximum in the fidelity curve, which happens to be at
wi = 0.16(�/Er )−1 for our particular simulation.
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FIG. 10. Evolution of the density profile during the ramp up
for a Mott-insulator target state with ramp time tR = 256 �/Er (a)
without tuning the trap frequency and (b) with linear modulation
of the frequency for the optimal value of initial frequency [wi =
0.16 (�/Er )−1]. The black line corresponds to the target state.

The local-density distribution of the optimal initial state
is shown by the blue curve in Fig. 8. The maximum fidelity
achieved for tR = 256 �/Er is almost 98%, and the heating is
reduced by a factor of 50.

In Fig. 10(b) we show the evolution of the density profile for
this optimal state during the lattice loading for tR = 256 �/Er .
This is in stark contrast to the evolution plot of Fig. 10(a),
where the trap frequency remained constant during the entire
process of loading. From t = 0 to time t1 = tR/4, the density
profile is changed drastically when the trap frequency is
modulated, which was not the case earlier. Also, the time-
evolved state at time t1 is nearly a Mott state in the trap center,
whereas it had a more metallic nature in the previous case.
At the end of ramp time, the density profile of the final state
is almost exactly that of the target state, corresponding to an
overlap of almost 98% [as can be seen in Fig. 11(b)].

We can thus conclude that density redistribution is the main
cause of heating. By tuning the trap frequency during the lattice
loading we are able to distribute the particles more efficiently;
thus we observe a remarkable jump in the fidelity. An optimal
initial state is the one with a considerable matching to the
target density profiles.
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FIG. 11. Variation of (a) excess energy and (b) fidelity as a
function of the initial frequency for a Mott-insulator target state.
The different colors correspond to different ramp times.

E. Mott insulator with a metallic core

The last target state we investigate is the Mott-insulator state
with a metallic core, as shown in Fig. 12. Our simulations are
done with N = 20 particles (N↑ = N↓ = 10) with interaction
strength g = 3 Erλ/2 and trap frequency ω = 0.25 (�/Er )−1.
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FIG. 12. Local-density distribution of the initial state (Vi = 0)
and the Mott insulator with a metallic core target state (Vf = V0 =
8Er ) integrated over each unit cell.
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FIG. 13. Evolution of the density profile during the ramp up for
the case of a Mott insulator with a metallic core at ramp time tR =
256 �/Er (a) without tuning the trap frequency and (b) with linear
modulation of the frequency for the optimal value of initial frequency
[wi = 0.19 (�/Er )−1]. The red line corresponds to the target state.

Ramping up the lattice potential shows severe heating,
and the fidelity remains less than 2% even for the longest
ramp times simulated (tR = 256 �/Er ). We again track the
evolution of the local density during the ramp up, as we show
in Fig. 13(a). It reveals that the final state has a core with
a substantial number of sites having a local density of two
particles per unit cell, tending towards a band-insulator core
rather than a metallic one.

In order to reduce these defects we again dynamically
change model parameters during loading. Varying the trap
frequency improves the fidelity compared to the target
state to about 96% at ramp time tR = 256 �/Er for ωi =
0.19 (�/Er )−1. The excess energy is also reduced significantly.
Figure 14 shows the heating and fidelity under trap modulation
for different ramp times. The optimal initial state has two
characteristic features: it mimics the target state in the extent
of the density distribution, and second, it lowers the peak value
of the density.

We next modify the interaction strength during loading
according to Eq. (10). This approach also provides a qualitative
improvement of the fidelity. Figure 15 shows the fidelity as a
function of interaction strength for different ramp times. It is
evident that this protocol leads to a more extended optimal
regime where the fidelity is maximized. A similar pattern for
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FIG. 14. Variation of (a) excess energy and (b) fidelity as a
function of the initial frequency for the case of a Mott insulator with a
metallic core. The different colors correspond to different ramp times.

the evolution of the local density with the longest ramp time
is observed as in Fig. 13(b) starting from initial states with
interaction strength lying at the optimal plateau.

Yet another approach is to combine the above two ap-
proaches. In such a scenario, we tune both the interaction
strength and the trap frequency during the lattice loading.
In our simulations we see that linearly modulating both
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FIG. 15. Variation of the fidelity as a function of the interaction
strength for the case of a Mott insulator with a metallic core. The
different colors correspond to different ramp times. The color scheme
is the same as in Fig. 14.
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FIG. 16. Mott insulator with a metallic core. (a) Local-density
distribution profiles for the optimal initial states obtained from all
lattice loading protocols. The target state is shown for reference.
(b) Dependence of the fidelity on ramp time (starting from the optimal
state) for all lattice loading methods.

trap frequency and interaction strength, starting from a good
candidate state, efficiently distributes the particles during the
lattice loading.

We survey several values of the parameters (gi,ωi) in order
to find a state that fits our two essential qualitative properties
and thus turns out to be a good initial state. One candidate for an
optimal initial state is obtained for ωi = 0.16 (�/Er )−1,gi =
1.4 Erλ/2. In Fig. 16(a) we show the density profile for this
optimal state along with the optimal states obtained from

the other protocols. We compare the fidelity dependence on
ramp time for the different protocols suggested in Fig. 16(b).
We find that modified loading protocols achieve significant
improvement in fidelity over the simple ramp of the lattice
potential. Moreover, all three protocols are more or less equally
efficient in doing so. This highlights once more that density
defects are a relevant cause of heating that can be overcome
by adjusting the model parameters to minimize variations in
local-density distribution with respect to the target state.

IV. CONCLUSIONS AND OUTLOOK

Our key result is that, similar to the bosonic case, density
redistribution is also the main source of heating during optical
lattice loading for fermions. This indicates that modifying the
loading scheme to keep the density distribution during the
lattice loading similar to that of the desired target state can
significantly reduce heating.

This can be achieved in various ways, for example, by
modifying the trapping or interaction strength during optical
lattice loading. Our numerical simulations show that these
approaches are equally efficient, thus leaving room to select
the one that is best suited to the experimental setup. The fidelity
of the final state is significantly improved by up to a factor
of 50.

Although our numerical results are for one-dimensional
fermionic optical lattices, the conclusions are expected to be
valid also in higher dimensions since the density redistribution
arguments are still intuitively valid. While DMRG methods
are inefficient in higher dimensions, density profiles can be
calculated using other numerical techniques, such as quantum
Monte Carlo approaches. Adjusting system parameters to
achieve similar density profiles throughout lattice loading can
pave the way to lower temperatures in optical lattices.
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