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Multilevel perspective on high-order harmonic generation in solids
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We investigate high-order harmonic generation in a solid, modeled as a multilevel system dressed by a strong
infrared laser field. We show that the cutoff energies and the relative strengths of the multiple plateaus that emerge
in the harmonic spectrum can be understood both qualitatively and quantitatively by considering a combination
of adiabatic and diabatic processes driven by the strong field. Such a model was recently used to interpret the
multiple plateaus exhibited in harmonic spectra generated by solid argon and krypton [G. Ndabashimiye et al.,
Nature 534, 520 (2016)]. We also show that when the multilevel system originates from the Bloch state at the �

point of the band structure, the laser-dressed states are equivalent to the Houston states [J. B. Krieger and G. J.
Iafrate, Phys. Rev. B 33, 5494 (1986)] and will therefore map out the band structure away from the � point as
the laser field increases. This leads to a semiclassical three-step picture in momentum space that describes the
high-order harmonic generation process in a solid.
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I. INTRODUCTION

Beginning with its first observation in rare gases almost
30 years ago [1], high-order harmonic generation (HHG) has
become the foundation for attosecond science through a series
of advances at the fundamental as well as the applied level
[2–9]. Since the turn of the millennium, attosecond pulses
produced via gas-phase HHG have become a successful tool
for the study of ultrafast dynamics in atoms, molecules, and
biological systems [10–13]. The recent observation of HHG
from bulk solids, displaying a plateau of harmonics that ends
in a high-frequency cutoff [14–20], has generated considerable
interest given its potential as both a compact, next-generation
ultrafast light source in the extreme ultraviolet (XUV) and
the promise of applying HHG spectroscopic techniques to
correlated electron dynamics in bulk materials [17].

The mechanism for HHG in solids has been intensely de-
bated [21–30], and a conceptual picture of the generation pro-
cess, augmented by new experimental results [16,17,19,20,31],
is only slowly beginning to emerge. In momentum space,
the discussion has centered on the relative contributions of
interband and intraband processes to the driven nonlinear
current that gives rise to the harmonic radiation [14,16,23–26].
A consensus is forming that while intraband contributions
are important for harmonics with energies below the band
gap [16], interband processes generally dominate the higher
harmonics that span the plateau region [26,27]. In real space,
Vampa and collaborators [23] have proposed a three-step
semiclassical model in which a localized electron and hole pair
are accelerated away from and recollide with each other after
traversing many lattice cells, in analogy with the gas-phase
three-step model of HHG [4,5].

While most of the works discussed above have described
the strong-field dynamics using only a valence band and the
lowest-lying conduction band, recent experimental and
theoretical findings indicate another layer of complexity
in the HHG process: Ndabashimiye et al. [20] directly
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compared the harmonics from argon and krypton in their solid
phase and their gas phase and found that the solid HHG spectra
exhibited multiple plateaus with the highest cutoff energies far
exceeding those found in the gas phase for the same laser
intensity. The multiple plateaus and their relative strengths
and cutoff energies were reproduced using a multilevel model
that takes into account the coupling between the valence band
and several conduction bands at the high symmetry (�) point
in solid argon [20].

In this paper we explore in detail the multilevel model
used in [20] to calculate the HHG spectrum from a solid
interacting with a strong, mid-infrared laser field. We show that
the appearance of multiple plateaus in the harmonic spectrum
from such a system can be understood both qualitatively and
quantitatively, and we derive predictions for the cutoff energies
and the relative strengths of the different plateaus. We begin
by showing that a multilevel system is a natural basis in
which to consider harmonic generation in a solid, because
when the time-dependent Schrödinger equation (TDSE) in a
periodic system is solved in the velocity gauge the different
values of the crystal momentum k0 remain uncoupled even
in the presence of a laser field [21,32]. The band structure
of the solid can thus be represented as a collection of
independent multilevel systems, and the dynamics in the
solid is given by the sum of the dynamics of each k0 value
represented in the initial wave function. Here we concentrate
on the dynamics that result from the simplest possible initial
condition, in which a single Bloch state with k0 = 0 (� point)
is considered so that the initial electron wave function is
maximally delocalized. In [26] we showed that this very simple
condition reproduces the characteristics of inter- and intraband
contributions to HHG and their relative importance to low-
and high-order harmonics. We interpret the electron dynamics
in the multilevel system in terms of the time-dependent
eigenstates of the laser-dressed system, the adiabatic states,
and we show how HHG proceeds through a combination of
adiabatic and diabatic processes involving the dressed states,
similarly to what has been discussed, for instance, in [24]. We
use the evolution of the adiabatic states to derive predictions
for the cutoff energies and relative strengths of each plateau
supported by the multilevel system.
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After discussing HHG in multilevel systems, we show that
when the multilevel system is constructed from the energy
levels and their transition matrix elements for a periodic
potential at k0 = 0, the adiabatic states will recover the full
k0 �= 0 band structure of that solid, if we allow the crystal
momentum to increase with the vector potential of the field,
similar to what is done in the Houston-state treatment in
Ref. [32]. This correspondence between the adiabatic states
and the band structure leads us to a semiclassical, three-step
picture for harmonic generation in a solid, in momentum space.
In this picture, the delocalized electron first tunnels from the
valence band (VB) to the conduction band (CB) at the zero
of the vector potential and then is accelerated on the CB
as the vector potential increases and decreases through an
optical half-cycle. The coherence between the VB and the
CB populations leads to the emission of XUV radiation, with
photon energies corresponding to the instantaneous energy
difference between the VB and the CB. This means that
every energy below the cutoff energy is emitted twice in
each half-cycle. This picture also allows us to predict that
for a one-dimensional (1D) multiband system, the maximum
cutoff energy of each plateau will be limited by the maximum
band gap between the VB and the highest-lying CB involved
in producing that plateau. This extends the cutoff limitation
proposed in [28] and [24] for two-band systems to a multiband
system exhibiting multiple plateaus in the harmonic spectrum.

The paper is organized as follows: In Sec. II we introduce
the theoretical framework that the remainder of the paper is
based on, namely, the solution of the single-active-electron
TDSE in a 1D solid interacting with a strong field, and
we discuss our initial condition of a delocalized electron
wave function. In Sec. III we use the simplest multilevel
system—the two-level system—to review the formalism for
how to think about HHG in a multilevel system both at
the qualitative level, using a three-step picture, and at the
quantitative level, in terms of predictions for the strength and
extent (cutoff energy) of the plateau. In Sec. IV we study
HHG in a multilevel system consisting of four or more levels,
which, as discussed above, leads to the appearance of multiple
plateaus in the harmonic spectrum. We extend the two-level
formulas and derive expressions for the cutoff energies and
relative strengths of the different plateaus. Finally, in Sec. V
we show the connection between the adiabatic states of the
dressed multilevel system and the band structure of the model
solid and the resulting semiclassical picture of HHG in solids.
Section VI presents a brief summary of our results. We use
atomic units throughout this paper.

II. SOLVING THE TDSE FOR A 1D SOLID

Strong-field processes in solids are often modeled by
solving the TDSE in the velocity gauge using the dipole
approximation [21,24–26],

i
∂

∂t
|ψ(t)〉 =

(
p̂2

2
+ V (x̂) + �A(t) · p̂

)
|ψ(t)〉 , (1)

where V (x̂) is a periodic, one-electron pseudopotential that
can be calculated approximately, for instance, from density
functional theory. �A(t) is the vector potential of the laser pulse
in the dipole approximation, where we assume that the laser

wavelength (often 1 μm or greater) is much larger than the
lattice constant, meaning that we can take �A to be coordinate
independent. Throughout the paper, we consider a 1D model,
so that the x̂ and �A reduce to 1D quantities. This models a
thin crystal with one of the transverse crystal directions (for
example, the � − X) aligned with the laser polarization.

When solving Eq. (1) in the independent particle model it is
convenient to expand the time-dependent wave function in the
eigenstates of the field-free Hamiltonian, i.e., the Bloch-state
basis

|ψk0 (t)〉 =
∑

n

Cnk0 (t) |φnk0〉 , (2)

where |φnk0〉 is the Bloch state for a specific crystal momentum
k0 in the nth band. This expansion allows us to take advantage
of the fact that within the dipole approximation each crystal
momentum channel k0 is independent [21], even in the
presence of the field. After expanding in the Bloch-state basis,
the TDSE in each crystal momentum channel is

i
∂

∂t
Cnk0 = Cnk0εn(k0) + A(t)

∑
n′

Cn′k0p
nn′
k0

, (3)

where εn(k0) is the energy of the nth band at k0, and pnn′
k0

is the
transition matrix element between the Bloch states with the
same k0 and different band indices:

pnn′
k0

= 〈φnk0 |p̂|φn′k0〉 . (4)

We note here that Eq. (3) for a single k0 channel is simply the
TDSE for a multilevel system interacting with a laser field, so
that the solid dynamics can be constructed as an ensemble of
independent multilevel systems.

To calculate the HHG signal we need the coherent part of
the current, which is

jk0 (t) = −[〈ψk0 (t)|p̂|ψk0 (t)〉 + A(t)]

= −
[

Re

[∑
n,n′

C∗
nk0

(t)Cn′k0 (t)pnn′
k0

]
+ A(t)

]
(5)

in each k0 channel. In principle, we need to consider all
possible k0 in the first Brillouin zone and calculate the total
current as

j (t) =
∫

k0∈BZ
jk0 (t)dk0. (6)

In this paper, however, we restrict our study to the single
excitation channel, k0 = 0, corresponding to a maximally
(spatially) delocalized Bloch state at the high symmetry point
� of the band structure. In our 1D model, as in many direct
band-gap materials, the transition matrix element between the
VB and the CB is maximized at k0 = 0. This is, in particular,
true in solid argon, which we use as an example below. This
means that the electron at k0 = 0 has the highest excitation
probability to the higher conduction bands. One therefore
expects the largest contribution to the highly nonlinear HHG
yield to originate at k0 = 0, as has indeed been verified
in calculations incorporating the 3D band structure [27], at
moderate intensities. Moreover, for the purposes of this work,
using a single k0 channel allows us a straightforward extension
beyond a two-band model which was shown to be necessary to
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reproduce the multiple harmonic plateaus observed in recent
experiments [20,26]. With this initial condition, the dynamics
of the solid is equivalent to that of a multilevel system, where
the levels are the Bloch states for the different bands at
a specific k0, and the transition matrix elements are those
between the Bloch states of the same k0 in different bands.

III. HIGH-HARMONIC GENERATION IN A
TWO-LEVEL SYSTEM

In this section, we review HHG in the simplest multilevel
system—the two-level system. The HHG process in a two-
level system has been studied extensively before, mostly in
the context of atomic states with a coupling specified in terms
of the electric field, in the length gauge [33–46]. Our two-
level system originates in a two-band solid and consists of
Bloch states in two different bands but with the same k0 that
are coupled by the vector potential as shown in Eq. (3). The
Hamiltonian for our laser-driven two-level system can then be
written as

H =
(

ω1 μA(t)
μA(t) ω2

)
, (7)

where the two levels correspond to the valence and conduction
bands at k0 = 0. μ = pvc

k0=0 is the transition matrix element
between these two Bloch states, and ω1 and ω2 are the
energy of the highest valence band and the lowest conduction
band, respectively. Their energy difference is defined as ω0 =
ω2 − ω1, which is the band gap at k0 = 0. In our numerical
calculations we use a laser pulse with a central frequency ω.
The pulse is derived from the vector potential A(t) that has a
cos4 envelope:

A(t) = A0 cos4

(
ωt

2n

)
cos(ωt), −nπ

ω
� t � nπ

ω
. (8)

A0 is the peak vector potential and n is the total number
of cycles used in the calculation. It is also useful to define
the peak Rabi frequency 	0 and the time-dependent Rabi
frequency ℘(t):

	0 = μA0, (9)

℘(t) = μA(t). (10)

Then the Hamiltonian for this two-level model can be written
as

H =
(

ω1 ℘(t)
℘(t) ω2

)
. (11)

A typical harmonic spectrum from a strongly driven two-
level system is shown in Fig. 1(a), where the two-level energy
separation is ω0 = 1 a.u., the laser frequency is ω = 0.1 a.u.,
the Rabi frequency is 	0 = 2 a.u., and the total number of
cycles in the pulse is n = 11, which yields a FWHM duration of
about three cycles for the envelope we are using. The spectrum
exhibits a perturbative regime (photon energies between ω and
9ω), a plateau regime (photon energies between 9ω and 41ω),
and a cutoff regime with a fast decline (photon energies >41ω).

For the parameters used in Fig. 1 the HHG process
in the two-level system can best be described using the
time-dependent adiabatic states of the system, which are the

FIG. 1. (a) Harmonic spectrum for a two-level system, with
parameters ω0 = 1 a.u., 	0 = 2 a.u., and ω = 0.1 a.u. (b) Adiabatic-
state energies as a function of time. Avoided crossings are formed
at the zeros of the vector potential. (c) Wavelet transform of the
time-dependent current, corresponding to the emission time of the
harmonics. The thin black line indicates the energy difference
between the adiabatic states in (b). Inset: Three-step picture for the
HHG process near an avoided crossing (see text). (d) Population in
the two adiabatic eigenstates.

instantaneous eigenstates of the time-dependent Hamiltonian
in Eq. (11) [37,38,40]. For the full description of the adiabatic
basis, see Appendix A. Diagonalizing the time-dependent
Hamiltonian in Eq. (11) we get the time-dependent energies
of the adiabatic states,

E±(t) = ±
√

℘2(t) +
(ω0

2

)2
, (12)

which are shown in Fig. 1(b). For our choice of parameters,
	0 = 2ω0, the dressed-state energies E±(t) almost trace the
magnitude of the vector potential ±|A(t)|. Their separation is
maximized at the peaks of the vector potential and minimized
at the zeros of the vector potential, where the two adiabatic
states form avoided crossings.

To illustrate the usefulness of the adiabatic basis, we
explore the time-frequency properties of the two-level har-
monics in Fig. 1(c), which shows the wavelet transform of
the time-dependent current, using a Gabor wavelet, g(t) =

1
4
√

π
e− t2

2 +10it [47]. The wavelet transform is similar to a
time-limited, sliding-window Fourier transform and reveals
the emission time of the harmonics. The thin curve overlaid on
top is the energy difference between the two adiabatic states
E+(t) − E−(t). We see that the two-level harmonic emission
process involves two symmetric “paths,” and the emission time
of each path agrees very well with the adiabatic-state energies.

The time evolution of the excited-state population is also
most easily understood in the adiabatic-state basis, as shown
in Fig. 1(d). In this basis, the population evolution can be
separated into adiabatic and diabatic processes, as indicated
by the arrows in Fig. 1(d). The adiabatic process manifests
itself as the dressed level population’s staying the same, while
in the diabatic process the population changes abruptly. The
diabatic processes take place at the zeros of the vector potential
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when the two states form avoided crossings and the time-
dependent transition matrix element between the adiabatic
states is greatly peaked [see Eq. (A12) in Appendix A].
Between the avoided crossings the system evolves almost
adiabatically, so the populations in the two adiabatic states
stay almost the same. This adiabatic evolution corresponds to
rapid oscillations in the bare-state populations (not shown),
and the resulting nonlinear current is responsible for the high
harmonics generated between the zeros of the vector potential
as shown in Fig. 1(c).

From the above analysis of the time-frequency properties
of the harmonics and the population evolution in the adiabatic
states, a three-step picture emerges for HHG in the two-level
system in the adiabatic basis, as shown in the inset in Fig. 1(c).
The inset shows the enlargement of an avoided crossing in
Fig. 1(b). In the first step, the population tunnels through
the avoided crossings from the lower adiabatic state to the
upper adiabatic state. In the second step, the population in
the adiabatic states evolves adiabatically, gaining a phase
proportional to their time-dependent energy separation. In
the final step, the coherence between the adiabatic states
generates high harmonics with energies corresponding to the
instantaneous energy separation between the two adiabatic
states. The lowest harmonic generated in this process is at
the bare-state two-level energy difference,1 and the highest
harmonic is generated at the largest energy difference between
the two dressed states [37,38],

Elow = ω0, (13)

Ecutoff = 2

√
	2

0 +
(ω0

2

)2
. (14)

The lowest and the highest harmonics predicted by these
formulas are indicated by the vertical lines in Fig. 1(a) and
can be seen to agree very well with the extent of the plateau
region.

The three-step picture of HHG in a two-level system works
well when the diabatic interactions are short compared to the
adiabatic evolution, so that the “diabatic tunneling” and the
“adiabatic following” can be separated in time. The condition
for the well-separated adiabatic and diabatic processes can
be written as a “crossing parameter,” R = ω0/2	0 [38]. For a
high intensity and small two-level separation such that R 
 1,
the adiabatic and diabatic processes are well separated and
thus the three-step picture works very well, whereas for a low
intensity and large two-level separation such that R � 1, the
adiabatic and diabatic processes are not well separated and
the three-step picture may not apply. For our parameters in
Fig. 1, R = 0.25 and the adiabatic and diabatic description
works very well as expected.

In the two-level model of harmonic generation, the cutoff
is determined by the maximum energy difference between
the adiabatic states [see Eq. (14)]. For intense fields, the
cutoff is approximately linear with the field strength, i.e.,
Ecutoff ≈ 2	0. Figure 2(a) shows the field dependence of the

1Harmonics with lower energies are generated in a perturbative
process, with strengths that decrease rapidly with order.

FIG. 2. (a) Evolution of the harmonic spectrum as a function of
the peak field strength. The solid line indicates the prediction for the
cutoff from Eq. (14). As the Rabi frequency exceeds the two-level
energy, the cutoff is approximately linear with the field strength. (b)
The strength of the harmonic plateau (blue dots) agrees with the
prediction of Landau-Zener tunneling (solid red line) very well.

harmonic spectrum, overlaid on top of which is the cutoff
predicted from Eq. (14). The cutoff formula Eq. (14) works
very well. Since the harmonics are generated by the coherence
between the adiabatic states, the harmonic strength is then
determined by the population at the adiabatic states, which
is directly related to the tunneling rate between the adiabatic
states at the avoided crossings. This tunneling rate can be
calculated using the Landau-Zener tunneling formula near an
avoided crossing [38],

P = α exp

(
− πω2

0

4ω	0

)
, (15)

where α is a scaling factor. The dots in Fig. 2(b) show the yield
of the harmonics in the plateau (measured by the strength of
the cutoff harmonic) for different electric-field values [defined
as E(t) = −Ȧ(t)]. The solid line shows the prediction from
Eq. (15) with α = 10. We can see that Eq. (15) works well in
predicting the intensity of the plateau.

IV. HHG IN A MULTILEVEL SYSTEM

In this section we expand from a two-level system to
a multilevel system. We begin with a four-level system,
again formed by the Bloch states of a 1D model solid
at k0 = 0. Our model solid has a Mathieu-type periodic
potential V (x) = −V0[1 + cos(2πx/a0)], with V0 = 0.37 a.u.
and lattice constant a0 = 8 a.u. This potential conveniently
has a band structure that can be expressed in terms of Matheiu
characteristic values [48]. The harmonic spectrum from this
solid system can be calculated by solving the TDSE in the
Bloch-state basis and the resulting harmonic spectrum exhibits
multiple plateaus, as described in [26]. The energies and
coupling matrix elements for the lowest five Bloch states at
k0 = 0 can be calculated by solving the time-independent
Schrödinger equation and are listed in Table I. For our
four-level system, we discard the lowest-energy Bloch state
and use the second-lowest state as the valence band. Table I also
shows that the coupling between the four levels predominantly
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TABLE I. Energies and transition matrix element for the first five
Bloch states at k0 = 0 of the 1D solid. For the four-level system, we
use the Bloch state from level 1 to level 4 (see text).

Transition matrix element (a.u.) [Eq. (4)]

Level

Level 0 1 2 3 4 Energy (a.u.)

0 0 0.41 0 0.03 0 −0.526
1 0.41 0 0.70 0 0.14 −0.098
2 0 0.70 0 0.18 0 0.056
3 0.03 0 0.18 0 1.55 0.878
4 0 0.14 0 1.55 0 0.880

takes place in a stepwise manner, since the coupling matrix
elements between neighboring levels are much larger than
across multiple levels.

The harmonic spectrum from the four-level system, driven
by a 3.2 μm laser with a field strength of E0 = 4.1 × 10−3 a.u.
is shown in Fig. 3(a). We note that retaining more Bloch
states in the TDSE calculation does not change the harmonic
spectrum for a range of field strengths (see [26]). The spectrum
exhibits a characteristic two-plateau structure, where each
plateau has an onset energy and a cutoff. The mechanism
for this two-plateau structure can be understood by extending
the three-step picture discussed for the two-level system in the
previous section. The time-dependent energies of the adiabatic
states for the four-level system are plotted in Fig. 3(b). The
adiabatic states form two pairs of two closely coupled states,
resembling the adiabatic states of our two-level system in
Fig. 1(b). The dynamics in the four-level system can then
be understood similarly to that in the two-level system,
where harmonics are generated by the transitions between the
adiabatic states, except now we can have transitions from all
three higher adiabatic states to the lowest adiabatic state.

(a.u.)
(10-7

a.u.)

lo
g 1

0(y
ie
ld
)(
ar
b.
un
its
)

lo
g 1

0(y
ie
ld
)(
ar
b.
un
its
)

en
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gy
(a
.u
.)

en
er
gy
(a
.u
.)

FIG. 3. (a) HHG spectrum from a four-level system, with field strength E0 = 4.1 × 10−3 a.u. The harmonic spectrum has two plateaus.
Solid lines indicate the predictions from Eqs. (17)–(19) for the lowest and cutoff energies of the two plateaus. (b) Energy of the adiabatic states
as a function of time. (c) Wavelet transform of the time-dependent current in the energy range of the first plateau. The overlying solid line
represents the energy difference between the first and the second adiabatic states. (d) Same as (c) but in the range of the second plateau. The
solid line indicates the energy difference between the first and the third adiabatic states, whereas the dashed line indicates the energy difference
between the first and the fourth adiabatic states. (e, f) The same as (a) and (b) but with field strength E0 = 5.5 × 10−3 a.u. At this field strength,
the second plateau merges onto the first plateau.
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FIG. 4. (a) Harmonic spectrum for a four-level system as a
function of the field strength. The cutoffs predicted from Eq. (17)
and Eq. (19) are indicated by white lines (b) The intensity of the
second plateau (blue dots) agrees very well with the prediction from
Eq. (24) (solid red line).

Figure 3(c) shows the wavelet transform of the time-
dependent current in the energy range of the first plateau,
which describes the emission time of the harmonics in the
first plateau. The overlain black line is the energy difference
between the first and the second adiabatic states E2(t) − E1(t).
Figure 3(d) shows the same wavelet transform but in the
second plateau region. The dashed and solid black lines are
the energy differences between the third, fourth, and first
adiabatic states, respectively. We can see that the adiabatic
energies agree very well with the harmonic emission times
in both the first and the second plateaus, suggesting that this
adiabatic-state description of the four-level dynamics works
very well. Similarly to the two-level system, the allowed
harmonics are then determined by the allowed energy range of
the adiabatic states. We defined the energies of the adiabatic
states at the peak of the vector potential as Ẽn, where n goes
from 1 to 4. Then the first plateau is due to the transition
between the first and the second adiabatic states, which has
start and cutoff energies of

E
(1)
low = ω2 − ω1, (16)

E
(1)
cutoff = Ẽ2 − Ẽ1. (17)

Similarly, the second plateau is due to the transition from the
third and fourth adiabatic states to the first adiabatic state,
which has start and cutoff energies of

E
(2)
low = Ẽ3 − Ẽ1, (18)

E
(2)
cutoff = Ẽ4 − Ẽ1. (19)

These four energies are indicated by the vertical lines in
Fig. 3(a). We can see that the beginning and end of the
two plateaus from these formula agree very well with the
plateau spans that can be seen in the harmonic spectrum.
The agreement between the predicted cutoff energies and the
numerical results is very good for a range of intensities, as
shown in the intensity scan in Fig. 4(a).

We turn next to the relative strength of the two harmonic
plateaus in the four-level system. Similarly to the two-level sys-
tem, the intensities of the harmonic plateaus in the four-level

system are determined by the population of the adiabatic states,
which in turn are determined by the tunneling rates between
them. As reported in Table I, the 1–2 and 3–4 couplings are
much stronger than the 2–3 coupling, which means that the
four-level system can be thought of as two weakly coupled
two-level systems. This means that the intensity of the first
plateau in the four-level system will be proportional to the
tunneling rate P12 between the first and the second adiabatic
states, given by the Landau-Zener rate [see Eq. (15)],

I1st ∝ P12 = exp

(
−π (ω2 − ω1)2

4ωμ12A0

)
. (20)

The intensity of the second plateau is more complicated.
Since the four levels are coupled in a stepwise manner,
population transfer between the adiabatic states also happens
in a stepwise manner, and the population of the fourth adiabatic
state results from stepwise tunneling from state 1 to state 2,
state 2 to state 3, and state 3 to state 4. The total tunneling rate
between 1 and 4 can be written as the product of these three
tunnelings:

I2nd ∝ P12 × P23 × P34. (21)

Since the two two-level systems are almost independent, the
tunneling rates P12 and P34 are of the Landau-Zener form.
The 2–3 tunneling process is different because levels 2 and
3 are only weakly coupled to each other and there is no
avoided crossing between them for low field strengths. The
2–3 tunneling will take place predominantly when the two
levels have been pushed as close together as possible due
to their respective interactions with levels 1 and 4, which
happens at the peaks of the vector potential. This tunneling
event is therefore not field driven in the same way that the
Landau-Zener tunneling is. Instead, this transition amplitude
can be calculated in analogy with the WKB calculation of
the reflection of a wave passing over a potential barrier [49].
The minimum energy difference between the levels (which
happens at the peaks of the vector potential) is analogous to
the energy of the wave above the top of the barrier in the
WKB calculation, and the width of the barrier is analogous to
the time the levels spend close to each other, which is set by
the laser period. We thus expect the transition probability to
decrease exponentially with the energy difference [49],

P23 = exp[−β(Ẽ3 − Ẽ2)], (22)

where Ẽ3 − Ẽ2 is the energy difference between the two
adiabatic states at the peak of the vector potential and β

is a constant.2 This minimum energy difference can be
approximated as

Ẽ3 − Ẽ2 ≈ (ω3 − ω2) − (μ12 + μ34)A0, (23)

corresponding to the field free energy difference, minus the
amount the two levels have been pushed together by their
respective interactions with levels 1 and 4.

Our analysis of the stepwise tunneling process that pop-
ulates the fourth adiabatic state leads to an intensity of the

2We note that β should be inversely proportional to the frequency,
although our calculations are all done at the same wavelength.
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FIG. 5. (a) Schematic of a multilevel system where levels are
coupled in pairs. (b) The energies of the adiabatic states form allowed
regions indicated by the blue area. (c) Schematic of the multiplateau
structure from this multilevel system. The beginning and end of each
plateau are determined by the bounds of the allowed energy regions,
as in Eqs. (17) and (19).

second plateau that, according to Eq. (21), is proportional to

I2nd ∝ exp

[
−π (ω2 − ω1)2

4ωμ12A0

]
× exp[−β(ω3 − ω2 − (μ12 + μ34)A0)]

× exp

[
−π (ω4 − ω3)2

4ωμ34A0

]
. (24)

Figure 4(b) shows the comparison between the numerically
calculated harmonic intensity of the second plateau and that
from Eq. (24) with the scaling parameter β = 140. We see that
they agree very well. At field strengths E0 � 5.5 × 10−3 a.u.,
the two results start to deviate. This is because at fields higher
than this, the adiabatic states 2 and 3 will cross each other
in energy, and a simple exponential tunneling rate will break
down. Furthermore, when Ẽ2 ≈ Ẽ3 the population very easily
tunnels between the second and the third adiabatic states, and
as a consequence, the second plateau will rise to a point where
it almost merges with the first plateau. This can be seen in the
harmonic spectrum shown in Fig. 3(e), calculated at a field
strength of E0 = 5.5 × 10−3 a.u.

In the four-level system considered above, the harmonics
are generated from two pairs of coupled adiabatic states. This
picture of high-harmonic generation can be generalized to
systems with more than four levels, as illustrated in Fig. 5.
Figure 5(a) shows a multilevel system in which the levels
are coupled in a stepwise manner. In particular, the levels in
the multilevel system form pairs of strongly coupled two-level
systems. The adiabatic states of this chain of multilevel system
then form blocks of allowed energies, as indicated by the
blue region in Fig. 5(b). The harmonic spectrum generated
by this multilevel system has multiple plateaus, as shown in
Fig. 5(c). The beginning and end of each plateau correspond
to the lower and higher bounds for the corresponding block of
adiabatic energies. More generally, if the multilevel system is
not strongly coupled in pairs of states as we have considered
here, the harmonic spectrum can exhibit even more plateaus.
As an example, in the four-level system considered in Fig. 3
levels 3 and 4 are near degenerate and very strongly coupled
to each other. A four-level system in which these levels were
less degenerate would lead to harmonic spectra with three
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FIG. 6. Intensity-dependent harmonic spectra for the four-level
model for solid argon. Dashed lines indicate the cutoff prediction
from Eq. (17) and Eq. (19).

plateaus, corresponding to transitions from the second, third,
and fourth adiabatic levels to the lowest level, with cutoff
energies each determined by the maximum adiabatic-state
energy separations.

Finally, we end this section by returning to the experimental
observations of multiple plateaus in solid argon and krypton
as reported in [20]. The calculations describing HHG in solid
argon in [20] were based on a multilevel model similar to
that described above, except the energy levels and transition
matrix elements originated in a density functional theory
(DFT) calculation of the 3D argon band structure. The energies
of the four lowest bands at the � point in solid argon are 0,
14, 20, and 29 eV, and we found that including these four
levels was sufficient to get converged harmonic spectra. We
used the experimental observations of the cutoff energies and
relative strengths of the first and second plateaus to adjust the
transition matrix elements between the different levels from the
DFT predictions. In particular, the experiment showed a rapid
increase in the secondary plateau with the intensity, so that it
nearly matched the strength of the primary plateau, similar to
the situation discussed in the context of Fig. 3(e). Also, the
experiment demonstrated that the difference between the two
cutoff energies (approximately 25 and 33 eV, respectively, at
an intensity of 20 TW/cm2 and a wavelength of 1333 nm)
was relatively modest given the separation between levels 2,
3, and 4. We found the best agreement with the experimental
results when using stepwise coupling matrix elements of ap-
proximately equal strength (as opposed to the DFT prediction
of a weak coupling between level 2 and level 3) so that the
relatively strong coupling between level 2 and level 3 both acts
to cap the cutoff energy of the primary plateau and gives rise to
a strong secondary plateau as discussed above. The resulting
intensity-dependent spectra are shown in Fig. 6. We note that
although the third plateau, due to the transitions between level 4
and level 1, is so weak it is not visible on the scale shown in
the figure, the fourth level plays an important role in capping
the cutoff energy of the secondary plateau.
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FIG. 7. Comparison of the band structure (solid blue lines; bottom
axis) and the energy of the adiabatic states vs the vector potential
(dashed red lines; top axis) for (a) a three-level and (b) a five-level
system. Insets: Zoom-ins of the region near the edge of the third band,
indicated by boxes.

V. SEMICLASSICAL PICTURE OF HHG IN SOLIDS

In Sec. II we showed that the electron dynamics in solids
can be formulated as the dynamics in a multilevel system, and
we have provided a three-step picture in Secs. III and IV for
harmonic generation in the multilevel system. We now return
to the study of the connection between a model solid and a
multilevel system. We show that this connection provides a
semiclassical picture for the harmonic generation process by
delocalized electrons in a solid. In Appendix C we show that
this picture can also be arrived at via applying the strong-field
approximation (SFA) [6,8,50–52] to the dynamics of strongly
driven Bloch electrons.

We start by considering the evolution of the adiabatic-state
energies with the field strength. As discussed in Sec. IV the
maximum difference between these energies at a given field
strength will determine the cutoff energies of the different
plateaus. Figure 7(a) shows the energies of the adiabatic states
for a three-level system as functions of the driving vector
potential (dashed red lines; vector potential along top axis).
We compare these to the band structure of the three lowest
bands in our model solid, i.e., we plot the energies of the bands
as functions of the crystal momentum (solid blue lines; crystal
momentum along the bottom axis). We see that the energies of
the adiabatic states, when driven by a laser field with a vector
potential A0, map out the band structure very well when we
assign a value of k = A0 to the crystal momentum.

The origin of this agreement can be understood by consid-
ering the Houston-state basis for the solid, which is related
to the Bloch-state basis via a unitary transformation (see
[26] for details). The Houston states are constructed as the
instantaneous eigenstates of the time-dependent Hamiltonian,
which includes both the crystal potential and the field in
the dipole approximation. The Houston states are thus the
adiabatic states by definition. They are characterized by a
time-dependent momentum k(t) = k0 + A(t), where k0 is the
value of the crystal momentum in the absence of a field
(corresponding to the Bloch state with k = k0). The energies
of the Houston states ε̃n(t) are simply the energies of the Bloch
states at the crystal momentum that corresponds to the vector
potential [26,32],

ε̃n(t) = εn(k(t)) − 1
2A2(t), with k(t) = k0 + A(t), (25)

FIG. 8. Schemetic of the momentum-space three-step picture for
harmonic generation in solids. In the first step, the valence electron
tunnels through the band gap. In the second step, the electron
wave function evolves adiabatically in the valence and conduction
bands. In the final step, the coherence between the valence and the
conduction band states leads to the emission of radiation with energies
corresponding to the instantaneous energy difference between the
dressed valence and conduction bands.

where the constant term comes from the fact that the Bloch
and Houston Hamiltonians differ by a 1

2A2 term (see [26]).
An important implication of Eq. (25) is that the band

structure at all k is encoded at k0 = 0 (or any other initial
k0) through the energies of the Bloch states and transition
matrix elements between them. This means that as long as
our multilevel system is constructed from the energies and
coupling strengths of our model solid, its evolution with the
vector potential is in fact equivalent to the evolution of the
Houston states and should indeed yield the band structure. In
fact, the Houston description is the adiabatic-state description
of the dynamics in the Bloch-state basis. A complete proof of
this relationship can be found in Appendix B.

We note that the agreement between the adiabatic states and
the band structure improves with the inclusion of more levels
in the multilevel model. This is illustrated in the comparison
between Fig. 7(a) and Fig. 7(b), in particular, as magnified in
the insets. In a multilevel system, the energies of the adiabatic
states are determined by their interactions both with the laser
field and with each other. The former leads to an approximately
linear variation with field strength, whereas the latter leads to
avoided crossings. In a multilevel description, it is the avoided
crossings with higher-lying levels that allow lower-lying levels
to “turn over” at high field strengths and thus mimic the band
structure at the edge of the Brillouin zone, as shown in the
inset in Fig. 7(b). In contrast, in the absence of higher-lying
levels, the adiabatic energy will continue to increase linearly
as shown in the inset in Fig. 7(a).

Another important implication of the result in Fig. 7 and
the energy relationship described in Eq. (25) is that it offers
a picture of how the harmonic generation process for Bloch
electrons in solids takes place in three steps, similar to the
well-known three-step model for harmonic generation in gases.
This picture is illustrated in Fig. 8 for a two-band system.
In the first step, which in time corresponds to the zeros
of the vector potential, a part of the delocalized electron
wave packet diabatically tunnels through the band gap into
the conduction band via Landau-Zener tunneling. In the
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second step, the valence and conduction band wave functions
both evolve adiabatically, accumulating phases according to
their instantaneous energies. In the third step, the coherence
between the conduction band and the valence electron leads
to the emission of radiation with an energy corresponding to
the instantaneous band gap. The third step leads to emission
during the entire optical half-cycle, from one 0 of the vector
potential to the next, where each energy below the cutoff is
emitted at two different times as the vector potential increases
and decreases, as also shown in Fig. 3(c). The cutoff energy is
determined by the instantaneous band gap at the peak of the
vector potential,

Ecutoff = εc(A0) − εv(A0), (26)

and therefore cannot exceed the maximum band gap of the
two-band system. In a multiband system, this generalizes to
the conclusion that the cutoff energies of each plateau will be
limited by the maximum separation between the VB and the
uppermost CB responsible for that plateau,

En
cutoff = εnc(A0) − εv(A0), (27)

as illustrated in Fig. 5.
The cutoff formula above, and its limit on the maximum

band gap in the case of a two-band system, recovers the cutoff
formula discussed by Vampa and collaborators in [28]. In [28],
a real-space three-step picture of HHG in solids is discussed in
terms of localized electron and hole separation, acceleration,
and recollision. The laser pulse generates electron-hole pairs
and they travel in opposite directions in space and then
recombine as the vector potential changes sign. A similar
real-space picture was also presented by Higuchi et al. in
[24], where the dynamics is described in terms of (localized)
Wannier states and the recollision is described in terms of the
electron recombination to neighboring cores. In contrast, in
this paper we discuss a momentum space three-step picture of
the HHG process, in terms of adiabatic and diabatic evolution
of the initial (delocalized) Bloch state. The harmonics in this
picture comes from the coherence between the one-electron
VB and CB Bloch states.

VI. SUMMARY

In this paper, we have investigated HHG in a multilevel
system and discussed how such a model can be used to
describe HHG in bulk solids, a subject that is currently of
great interest in the ultrafast community [14–20]. We have
shown that a driven multilevel system generally gives rise
to harmonic spectra exhibiting multiple plateaus and that the
cutoff energies and relative strengths of each plateau can be
calculated using simple formulas. We have discussed how
the strong-field dynamics is best described in the adiabatic
(dressed)-state basis for the multilevel system. In this basis,
the HHG process happens via tunneling of the population
from a lower to an upper state, followed by evolution of the
population in the excited state and, finally, transition back
to the ground state. This means that the cutoff energies of
each plateau at a given field strength are simply determined
by the maximum energy difference between the field-dressed
upper and lower adiabatic states. The strength of each plateau,
and, in particular, its dependence on the field strength, can

be calculated considering a sequence of tunneling events. In
a four-level system in which the states are strongly coupled
in pairs, the secondary plateau is due to transitions from the
third and fourth adiabatic states to the first adiabatic state,
where the highest state is reached via tunneling from 1 to 2,
from 2 to 3, and, finally, from 3 to 4. We have also discussed
how detailed knowledge of driven multilevel dynamics can
be used in reverse to draw conclusions from experimental
HHG results. We used the recent example of HHG in solid
argon, in which the appearance of multiple plateaus and their
relative extents and strengths were used as an indication of
the contributions and relative couplings of several conduction
bands [20].

We have also shown that if the multilevel system originates
in the k = 0 component of the band structure of a periodic
system, the adiabatic states of the multilevel system will
map out the entire band structure as the field strength is
increased. This means that the maximum cutoff energies of
each plateau will be limited by the band structure: The highest
photon energy emitted in a given plateau will be limited by
the largest energy separation in the Brillouin zone between
the VB and the CB, which is responsible for that particular
plateau. This could potentially be used to map out the band
structure, including the high-lying bands in the solid, by careful
measurements of how different cutoff energies scale with
the intensity, in analogy with our discussion of solid argon
above. For materials that have very different band structures
along different crystal orientations, one can also expect to
see crystal-orientation-dependent harmonics and mapping-out
of the 3D band structure by measurements of how different
cutoff energies scale with the intensity along different crystal
orientations.

The correspondence between the adiabatic states and the
band structure also leads naturally to a semiclassical, three-step
picture for HHG by Bloch electrons in a solid: In the first step,
a part of the delocalized electron wave packet diabatically
tunnels through the band gap into the conduction band via
Landau-Zener tunneling. In the second step, the VB and CB
wave functions both evolve adiabatically, accumulating phases
according to their instantaneous energies. In the third step,
the coherence between the conduction band and the valence
electron leads to the emission of radiation with an energy
corresponding to the instantaneous band gap. The harmonic
emission is thus chirped in time, at the subcycle level, similarly
to what happens in gas-phase HHG.

This momentum-space picture can potentially also shed
light on the measured ellipticity dependence of harmonics
in solid argon as reported in [20], where the yield of the
harmonics in the plateau was found to decrease exponentially
with the ellipticity, similarly to what is found in gas-phase
argon. In a linearly polarized field, the VB-to-CB tunneling
of the electron takes place twice each laser cycle around the
� point when the electron traverses the Brillouin-zone center.
The intensity of the harmonics in the plateau is then determined
by this tunneling rate around the � point. For a circularly
polarized field, the electron will rotate around the � point in
momentum space, without ever getting close to the � point,
thus the tunneling rate is greatly suppressed. The details of the
ellipticity dependence of HHG in solids will be studied in a
future paper.
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APPENDIX A: ADIATIC-BASIS FORMALISM

In this Appendix we describe the formalism for a multilevel
system in the adiabatic basis. The TDSE reads

i |ψ̇(t)〉 = H (t) |ψ(t)〉 , (A1)

and the Hamiltonian is

H (t) = H0 + A(t)p̂, (A2)

where H0 is the laser free Hamiltonian, A(t) is the vector
potential, and p̂ is the dipole operator in momentum space.
The adiabatic states are the instantaneous eigenstates of the
time-dependent Hamiltonian,

H (t) |φn(t)〉 = En(t) |φn(t)〉 , (A3)

where |φn(t)〉 is an adiabatic state and En(t) is its energy.
Since the adiabatic states are the instantaneous eigenstates
of the time-dependent Hamiltonian, they are time dependent
themselves. However, at any given time t they are orthogonal
and form a complete basis set:

〈φn(t)|φm(t)〉 = δnm. (A4)

This means that the time-dependent wave function |ψ(t)〉 can
be expanded in the adiabatic basis as

|ψ(t)〉 =
∑

n

C̃n(t) |φn(t)〉 , (A5)

where C̃n(t) is the amplitude of the adiabatic state |φn(t)〉.
In the following, we leave out the explicit indication of
time dependence and write |φ(t)〉 and C̃n(t) as |φ〉 and C̃n,
respectively, for brevity. Substituting the wave function into
the Schrödinger equation, we have

i
∑

n

˙̃Cn |φn〉 + i
∑

n

C̃n |φ̇n〉 =
∑

n

C̃nH |φn〉 . (A6)

Projecting onto one of the adiabatic states, we obtain the
following equation:

i ˙̃Cn + i
∑
m

C̃m 〈φn|φ̇m〉 = C̃nEn. (A7)

To calculate the term 〈φn|φ̇m〉, we take the derivative of
Eq. (A3) and project onto one of the adiabatic states:

〈φn|Ḣ |φm〉 + En 〈φn|φ̇m〉 = Ėmδmn + Em 〈φn|φ̇m〉 . (A8)

This gives

〈φn|φ̇m〉 =
{

E(t) 〈φn|p̂|φm〉
En−Em

, m �= n,

0, m = n,
(A9)

where E(t) = −Ȧ(t) is the electric field. Substituting Eq. (A9)
and Eq. (A2) into Eq. (A7), we finally obtain the TDSE in the
adiabatic basis,

i ˙̃Cn(t) =
∑
m

[Em(t)δmn − E(t)Xmn(t)]C̃m(t), (A10)

where

Xmn(t) =
{

i
〈φm|p̂|φn〉
Em−En

m �= n

0 m = n
(A11)

indicates the transition matrix element between the adiabatic
states. For a two-level system driven by a continuous wave
A(t) = A0 sin ωt , the transition matrix element has the form

X12(t) = iω0μ

ω2
0 + 4A2

0μ
2 sin2 ωt

, (A12)

where μ is the matrix element between Bloch states [Eq. (4)].
For the strongly driven case such that ω0/2A0μ 
 1, X12(t)
is small except near the zeros of the vector potential. This
means that the population exchange between the adiabatic
states happens only around the avoided crossings.

The time-dependent current in the adiabatic basis can be
calculated as

j (t) = 〈ψ |p̂|ψ〉 . (A13)

Substituting Eq. (A5) into the above equation, we can separate
the current into two parts,

j (t) = jintra(t) + jinter(t), (A14)

where jintra and jinter are the contribution from the dynamics
in adiabatic states and between adiabatic states:

jintra(t) =
∑

n

∣∣C̃n

∣∣2 〈φn|p̂|φn〉 , (A15)

jinter(t) =
∑
m,n

m �= n

C̃∗
mC̃n 〈φm|p̂|φn〉 . (A16)

In the context of strong-field dynamics in a solid, describing
the dynamics in terms of the adiabatic states is equivalent to
describing it in terms of the well-known Houston states since
these are in fact the adiabatic states of the laser-driven solid
[26]. The contributions from jintra(t) and jinter(t) are equivalent
to the intraband and interband contributions, respectively.

APPENDIX B: ADIABATIC STATES IN A MULTILEVEL
SYSTEM: CONNECTION TO THE BAND STRUCTURE

In this Appendix, we show that the energies of the adiabatic
states for the multilevel system formed by the Bloch states at
k0 = 0 trace out the band structure of the solid. The Bloch
states are the eigenstates of the laser-free Hamiltonian,[

p̂2

2
+ V (x)

]
|φnk0〉 = εn(k0) |φnk0〉 . (B1)

The adiabatic states for the multilevel system formed by the
Bloch state at k0 are the instantaneous eigenstates of the system
when a vector potential A is applied,[

p̂2

2
+ V (x) + Ap̂

]
|φ̃nk0〉 = En(A) |φ̃nk0〉 , (B2)
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where En(A) is the instantaneous energy of the nth adiabatic
state and depends on the instantaneous vector potential A. The
above equation can be written as[

(p̂ + A)2

2
+ V (x) − A2

2

]
|φ̃nk0〉 = En(A) |φ̃nk0〉 . (B3)

The Hamiltonians in Eqs. (B3) and (B1) differ by a constant.
This means that the time-dependent wave functions for the
adiabatic states and for the Bloch states are related by a phase
factor and that the adiabatic-state energies can be written in
terms of the band energies,

En(A) = εn(k0 + A) − A2

2
, (B4)

so that the adiabatic-state energies map out the band structure.

APPENDIX C: STRONG-FIELD APPROXIMATION
FOR SOLIDS

In this Appendix, we apply the SFA [50–52] to study strong-
field dynamics in a two-band solid using a Bloch state as the
initial condition. We show that the momentum-space three-step
picture of HHG discussed in Sec. V also naturally follows from
such an SFA treatment. We start from the TDSE,

i
∂

∂t
|ψ(t)〉 =

[
(p̂ + A(t))2

2
+ V (x)

]
|ψ(t)〉 , (C1)

where V (x) is the periodic potential and A(t) is the vector
potential. The wave function can be expanded using the
Houston states as

|ψ(t)〉 =
∑

n

ank0 (t) |φ̃nk0 (t)〉 , (C2)

where |φ̃nk0 (t)〉 are the Houston states and ank0 (t) the expansion
coefficients. Substituting Eq. (C2) into Eq. (C1), the TDSE has
the form [26,32]

i
∂ank0

∂t
=

∑
m

[
εn(k(t))δnm − E(t)Xnm(k(t))

]
amk0 , (C3)

where E(t) = −Ȧ(t) is the electric field and Xnm is the
transition matrix elements between the Houston states. Note
that Eq. (C3) has the same form as Eq. (A10), because the
Houston states are the adiabatic states for the laser-dressed
solid. For simplicity, we consider only the valence and
conduction bands and limit ourselves to k0 = 0; then the TDSE
simplifies to

i
∂av

∂t
= εv(k(t))av − E(t)Xvc(k(t))ac, (C4)

i
∂ac

∂t
= εc(k(t))ac − E(t)Xcv(k(t))av, (C5)

where k(t) = k0 + A(t). In analogy with the treatment in the
SFA for gas-phase HHG, we assume that |av| ≈ 1 so the VB

and CB amplitudes can be integrated analytically:

av(t) = exp

[
−i

∫ t

0
εv(k(t ′))dt ′

]
, (C6)

ac(t) = i

∫ t

0
dt ′ exp

[
−i

∫ t ′

0
εv(k(t ′′))dt ′′

]
E(t ′) Xcv(k(t ′))

× exp

[
−i

∫ t

t ′
εc(k(t ′′))dt ′′

]
. (C7)

The time-dependent current is then

j (t) = a∗
v (t)ac(t)Xvc[k(t)] + c.c.

= i

∫ t

0
Xvc(k(t))e−iS(t,t ′)E(t ′) Xcv(k(t ′))dt ′ + c.c.,

(C8)

where the action is

S(t,t ′) =
∫ t

t ′
[εc(k(t ′′)) − εv(k(t ′′))]dt ′′. (C9)

The three terms in (C8) correspond to recombination, propaga-
tion, and ionization, respectively, and the harmonic spectrum
is calculated as the Fourier transform of the time-dependent
current. By requiring the action to be stationary, we get two
saddle-point conditions,

εc(k(t ′)) − εv(k(t ′)) = 0, (C10)

εc(k(t)) − εv(k(t)) = Er, (C11)

where t ′ is the ionization time, t is the recombination time,
and Er is the recombination energy. We note that, compared
to the gas-phase SFA, we have one less saddle-point equation
(addressing the recollision time). This is because we have used
the delocalized Bloch state as our initial condition, which is
coupled to only one of the Houston states when the laser is on.
In contrast, in the gas-phase SFA the ground state is localized
in space and couples to multiple Volkov states.

The first saddle-point equation gives us the ionization time,
while the second saddle-point equation gives the relation
between the energy and the emission time of the emitted
harmonic. For a simple vector potential A = A0 sin(ωt), the
time-dependent crystal momentum is k(t) = A0 sin ωt , and the
solution to the first saddle-point equation is

t ′ = mπ

ω
+ iγ, m = 0,±1,±2 . . . . (C12)

The real part of t ′ is the ionization time and the imaginary part
γ is the VB-to-CB tunneling time at the band gap. The actual
form of γ depends on the shape of the band structure around
k = 0. To lowest order in k, the band structure around k = 0
can be approximated as

εc(k) − εv(k) ≈ Eg + a

2
k2, (C13)

where Eg is the band gap and a is an expansion coefficient.
Then the saddle point equation [Eq. (C10)] becomes

Eg + a

2
(A0 sin(ωt ′))2 = 0, (C14)
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which gives

t ′ = mπ

ω
+ i

ω
sinh−1

(√
2Eg

aA2
0

)
. (C15)

This means that the tunneling mostly happens at the time when
the vector potential is 0, and the electron is at the minimum
band gap for the two bands.

The second saddle-point equation then gives us the emission
time for harmonics. For example, the energy of the emitted
harmonic is maximized when the vector potential is at its
maximum, and the recombination time for the cutoff harmonic

is therefore

t = (2n + 1)π

ω
. (C16)

The maximum energy of the harmonic is then

Er = εc(A0) − εv(A0), (C17)

which is just the maximum amount of the bands the vector
potential can sample. We note that the treatment presented here
is similar to that in [27], but here we stress a momentum-space
three-step picture of the HHG process.
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