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Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K
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We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed
near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific
example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability
of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced
fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers
in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and
from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our
general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for
the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement
with the experimental benchmarks provided by our 6Li -40K system. We finally present model calculations for
other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.
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I. INTRODUCTION

The creation of weakly bound dimers near Feshbach
resonances has led to major advances in the field of ultracold
quantum gases [1–3]. Such Feshbach dimers have been the
key to molecular Bose-Einstein condensation [4–6] and to
other applications, including the detection of atom pairs in
strongly interacting fermionic superfluids [7,8] and in optical
lattices [9–11]. The weakly bound dimers can also serve as
an excellent starting point for accessing the complex level
structure of more deeply bound states [12] and, in particular,
for creating ground-state molecules [13–19].

For many applications, the stability of the dimers is of cru-
cial importance. In particular, collisional quenching to lower
vibrational states can release an amount of energy that greatly
exceeds the depth of the trapping potential, and thus results in
immediate losses from the stored sample. A special situation
can arise for bosonic dimers formed in a two-component
sample of fermionic atoms close to a Feshbach resonance.
Here, a Pauli suppression effect [20–22] can dramatically
reduce collisional losses to lower vibrational states, rendering
such dimers exceptionally stable and facilitating their highly
efficient evaporative cooling. This Pauli suppression effect
has been observed and studied in strongly interacting spin
mixtures of 6Li [23,24] and 40K [25], which both exhibit
broad resonances. This has paved the way to spectacular
achievements, such as molecular Bose-Einstein condensa-
tion [4–6], the experimental realization of the crossover to
a Bardeen-Cooper-Schrieffer-type superfluid [26], and the
exploration of the universal properties of resonantly interacting
Fermi gases [27].

*Present address: Joint Quantum Institute, University of Maryland,
Department of Physics, and National Institute of Standards and
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A central question for experiments exploring the many-
body physics of fermionic mixtures is how far this suppression
extends to mixtures of different species, featuring mass
imbalance and narrow resonances. Theoretical investigations
have considered the important roles of the mass ratio [22,28]
and of the resonance width [29]. The combination of 6Li and
40K atoms [30–34] is the only Fermi-Fermi mixture with
tunable interactions that has been experimentally realized so
far and thus is the only available heteronuclear system that
can provide experimental benchmarks. Dimers composed of
6Li and 40K atoms have been observed at LMU Munich in
Ref. [35], including preliminary lifetime studies, as well as in
various recent experiments in our group [36,37].

In this article, we present a joint experimental and theo-
retical investigation of the lifetime and decay properties of
Feshbach dimers formed in a mixture of 6Li and 40K atoms.
In Sec. II, we describe the basic procedures for creating and
investigating pure samples of Feshbach dimers and atom-dimer
mixtures near a Feshbach resonance. In Sec. III, we report
on the measurements of spontaneous dissociation and of
inelastic collisions in optically trapped dimer samples and in
atom-dimer mixtures. Our results demonstrate the suppression
of losses near the Feshbach resonance, but much weaker than
that reported in Ref. [35]. In Sec. IV, we present theoretical
calculations based on the approach of Ref. [29] and find very
good agreement with our observations. Finally, anticipating
the creation of new mixtures, we present predictions for other
Fermi-Fermi combinations with different mass ratios.

II. EXPERIMENTAL PROCEDURES

A. Feshbach resonances

We employ two different Li-K interspecies Feshbach reso-
nances (FRs). The first resonance has been widely used in our
previous work on Fermi-Fermi mixtures, including the obser-
vation of the hydrodynamic expansion of a strongly interacting
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TABLE I. Parameters characterizing the two Feshbach reso-
nances. We summarize the values from Refs. [33,38,41] for the
position B0, background scattering length abg, and width �, as well
as for the differential magnetic moment δμ. The values given for B0

include a small shift (9 mG) induced by the trapping-laser light [38].

B0 abg � δμ/h R∗

Channel (G) (a0) (G) (MHz/G) (a0)

Li|1〉K|3〉 154.708(2) 63.0 0.88 2.35 2 650
Li|1〉K|1〉 157.530(3) 65.0 0.14 2.3 16 500

mixture [34], the investigation of polarons [36,38,39], and the
study of K-LiK atom-dimer interactions [37]. This resonance
occurs near 155 G (width 0.88 G) with lithium in its lowest
Zeeman sublevel Li|1〉 (f = 1/2, mf = +1/2) and potassium
in its third-lowest sublevel K|3〉 (f = 9/2, mf = −5/2). The
other resonance occurs near 158 G (width 0.14 G) with Li
and K in their lowest-energy spin states Li|1〉 and K|1〉 (f =
9/2, mf = −9/2), respectively. We use the latter, narrower
resonance for comparison as it has the advantage of an absence
of any Li-K two-body losses.

The dependence of the Li-K s-wave scattering length a

on the magnetic field B near a FR can be described by the
standard expression a(B) = abg[1 − �/(B − B0)] [3] with
the relevant background scattering length abg, the width �,
and the resonance center B0. In Table I, we summarize the
values of these parameters for both resonances. To fully
characterize the FRs, we also present the differential magnetic
moments δμ between the relevant open and closed channels.
From these parameters, we derive the length parameter R∗ =
�

2/(2mr�abgδμ) [40], characterizing the coupling strength
between the open and the closed channel. Here mr represents
the Li-K reduced mass. The values for abg and � have been
obtained from a coupled-channels calculation [33]. The values
for δμ as well as B0 for the Li|1〉-K|3〉 FR were experimentally
determined, with very high accuracy, as described in Ref. [38].
For δμ near the Li|1〉-K|1〉 FR, we use the data obtained from
a coupled-channels calculation [33], and for B0, we use the
value of an independent experimental determination [41].

B. Sample preparation

Our procedure to prepare Li|1〉K|3〉 dimer samples is
essentially the same as the one described in Ref. [37]. To
produce Li|1〉K|1〉 dimer samples, we slightly adapt this
procedure to account for the narrower character of the FR. In
both cases, the starting point for our experiments is an optically
trapped and thermally equilibrated mixture of typically 105 Li
atoms and approximately 3 × 104 K atoms at a temperature
of ∼370 nK and at a magnetic field of 156.4 G. We reach
these conditions by a preparation procedure described in detail
in Ref. [42]. The cigar-shaped optical confinement of the
atom mixture, realized by two 1064 nm laser-light beams
intersecting at an angle of about 16◦, is characterized by
the radial and axial trap frequencies νr, K = 420(10) Hz and
νa, K = 55(2) Hz for the K atoms and νr, Li = 600(10) Hz and
νa, Li = 90(3) Hz for the Li atoms. At this stage, all Li atoms
are in their lowest Zeeman sublevel Li|1〉 and all K atoms are
in their second-lowest sublevel K|2〉 (f = 9/2, mf = −7/2).

|2 |2

|1|1

|1
|2

|1
|2

|3
|2

|3
|2

|2
|1

|2
|1

Li|1

K|3

(a)

(b)

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
-40

-20

0

20

B
-B

0
(m
G
)

t (ms)

K

-550 -500 -450 -400 -350 -300 -250 -200 -150

Li

t (µs)

FIG. 1. Schematic of the preparation of a pure Li|1〉K|3〉 dimer
sample. (a) Starting from the magnetic field B = B0 + 180 mG, we
approach the resonance by a first 20 ms ramp to B0 + 5 mG (last
1.5 ms shown). Then, we associate dimers by a quick (0.5 ms) ramp
across the FR to a magnetic field B0 − 20 mG. Here, within 0.3 ms
(gray shaded), we remove unbound K and Li atoms from the sample.
After this cleaning procedure, we reach the final magnetic field B,
at which we perform the lifetime measurement, by a 200 μs ramp
(dotted line). (b) The cleaning procedure for both Li and K consists of
radio-frequency pulses (solid black), selectively transferring unbound
atoms into another spin state, and successive removal of these atoms
from the trap by a resonant laser-light pulse (dotted red). This cleaning
procedure is repeated one more time to increase the purity of the dimer
sample.

The subsequent preparation steps differ depending on
the Li-K spin-state combination from which the dimers are
created. To prepare for the creation of Li|1〉K|3〉 (Li|1〉K|1〉)
dimers from these mixtures, we slowly ramp the magnetic field
over 2 s to a value of 154.89 G (157.565 G), approximately
180 mG (35 mG) above the center of the FR. Here, we transfer
all K atoms into the K|3〉 (K|1〉) state by a radio-frequency
rapid adiabatic passage.

We then associate approximately 104 LiK dimers by a
Feshbach ramp [1,3]. To associate dimers from the Li|1〉-K|3〉
mixture, we do this in two steps, as illustrated in Fig. 1(a).
In a first step, we ramp the magnetic field to B0 + 5 mG
in 20 ms, which is sufficiently slow for the Li atoms to be
attracted into the regions of high K density, increasing the
density overlap between the two clouds. This is followed
by the second step, in which we quickly ramp the magnetic
field to B0 − 20 mG in 0.5 ms. For the Li|1〉-K|1〉 mixture,
we associate the dimers by a single 2 ms Feshbach ramp to
a magnetic field B = B0 − 16 mG since here, at the much
narrower FR, it is very hard to optimize a two-step ramping
procedure. Typical dimer numbers of Li|1〉K|3〉 samples are
roughly 20% larger than the typical numbers of Li|1〉K|1〉
samples.

To obtain pure dimer samples, we apply cleaning sequences
to remove unbound atoms. For the Li|1〉K|3〉 samples, this
sequence consists of a combination of radio-frequency (rf)
and laser-light pulses; see Fig. 1(b). A 100 μs rf π -pulse
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selectively transfers the free Li atoms from the Li|1〉 state into
the Li|2〉 state. A subsequent 10 μs laser pulse selectively
removes the Li|2〉 atoms from the trap. Simultaneous with this
Li-cleaning procedure, we remove the unbound K atoms in a
similar way. Applying two rf π -pulses with durations of 80
and 40 μs, we transfer the free K|3〉 atoms into the K|1〉 state,
and successively remove them from the trap by applying a
laser-light pulse resonant to the K|1〉 atoms. As these cleaning
procedures remove about 95% of the free Li and K atoms,
they are repeated one more time to clean the respective states
more thoroughly. For the Li|1〉K|1〉 samples, the Li cleaning is
identical to the one explained above and the K cleaning is only
slightly adapted. We revert the order of the 80 μs and 40 μs
rf π -pulses to transfer the free K|1〉 atoms into the K|3〉 state
and we then apply a laser pulse resonant to the K|3〉 atoms to
remove them from the trap. After the cleaning procedure, we
quickly, within 200 μs, ramp the magnetic field to its variable
final value, at which we then perform the measurements.

C. Dimer detection and dimer-temperature determination

We determine the LiK-dimer numbers from absorption
images of Li and K atoms after dissociation of the dimers
into Li-K pairs by a reverse Feshbach ramp [1,3]. For both
resonances, we ramp the magnetic field B up to a value
�B0 + 50 mG within 10 μs. After an additional wait time
of a few 10 μs, we simultaneously take absorption images of
the Li and the K cloud, from which we determine the numbers
of Li and K atoms. In some measurements, we detected only
the number of Li atoms remaining after the reverse Feshbach
ramp.

The temperature of the dimers is determined from Gaussian
fits to absorption images of the clouds after a time-of-flight
expansion duration of tTOF = 4 ms. The procedure is discussed
in detail in Ref. [37]. From the measured radial width σr, we
obtain the dimer temperature TD from kBTD = mD(σr/tTOF)2,
where mD = mLi + mK is the mass of a Li-K dimer. Typically,
the temperatures of our dimer samples are about TD = 550 nK.
This corresponds to peak phase-space densities of about 0.1
for typical dimer number densities in our samples. We explain
the increased temperature of our dimer cloud compared to
the temperature prior to the dimer association (370 nK) by
heating and collective excitations caused by our preparation
procedure [37].

III. MEASUREMENTS OF DIMER DECAY

In this section, we present measurements characterizing
various processes that lead to losses of LiK dimers. In
Sec. III A, we first discuss spontaneous dissociation, which,
being a one-body process, can also occur in very dilute sam-
ples. In Secs. III B and III C, we then present our experimental
results on dimer-dimer collisions and atom-dimer collisions,
which, as two-body processes, limit the lifetime of dense
samples.

A. Spontaneous dissociation

A dimer created from an atom pair with at least one
atom in an excited Zeeman state can spontaneously decay
via processes mediated by the coupling between the two
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FIG. 2. Comparison of the dimer number evolution near the
Li|1〉-K|3〉 and the Li|1〉-K|1〉 FR. The blue squares show a typical
decay curve of a Li|1〉K|3〉 dimer sample at B = B0 − 296 mG.
Fitting an exponential decay to the data yields the 1/e lifetime
τ = 5.8(4) ms. The fit is represented by the blue solid line. The
results from similar measurements with a Li|1〉K|1〉 dimer sample at
a magnetic detuning of −75 mG from the respective resonance center
are shown as the red triangles. Here, we observe the dimer number
to remain essentially constant. A fit of an exponential decay to the
data (red solid line) is consistent with infinite lifetime. The error bars
represent 1σ uncertainties; in some cases, they are smaller than the
symbol size.

spins [3]. Such decay has previously been studied theoretically
and experimentally for the case of 85Rb2 molecules [43,44].
Our Li|1〉K|3〉 dimers are also subject to this decay process,
in contrast to the Li|1〉K|1〉 combination. The spontaneous
decay of Li|1〉K|3〉 dimers has been theoretically investigated
in detail in Ref. [33], where predictions for the lifetimes of the
dimers were obtained from coupled-channels calculations.

We experimentally investigate the lifetime of Li|1〉K|3〉
with respect to spontaneous decay using dimer samples with a
very low number density, so that density-dependent collisional
losses do not play a significant role. We realize such dilute
dimer samples by allowing the optically trapped dimer cloud to
expand after switching off the trap. After a variable expansion
time t , we determine the molecule number in the sample. Note
that the 1064 nm light induces a shift of the FR center B0, as
described in Ref. [38]. When the optical trap is off, the FR
center B0 of the Li|1〉-K|3〉 resonance is found at 154.699 G,
i.e., 9 mG lower than in the trap (Table I). For the Li|1〉-K|1〉
channel, we assume the same small shift.

In Fig. 2, we show a typical decay curve of a Li|1〉K|3〉
dimer sample, recorded at a magnetic detuning B − B0 =
−296 mG (blue squares). For our analysis, we only consider
data obtained for t � 1.5 ms, where the mean dimer number
density in the sample is below 5 × 1010 cm−3, low enough for
collisional losses to play a negligible role. To these data we
fit a simple exponential decay, N0 exp (−t/τ ), with the initial
dimer number N0 and the lifetime τ as free parameters. For the
specific example of Fig. 2, this procedure yields τ = 5.8(4) ms
and the fit result is shown as the blue solid line.
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FIG. 3. Lifetime of dimers against spontaneous decay near the
Li|1〉-K|3〉 FR. The data points show the experimental results and the
black solid line represents the theoretical prediction from Ref. [33].
While the filled symbols are obtained from decay curves, where both
the Li and the K component have been imaged after dissociation, the
open symbols are based on detecting K alone. The error bars represent
the 1σ fit uncertainties.

For comparison, we also show the evolution of the number
of Li|1〉K|1〉 dimers recorded 75 mG below the center of the
Li|1〉-K|1〉 resonance (red triangles). Here, the spontaneous
decay mechanism is absent. Indeed, we observe an essentially
constant number of Li|1〉K|1〉 dimers, with the fit yielding
the decay rate 1/τ = 0.008(7) s−1. This result is essentially
consistent with an infinite lifetime and, at a 95% confidence
level, provides a lower bound of 50 ms.

In Fig. 3, the blue circles show the measured lifetimes of the
dimers with respect to spontaneous decay over a wide range
of magnetic detunings, B − B0. Comparing our experimental
results to the predictions from Ref. [33] (black solid line),
we find an excellent agreement over the whole magnetic-field
range investigated. While for magnetic detunings of around a
few hundred mG the lifetime is about 6 ms, we in particular
confirm the predicted substantial increase near the FR, where
we determine lifetimes approaching 10 ms. This increase can
be attributed to the increasing halo character of the dimer wave
function as the FR is approached. This leads to a decreased
probability to find a pair of Li and K atoms within the short
range where the spin coupling occurs [33]. Our measurements
of the lifetime of the Li|1〉K|3〉 dimers in dilute samples can
be fully understood in terms of spontaneous dissociation.

B. Dimer-dimer collisions

In a second series of experiments, we investigate the
collisional decay of a trapped dimer cloud. In collisions with
other dimers, our shallowly bound dimers can relax into more
deeply bound states. The binding energy that is released in this
process is much larger than the depth of the trapping potential,
and thus the relaxation products are always lost from the trap.
This two-body decay occurs at a rate βDn, which is equal to
the product of the dimer-dimer two-body loss-rate coefficient
βD and the dimer number density n.
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FIG. 4. Comparison of the decay of a trapped and an expanding
Li|1〉K|3〉 dimer sample. The blue squares show the measured dimer
number in a trapped sample vs hold time t in the trap. The red triangles
show the dimer number determined in a dilute, expanding sample, 1.5
ms after release from the trap. The blue and red lines correspond to the
fit of our model to the data without and with two-body decay (see text).
To enable a direct comparison, the experimental data are normalized
to the initial dimer number N0 = 13 000 (15 300) obtained from the
fit to the data acquired from the trapped (expanding) sample. The
error bars represent 1σ uncertainties; in some cases, they are smaller
than the symbol size.

To experimentally determine the rate coefficient βD for
these collisional decay processes, we investigate the decay
of a trapped sample of dimers. The initial number of
typically N0 = 1.3 × 104 dimers corresponds to an initial
number density N0/Veff of about 1 × 1012 cm−3, where Veff =
[(4πkBTD)/(mDω̄2

D)]3/2 is the effective volume of a thermal-
ized sample, and ω̄D = 2π (ν2

r, Dνa, D)1/3 ≈ 2π × 230 Hz is the
mean dimer trapping frequency [45]. After a hold time t at
a magnetic field B, we measure the number of dimers, N (t),
remaining in the sample. In Fig. 4, we show an example for
a decay curve obtained at a magnetic detuning of −710 mG
from the Li|1〉-K|3〉 FR (blue squares).

We model the decay with the common loss-rate equation

Ṅ/N = −1/τ − (βD/Veff)N. (1)

Under the assumption that the sample remains in thermal
equilibrium at the initial temperature TD, this differential
equation has the solution

N (t) = N0 exp(−t/τ )

1 + βD

Veff
N0τ [1 − exp(−t/τ )]

. (2)

We fit Eq. (2) to the experimental data to extract the loss-rate
coefficient βD. While βD and N0 are free parameters, we fix
τ to the corresponding theoretical value, which was verified
in the independent measurements presented before. For the
data of Fig. 4, the fit result is shown as the blue solid line.
For comparison, we also show the decay curve of a dilute
dimer sample, where collisional loss is absent (red triangles),
together with the result of a fit of a simple exponential decay
to this data (red line). Our measurements show that under
typical experimental conditions, the collisional relaxation and
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FIG. 5. Measured loss-rate coefficient for inelastic dimer-dimer
collisions as a function of magnetic detuning. The blue circles (red
squares) correspond to the experimental results obtained with samples
of Li|1〉K|3〉 (Li|1〉K|1〉) dimers. The filled symbols correspond to
results we obtained when determining the molecule number from
both Li and K absorption images. Open circles (squares) represent
fit results based on analyzing Li (K) images alone. The error bars
represent the 1σ fit uncertainties; in some cases, they are smaller than
the symbol size. We show the light blue and a light red line as guides
to the eye.

the spontaneous dissociation give similar contributions to the
total decay of the trapped dimer sample.

The given values for the loss coefficients βD are subject
to a systematic error arising from an uncertainty in the dimer
number density. We estimate a combined systematic error of
about 40%, arising from largely uncorrelated uncertainties
of 25%, 7%, and 20% in the dimer number, the dimer
trapping frequencies, and the dimer temperature, respectively.
Furthermore, by assuming a constant temperature TD of the
decaying dimer sample, and thus a constant Veff in Eq. (1), we
neglect a small effect of antievaporation heating [46]. We have
checked that including the latter into our analysis would lead
to slightly larger values for βD. We found this correction to
stay well below 15%.

We determine the values for the loss coefficient βD at var-
ious magnetic detunings. Our experimental results, obtained
with Li|1〉K|3〉 (Li|1〉K|1〉) dimer samples, are shown in Fig. 5
as the blue circles (red squares). For the Li|1〉K|1〉 dimer
samples, we obtain values for the loss-rate coefficient βD of
roughly 3 × 10−10 cm3/s without significant dependence on
the magnetic detuning. Also, for the Li|1〉K|3〉 dimer samples,
we obtain roughly the same value for detunings, B − B0 �
−400 mG. At these large magnetic detunings, the Feshbach
molecules have a very small admixture of the entrance channel
and are thus strongly closed-channel dominated. As we discuss
in more detail in Sec. IV, the decay of such molecules is
largely independent of the exact state they are in [47–51],
which explains why the measurements for both FRs at large
detunings result in nearly the same values.

As the Li|1〉-K|3〉 resonance is approached, our experimen-
tal results (with the exception of one clear outlier [52]) show
a reduction of collisional losses, which we interpret in terms

of the Pauli suppression effect. For our data points closest to
resonance (about −30 mG detuning), this suppression effect
amounts to more than a factor of three. Note that measurements
closer to resonance are prevented by the onset of collisional
dissociation [24].

C. Atom-dimer collisions

In another set of experiments, we study the decay of dimers
arising from their collisions with Li atoms in a mixture of
LiK dimers and Li atoms. Such decay occurs at a rate βLiDnLi,
equal to the product of the Li atom-dimer loss coefficient
βLiD and the Li density nLi. The measurement of atom-dimer
collisions is challenging because the corresponding decay has
to be distinguished from both the spontaneous decay and the
dimer-dimer collisional decay.

We realize mixtures of Li atoms and LiK dimers by adapting
the preparation procedure presented in Sec. II B. Here we
start with the lithium component in a nearly balanced spin
mixture of Li|1〉 and Li|2〉. The Feshbach ramp then produces
a mixture of Li-K dimers, some remaining Li|1〉 atoms, and
the unaffected Li|2〉 atoms. Then, at B = B0 − 20 mG, we
apply only one radio-frequency π pulse, which exchanges the
populations of the Li|1〉 and Li|2〉 states. We subsequently
remove the Li|2〉 atoms from the trap using a laser-light
pulse. All other preparation steps, in particular the K spin-state
cleaning, remain as described in Sec. II B. After this procedure,
the number density distribution of the Li atoms in the trap, nLi,
can be well approximated by the density of a noninteracting
Fermi gas at a temperature equal to the initial Li temperature.
Typically, we obtain samples of ∼9 × 103 dimers and a mildly
degenerate Fermi sea of ∼6 × 104 Li atoms at a temperature
that is about 55% of the Fermi temperature. This corresponds
to a mean dimer density of 6 × 1011 cm−3 and a Li density
averaged over the dimer distribution [39], 〈nLi〉, of about
1.5 × 1012 cm−3.

To experimentally determine the rate coefficient βLiD, we
again investigate the decay of dimers from our sample. We
ramp the magnetic field to a desired value B and, after a
variable hold time t , we measure the number of dimers, N ,
remaining in the sample. For each decay curve in the atom-
dimer mixture, we record a corresponding reference curve in
a pure dimer sample. These reference measurements, which
independently provide the dimer-dimer loss coefficient βD, are
the ones that we have presented in the preceding section. To
minimize systematic errors resulting from long-term drifts of
the experiment, the measurements in the atom-dimer mixtures
and the pure dimer samples are carried out in alternating order.

We model the decay of dimers with a simple extension of
the decay model from the previous section. Our Li sample is
much larger than the dimer sample, such that losses from the Li
sample can be neglected. In this case, the Li sample represents
a constant-density bath and the loss of dimers arising from
Li atom-dimer collisions appears as a one-body loss, which
we include into our model by adding −βLiD〈nLi〉 to the right-
hand side of Eq. (1). Under these assumptions, the solution of
our model is given by substituting τ−1 with βLiD〈nLi〉 + τ−1

in Eq. (2). We fit this solution to our experimental data to
determine the Li atom-dimer loss coefficient βLiD. For the fit,
we fix τ to the corresponding theoretical value and the decay
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FIG. 6. Measured loss-rate coefficient for inelastic Li atom-dimer
collisions as a function of the magnetic detuning. The blue circles
(red squares) correspond to the experimental results obtained with
samples of Li|1〉K|3〉 (Li|1〉K|1〉) dimers cotrapped with Li|1〉 atoms.
In these experiments, the dimer number was determined from the
K absorption images only. The error bars include the combined fit
uncertainties (see text).

coefficient βD to the value we determined in the corresponding
reference measurement on a pure dimer sample.

In Fig. 6, we show our results for the Li atom-dimer loss
coefficient βLiD at various magnetic detunings. The blue circles
(red squares) correspond to data acquired with a Li|1〉K|3〉
(Li|1〉K|1〉) dimer sample. The error bars reflect the 1σ fit
uncertainty of βLiD as well as the contribution arising from
the uncertainty in our determination of βD. We obtain atom-
dimer loss-rate coefficients of roughly 1.5 × 10−10 cm3/s near
the Li|1〉K|1〉 FR, where the molecules have closed-channel
character. The data obtained with Li|1〉K|3〉 dimers show a
suppression of atom-dimer collisional losses, which becomes
stronger as we approach the FR and the open-channel fraction
of the dimers increases. The data point at a magnetic detuning
of about −40 mG already shows a suppression by a factor of
roughly five. From the data point at −24 mG, we determine
a negative loss coefficient. We speculate that this unphysical
result is due to the repulsive mean-field interaction between the
dimers and the Li atoms, effectively increasing the cloud sizes
and therefore decreasing the mean densities of the dimers and
the Li atoms. Such an effect is beyond the assumptions of the
model underlying our data analysis and can therefore produce
unphysical results. We estimate that all other values, taken at
larger detunings, do not suffer from such interaction effects.
The observed suppression of atom-dimer collisional losses
appears very similar to the effect observed in dimer-dimer
decay, and can also be attributed to the Pauli suppression effect.

D. Summary of experimental results and comparison with
previous work

Our experimental results characterize three different loss
processes of 6Li -40K dimers close to a Feshbach reso-
nance. Spontaneous dissociation was identified as a density-
independent one-body loss mechanism. This process is pos-
sible for Feshbach molecules composed of atoms that are

not in the energetically lowest combination of spin states.
For the case of the 155 G resonance in the Li|1〉-K|3〉
mixture, this limits lifetimes to values below 10 ms for typical
experimental conditions. We have also investigated losses due
to inelastic collisions in pure dimer samples, and obtained
loss-rate coefficients of typically 3 × 10−10 cm3/s. At the
typical densities of near-degenerate molecular samples, the
corresponding loss rate is similar to the effect of spontaneous
dissociation. Additional losses occur in atom-dimer mixtures,
as we have shown for the example of free excess Li atoms.

Very close to the resonance center, in a roughly 100-
mG-wide range, we observe a suppression of loss in both
spontaneous and collisional decays. In the former case, the
suppression is a direct consequence of the halo character of
the molecular wave function [33,43,44]. In the latter case, the
suppression effect can be attributed to Pauli blocking [20,22],
as we will discuss in more detail in Sec. IV. For the specific
FR employed in the Li-K mixture, the suppression of loss only
leads to an increase of dimer lifetimes by up to a factor of
three.

Weakly bound 6Li -40K dimers have been created in
previous work by Voigt et al. and Costa et al. [35,53], who in-
vestigated lifetime properties without distinguishing between
different processes. Below the FR center, their observations
are consistent with our results and can be understood as a
combination of spontaneous and collisional losses. Above the
FR center, in a 100-mG-wide range, their work reports on
molecules with lifetimes of more than 100 ms [35]. These
long lifetimes were later interpreted in terms of a many-body
effect [53]. In our present work, using the same FR, we do
not observe any molecules above resonance. In our previous
work [36], with K impurities in a degenerate Li Fermi sea,
we indeed observed indications of many-body pairs above
resonance, though restricted to a narrow, less than 20-mG-wide
magnetic-field range. For the 155 G FR in the Li-K mixture,
we cannot confirm the existence of long-lived (≈100 ms)
molecules.

IV. THEORETICAL ANALYSIS OF RELAXATION RATES

In this section, we present a theoretical description of atom-
dimer and dimer-dimer relaxation processes near a narrow
resonance. The model has been introduced in Ref. [29] for
characterizing atom-dimer and a subset of the dimer-dimer
inelastic channels. In Sec. IV A, we extend the discussion to
all relevant dimer-dimer relaxation processes. In Sec. IV B, we
then compare the theory with our experimental results and find
a very good agreement.

A. Theoretical model

The collisional decay requires at least three atoms to
approach each other to within distances comparable to the van
der Waals range Re of the interatomic interactions (we call this
the “recombination region”). For the Li-K interaction, the van
der Waals range takes the value Re = 40.8a0 [33]. In relaxation
channels involving three atoms, two atoms form a deeply
bound state and the large binding energy is released as kinetic
energy. As the central point of our model, the probability of
such a relaxation event may be calculated within a theory
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that only describes the few-body kinematics at length scales
greatly exceeding Re, the short-range relaxation physics being
characterized by the loss-rate constant for collisions of atoms
with closed-channel (cc) molecules. One can show [29] that in
the narrow-resonance limit, Re � R∗,a, three atoms enter the
recombination region predominantly as a free atom and a cc
molecule rather than three free (open-channel) atoms. Thus,
the recombination process is microscopically the relaxation
in collisions of cc molecules with atoms. We assume that the
corresponding interaction is not resonant and is characterized
by a coupling constant −i�AD ∼ −i�2Re/mAD, where mAD

is the atom-molecule reduced mass. The atom-cc molecule
relaxation-rate constant equals β

(0)
AD = 2�AD/�. This relation

can be derived by relating the lifetime of the atom and cc
molecule to the imaginary part of their mean-field interaction
energy shift in unit volume. The “bare” relaxation-rate constant
β

(0)
AD is an external parameter of our theory.

In our approach, the atom-dimer relaxation-rate constant
βAD factorizes into the product

βAD = β
(0)
ADηAD(R∗/a), (3)

where the dependence on the short-range physics is fully
absorbed into β

(0)
AD and the long-range kinematics enters as

the probability of finding an atom and cc molecule in the
recombination region. This probability can be interpreted as
the reduction of atom-dimer relaxation at finite R∗/a and we
refer to it as the “suppression function,” ηAD(R∗/a). It depends
only on R∗/a and is proportional to the squared modulus of
the atom-dimer wave function calculated under the assumption
�AD = 0. The task of computing the normalization integral
for this wave function, which is quite complex (particularly
in the four-body case discussed below) and contains closed-
and open-channel components, can be avoided by using an
equivalent diagrammatic formulation of the problem; see
Ref. [29] where this approach was used for K-(K-Li) collisions.
Namely, we calculate the atom-dimer scattering length aAD

perturbatively to first order in �AD and deduce the atom-
dimer relaxation-rate constant from Im(aAD). The suppression
function ηAD(R∗/a) is shown in Fig. 7(a) for the case of a light
atom (A = Li) and for a heavy atom (A = K). It is seen how
the relaxation can be substantially reduced for R∗/a � 1, and
that the suppression is stronger in the collision of the heavy K
atom with the dimer.

In molecule-molecule collisions, there are three possible
relaxation channels: the Li-cc molecule, K-cc molecule, and
cc molecule-cc molecule relaxation (we call it four-atom
mechanism). The latter originates from inelastic collisions
of cc molecules with each other involving no free atoms.
This configuration dominates the four-body wave function
when all four atoms are at distances smaller than R∗. We
assume that three coupling constants �LiD, �KD, and �DD are
proportional to the corresponding van der Waals ranges, which
are small compared to R∗ and a. This allows us to treat these
interactions independently as first-order perturbations on top
of the zero-order solution—the properly normalized four-body
wave function calculated for �LiD = �KD = �DD = 0. The
contribution of a relaxation channel, say Li-cc molecule
channel, to the total dimer-dimer relaxation-rate constant
βD is the product of β

(0)
LiD = 2�LiD/� and the probability

(a)
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FIG. 7. Suppression functions for relaxation in (a) atom-dimer
and (b) dimer-dimer collisions.

η̃LiD(R∗/a) to find a Li atom close to a cc molecule in
dimer-dimer collisions. The quantity η̃LiD(R∗/a), which is not
to be confused with ηLiD defined for atom-dimer collisions,
can in principle be calculated from the squared modulus of
the zero-order four-body wave function by integrating it over
the coordinates of one K atom (for the Li-cc molecule loss
channel) and taking into account combinatorial factors (choice
between two Li atoms). However, as in the atom-dimer case,
we calculate the dimer-dimer scattering length aDD to first
order in �LiD, �KD, and �DD and deduce the dimer-dimer
relaxation-rate constant from Im(aDD). The total relaxation-
rate constant in dimer-dimer collisions is written in the form

βD = β
(0)
LiDη̃LiD(R∗/a) + β

(0)
KDη̃KD(R∗/a) + β

(0)
D ηDD(R∗/a).

(4)

The function ηDD(R∗/a) has been computed in Ref. [29]. Here
we calculate η̃LiD(R∗/a) and η̃KD(R∗/a), as described in the
Appendix. We show these functions together in Fig. 7(b); again
we see how collisional losses can be strongly suppressed for
R∗/a � 1, and that relaxation losses originating from light
atoms and cc molecules are more important than those from
heavy atoms and cc molecules.

Let us now discuss the limiting case of large detuning,
R∗ 	 a. Neglecting the open-channel population, we obtain
ηDD(R∗/a → ∞) = 1 and η̃AD(R∗/a → ∞) = 0, where A =
Li, K. Note that η̃AD is not equal to ηAD, which is defined
for atom-molecule collisions and tends to 1 in the large-R∗/a
limit. As expected, these results mean that βD(R∗/a → ∞) =
β

(0)
D and βAD(R∗/a → ∞) = β

(0)
AD. For large but finite R∗/a,

we can perturbatively take into account the probability to be
in the open channel Popen ≈ √

a/4R∗ � 1, arriving at η̃AD ≈
2Popen ≈ √

a/R∗ and ηDD ≈ P 2
closed ≈ 1 − √

a/R∗.
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In the opposite limit of small detuning, R∗/a � 1, the
feature of particular interest is the suppression of collisional
relaxation which arises from the large open-channel probabil-
ity combined with Pauli suppression: The inelastic process
requires at least three atoms—of which two are identical
fermions—to approach each other. More precisely, the Pauli
suppression mechanism is efficient at distances (hyper-radii)
R∗ � r � a, which is called the universal region, where
the atoms behave as free (open-channel) atoms. At shorter
distances, the three-atom configuration changes to the atom
plus cc molecule one, which is insensitive to the statistical
suppression. This argument applies to the atom-cc molecule
relaxation mechanism in both atom-dimer and dimer-dimer
collisions, thus suppressed by the factor

ηAD ∝ η̃AD ∝ (R∗/a)2νs+1. (5)

The exponent νs characterizes the three-body wave function
in the universal region and depends on the masses, quantum
statistics of atoms, and the total angular momentum (the
subscript s means l = 0) [54]. For the relevant cases of
Li (K) atoms scattering on LiK dimers, we have νs ≈ 1.01
(νs ≈ 2.02), respectively [29]. The onset of the power-law
suppression can be seen in Fig. 7.

For R∗/a � 1, the four-atom loss mechanism is also
suppressed. This suppression has the same origin (Pauli
principle) as in the three-atom case: Four atoms consisting
of two pairs of identical fermions have to approach each
other to the recombination region. In this case, we have
ηDD ∝ (R∗/a)2ν4-body+4. Here the power ν4-body characterizes
the scaling of the four-atom wave function in the universal
region and can be inferred from the energy of four trapped
fermions at unitarity: Ref. [55] gives ν4-body ≈ 0.0, 0.3, and
0.5 for mass ratios of 1, 4, and 8, respectively. Our calculation
for the LiK mass ratio is consistent with this sequence.

B. Comparison with experimental data

Here we compare our theoretical predictions for the
collisional loss-rate coefficients to our measured values, which
we already presented in Figs. 5 and 6. In our theoretical
model, the three bare rate constants β

(0)
D , β

(0)
LiD, and β

(0)
KD are

free parameters, and they can in principle be determined by
fitting to the experimental data. Alternatively, estimates can
be obtained from a simple quantum Langevin model [49–51].
This model uses only the van der Waals range of the corre-
sponding atom-dimer or dimer-dimer interaction potential and
assumes total absorption (loss) at shorter distances.

For collisions of Li atoms with LiK dimers, the comparison
is straightforward, since β

(0)
LiD is the only free parameter, which

enters as a prefactor according to Eq. (3). Accordingly, we
fit βLiD(R∗/a) = β

(0)
LiDηLiD(R∗/a) to the experimental data and

extract the value β
(0)
LiD = 1.8(2) × 10−10 cm3/s. The fit curve is

shown as the black solid line in Fig. 8 and shows that the theory
matches the experimentally observed behavior very well. In
particular, we can clearly confirm that the observed reduction
of losses can be attributed to the Pauli suppression effect.

The value for β
(0)
LiD obtained from our fit analysis corre-

sponds to about half of the value suggested by the quantum
Langevin model amounting to 3.5 × 10−10 cm3/s. Similar de-

1 5 10 50 100 500
0.1

0.5

1

2

3

FIG. 8. Atom-dimer loss-rate coefficient βLiD as a function of
R∗/a. The experimental data (blue circles and red squares obtained
with Li|1〉K|3〉 and Li|1〉K|1〉 dimers, respectively) are identical to the
ones displayed in Fig. 6, with the unphysical negative value excluded.
The black solid line corresponds to a fit of our theoretical model to
the data, yielding β

(0)
LiD = 1.8(2) × 10−10 cm3/s.

viations have previously been observed in other experiments,
in particular those involving light atoms [56].

For collisions between dimers, the situation is more
involved because of the three different channels—Li-cc
molecule, K-cc molecule, and cc molecule-cc molecule—
with the corresponding three free parameters β

(0)
LiD, β

(0)
KD, and

β
(0)
D ; see Eq. (4). According to our model, the dominant

loss contribution is expected from the four-body channel.
In order to extract the corresponding bare rate coefficient
β

(0)
D , we perform a one-parameter fit after fixing β

(0)
LiD to the

measured value discussed before and fixing β
(0)
KD to the value

1.4 × 10−10 cm3/s calculated within the quantum Langevin
model [57]. We finally obtain β

(0)
D = 3.2(6) × 10−10 cm3/s,

which we find to be very close to the quantum Langevin
value, β

(0)
D = 3.0 × 10−10 cm3/s. The resulting total decay

rate βD(R∗/a) is shown as the black solid line in Fig. 9. Our
theoretical approach reproduces the observed suppression of
collisional relaxation as we approach the Feshbach resonance
for R∗/a � 3.

Closer to the Feshbach resonance (R∗/a < 3), we see clear
deviations. We ascribe this discrepancy to temperature effects,
which become more prominent when kBT is comparable to
or larger than the dimer binding energy [29]. In this case,
the identical fermions may more easily approach each other,
thereby reducing the Pauli suppression factor. A theoretical
prediction obtained from a finite-temperature calculation for
T = 550 nK [58] is shown as the black dotted line. Including
finite temperature into our theoretical approach improves
the match of theory and experiment near the resonance.
From our finite-temperature calculations, we also find that
corresponding effects on the collisions of Li atoms with LiK
dimers, as discussed before, remain much smaller [58].

The good agreement between our theoretical approach and
our experimentally obtained values for the loss coefficients
validates the assumptions of our theoretical approach to
collisional losses developed in Ref. [29]. Furthermore, our
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1 5 10 50 100 500

1

2

3

4

5

FIG. 9. Total dimer-dimer loss-rate coefficient βD as a function of
R∗/a. The experimental data (blue circles and red squares obtained
with Li|1〉K|3〉 and Li|1〉K|1〉 dimers, respectively) are the same as
those displayed in Fig. 5. The solid line corresponds to a fit of our
theoretical prediction for βD = β

(0)
D ηDD + β

(0)
LiDη̃LiD + β

(0)
KDη̃KD to the

data, with β
(0)
D being the only free parameter (see text). The dotted line

corresponds to our prediction from an extended, finite-temperature
theory [58].

results demonstrate that the bare rate coefficients can be well
estimated by the value obtained from the quantum Langevin
model. The agreement with our measurements therefore
suggests a predictive power of our theory applied to other
Fermi-Fermi systems.

V. OTHER POTENTIAL FERMI-FERMI SYSTEMS

Fermi-Fermi systems that feature mass imbalance, colli-
sional stability, and tunable interactions may be created with
mixtures other than 6Li -40K. To date, Fermi degeneracy has
been demonstrated for isotopes of eight chemical elements,
i.e., He [59], Li [60,61], K [62], Cr [63], Sr [64,65],
Dy [66], Er [67], and Yb [68], providing a wealth of possible
combinations. We focus our attention on mixtures of 161Dy and
40K (mass ratio 4.0) and 53Cr and 6Li (8.8), and we discuss
the corresponding suppression functions for collisional losses.
Larger mass ratios (comparable or larger than 13.6) require an
analysis beyond the scope of our present work. In this case,
the Efimov [69] and other few-body effects [70–72] can lead
to the appearance of new loss-rate features [28].

The suppression functions for losses in atom-dimer col-
lisions are shown in the upper panels of Fig. 10 for (a) the
mass-balanced system, (b) the 161Dy -40K mixture, and (c) the
53Cr -6Li mixture. We observe that mixtures of heavy-species
atoms and dimers (red dotted lines) show a much stronger
suppression compared to the mass-balanced case [blue dashed
line in Fig. 10(a)], which strengthens with increasing mass
imbalance. For the case of the Dy-K (Cr-Li) mixture, this
increase amounts to almost one (two) orders of magnitude at
R∗/a corresponding to about 1. On the contrary, the mixtures
composed of light-species atoms and dimers [blue dashed lines
in Figs. 10(b) and 10(c)] show only a weak enhancement of
losses as compared to the mass-balanced case, amounting to a
factor of about 1.5 for both the Dy-K and the Cr-Li mixture at
R∗/a = 1.

The suppression functions for losses in collisions between
dimers are shown in Figs. 10(d)–10(f) for the equal-mass

(a)

0.001

0.01

0.1

1

(d)

0.1 1 10 100
0.001

0.01

0.1

1

(b)

(e)

0.1 1 10 100

(c)

(f)

0.1 1 10 100

FIG. 10. (a) Suppression functions for losses in (a)–(c) atom-dimer and (d)–(f) dimer-dimer collisions. We consider these for equal masses,
Dy-K mixtures with a mass ratio of 4.0, and mixtures of Cr and Li where the mass ratio is 8.8.
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system, and the systems with a mass imbalance of 4 and
8.8, respectively. All three contributions, i.e., from the light
atom-dimer, heavy atom-dimer, and dimer-dimer part, shown
in Figs. 10(e) and 10(f) as the blue dashed, red dotted, and
black solid lines, respectively, are significantly smaller than
their equal-mass counterparts [blue dashed and black solid
lines in Fig. 10(d)].

In view of future experiments on strongly interacting Fermi-
Fermi systems, we can now provide estimates for the minimum
strength of a suitable Feshbach resonance. The conditions of
the successful experiments with spin mixtures of 40K or 6Li
suggest a minimum required suppression of losses by two
orders of magnitudes for all possible channels. According to
our theoretical results (Figs. 7 and 10), this would correspond
to a condition of R∗/a � 0.3 for all mass-imbalanced mixtures
considered. For the relevant scattering length, we may take
a ≈ 3000 a0 as a typical value for dimers entering the strongly
interacting Fermi gas regime. We thus obtain the approximate
condition R∗ � 1000 a0 for a Feshbach resonance to provide
sufficient collisional stability.

VI. SUMMARY AND CONCLUSION

In a joint experimental and theoretical effort, we have
investigated the stability of weakly bound dimers formed
near narrow interspecies Feshbach resonances in Fermi-Fermi
mixtures. In our laboratory system—the mixture of 6Li and
40K atoms—we have characterized the dependence of three
different decay processes on the magnetic detuning from the
Feshbach-resonance center. In dilute samples, spontaneous
dissociation (one-body process) is observed for dimers com-
posed of atoms that are not in the lowest spin channel, and
the measured lifetimes are found to be in a full agreement
with a previous theoretical prediction. In dense samples, we
have measured the rate coefficients for inelastic dimer-dimer
collisions as well as collisions of the lighter atomic species
with the dimers. For all decay processes, we find a significant
suppression when the resonance center is approached.

Our theoretical framework for the description of collisional
losses near narrow Feshbach resonances is based on a model
that has been developed in Ref. [29]. The basic idea is a
separation of the problem into a long-range description of
the three- and four-body kinematics and a simple relaxation
model at short range. The reduction of collisional decay
near the resonance center is described by corresponding
suppression functions. In extension of the previous work [29],
we have calculated the suppression functions for all relevant
loss channels in atom-dimer and dimer-dimer collisions. The
comparison of theoretical and experimental results for the
mixture of 6Li and 40K shows excellent agreement, thus
validating the assumptions of our theoretical model.

The observed collisional suppression does not exceed a
factor of about five, and thus stays far below what has been
observed in homonuclear systems near broad resonances. Nev-
ertheless, our present work shows that the 6Li -40K system, in
spite of the narrow nature of interspecies resonances [31–33],
can potentially exhibit a strong Pauli suppression of collisional
losses, provided the density and resonance detunings can be
substantially reduced. Under such conditions, spontaneous
dissociation can be expected to become the dominant loss

mechanism, with a strong effect on the system. This loss
process could be avoided by choosing resonances in the
lowest spin channel, which are all very narrow. The level
of control required to manipulate the Li-K mixture at very
low densities near the narrow resonances is very challenging,
going far beyond typical conditions of the present Fermi gas
experiments.

Other Fermi-Fermi mixtures are very promising for new
experiments in the near future, and we have discussed the
161Dy -40K case (mass ratio 4.0) and the 53Cr -6Li case
(8.8) as two illustrative examples. Efforts to realize these
systems are underway in different laboratories, and their
yet unknown interaction properties need to be explored.
The suppression functions that we have calculated for the
corresponding mass ratios provide a guide for identifying
suitable Feshbach resonances in future experimental work. In
general, our results suggest that broad Feshbach resonances
are not necessarily required to obtain sufficient collisional
stability. Instead, moderately narrow resonances are also
promising for realizing new experimental model systems and
for exploring the multifaceted many-body physics of fermionic
mixtures [73–84].
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APPENDIX: THEORETICAL APPROACH TO
COLLISIONAL DECAY

Here, we present our calculation of the probability to find
an atom close to a closed-channel molecule in dimer-dimer
collisions. As discussed in the main text, this probability
allows us to extract the contribution from the corresponding
relaxation channel to the dimer-dimer relaxation rate constant
βD. This extends our previous calculation of the cc molecule–
cc molecule relaxation channel, as presented in Ref. [29].
Throughout this appendix, we set � = 1 and work in a unit
volume.

We now briefly recapitulate the theoretical description of
our system. We consider two species of fermions labeled by
σ = ↑,↓ and employ the two-channel Hamiltonian [85],

Ĥ =
∑

k,σ=↑,↓
εk,σ â

†
k,σ âk,σ +

∑
p

(ω0 + εp,M)b̂†pb̂p

+ g
∑
k,p

(
b̂†pâ p

2 +k,↑â p
2 −k,↓ + b̂pâ

†
p
2 −k,↓â

†
p
2 +k,↑

)
. (A1)

Here, â
†
k,σ (âk,σ ) creates (annihilates) a spin σ atom of mass

mσ with momentum k and single-particle energy εk,σ = k2

2mσ
.

Likewise, b̂†k and b̂k are the creation and annihilation operators
of the cc molecule with mass M = m↑ + m↓, kinetic energy
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εk,M = k2

2M
, and detuning ω0 from the ↑↓ scattering threshold.

The interaction between the atoms is mediated by the cc
molecule as described by the last term of the Hamiltonian,
where the strength g of the interconversion term is taken to
be constant up to a momentum cutoff �. The bare parameters
of the model are related to the physical scales, the scattering
length and length parameter R∗, through (see, e.g., [86])

a = mrg
2

2π

1
g2mr�

π2 − ω0

, R∗ = π

m2
r g

2
, (A2)

with mr = m↑m↓/M the reduced mass. The propagator of the
atoms takes the form

Gσ (p,p0) = 1

p0 − εp,σ + i0
, (A3)

where the notation +i0 specifies that the pole of p0 is
shifted slightly into the lower half of the complex plane. The
propagator of dimers is obtained by dressing the cc molecule
propagator by pairs of free ↑↓ atoms, resulting in

D(p,p0)

= 2π/mr

2mrR∗(p0 − p2

2M
+ i0

) + 1
a

− √
2mr

√
− p0 + p2

2M
− i0

.

(A4)

At zero momentum, this has a pole at the dimer
binding energy ε0 = −(

√
1 + 4R∗/a − 1)2/(8mrR

∗2).

To extract the relaxation rate for the three-atom process
in a dimer-dimer collision, we introduce a weak short-range
interaction potential between the ↑ atom and the bare molecule
in the Hamiltonian (see Ref. [29]):

δĤ↑D = −i�↑D

∑
Q,k,p

b̂†pâ
†
↑,Q−pb̂kâ↑,Q−k. (A5)

The coefficient �↑D is related to the relaxation coupling
constant through g↑D = −i�↑D. The probability to find the
↑ atom close to the cc molecule in dimer-dimer scattering at
zero collisional energy is then

η̃↑D(R∗/a) = −Im[δT (0)]/(2�↑D), (A6)

where δT (0) is the change in the s-wave dimer-dimer scattering
T matrix to linear order in �↑D. The change in the dimer-
dimer scattering length to the same order is in turn δaDD =
δT (0)M/(4π ). We calculate this change diagrammatically
as illustrated in Fig. 11: First, we consider all diagrams
contributing to δT which are two-dimer irreducible (i.e., do not
have two dimers propagating simultaneously). We then include
all two-dimer reducible processes by replacing the incoming
and/or outgoing dimers by the full dimer-dimer T matrix.

Consider first the sum of diagrams in Fig. 11(a) constituting
all two-dimer irreducible contributions to δT (0). Taking the
incoming [outgoing] dimers to have four momenta (±p,p0 +
ε0) [(±q,q0 + ε0)], we denote this sum by δT̃ (p,p0; q,q0).
This does not depend on the angle between p and q as we
take the s-wave projection. Integrating over frequencies in
the closed loops of the diagrams in Fig. 11(a) yields, for the
two-dimer irreducible contribution to δT (0),

δT̃ (p,p0; q,q0) = −2i�↑Dg2Z2
∫

d
p

4π

∫
d
q

4π

⎡
⎣2

∑
Q

G↑(p − Q,ε0 + p0 − εQ,↓)G↑(q − Q,ε0 + q0 − εQ,↓)

+
∑
p1,p2

χ (p,p0; p1,p2)D(p1 + p2,2ε0 − εp1,↑ − εp2,↓)G↑(q − p1,ε0 + q0 − εp1,↑)

+
∑
p1,p2

χ (q,q0; p1,p2)D(p1 + p2,2ε0 − εp1,↑ − εp2,↓)G↑(p − p1,ε0 + p0 − εp1,↑)

+ 1

2

∑
p1,p2,p′

2

χ (p,p0; p1,p2)χ (q,q0; q1,q2)D(p1 + p2,2ε0 − εp1,↑ − εp2,↓)D
(
p1 + p′

2,2ε0 − εp1,↑ − εp′
2,↓

)
⎤
⎦,

(A7)

where we integrate over the angles of p and q. Z = 1 −
1/

√
1 + 4R∗/a is the dimer residue at the energy pole. The

function χ (p,p0; p1,p2) is the sum of all diagrams with two
incoming dimers at four momenta (±p,p0 + ε0), an outgoing
↑ [↓] atom with (p1,εp1,↑) [(p2,εp2,↓)], and an outgoing dimer
with (−p1 − p2,2ε0 − εp1,↑ − εp2,↓). The sum is averaged over
the angle of p. χ satisfies an integral equation derived in
Ref. [29]; for the expression, we refer the reader to Eq. (29) of
that paper.

Finally, we relate δT to the two-dimer irreducible diagrams
by allowing for any number of dimer-dimer scattering events
on the left and/or right side of δT̃ ; see Fig. 11(b). The

relation is

δT (0) = δT̃ (0,0; 0,0) + 2
∫

i dp0

2π

∑
p

F (p,p0)δT̃ (p,p0; 0,0)

+
∫

idp0

2π

idq0

2π

∑
p,q

F (p,p0)δT̃ (p,p0; q,q0)F (q,q0),

(A8)

where F (p,p0) ≡ 1
g2Z

T (p,p0)D(p,p0 + ε0)D(−p, − p0 +
ε0), with T (p,p0) the dimer-dimer T matrix in the ab-
sence of the perturbation (A5). To avoid poles and branch
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↑↑
↓

↑↑
↓

+ + χ ↑
↓

↑

χ↑
↓

↑+ + χ ↑
↓

↑ χ

δT

δT̃

(−q, 0 − q0)

1+ δT̃ +1T T

χχχ χχχ

χχχ

FIG. 11. Diagrams contributing to the ↑ atom-cc molecule loss process in dimer-dimer collisions. The loss vertex (A5) is depicted as a
black square. Straight lines are atom propagators, while the dimer propagators are illustrated with wavy lines. All filled boxes represent sums of
diagrams. (a) The two-dimer irreducible diagrams denoted δT̃ contributing to δT can be obtained from the vertex χ (see text). (b) All diagrams
in δT can be obtained from the two-dimer irreducible diagrams by the use of the full dimer-dimer T matrix (see text). In both subfigures, the
external dimer lines are for illustration only.

cuts, the p0 and q0 integration contours are rotated to
the imaginary axis. The dimer-dimer T matrix satisfies an

integral equation derived in Ref. [29]; see Eq. (28) of that
paper.
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[75] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. Lett. 97, 100404
(2006).

[76] G.-D. Lin, W. Yi, and L.-M. Duan, Phys. Rev. A 74, 031604
(2006).

[77] M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Simons,
Phys. Rev. Lett. 98, 160402 (2007).

[78] M. Iskin and C. J. Williams, Phys. Rev. A 77, 013605
(2008).

[79] M. A. Baranov, C. Lobo, and G. V. Shlyapnikov, Phys. Rev. A
78, 033620 (2008).

[80] I. Bausmerth, A. Recati, and S. Stringari, Phys. Rev. A 79,
043622 (2009).

[81] A. Gezerlis, S. Gandolfi, K. E. Schmidt, and J. Carlson, Phys.
Rev. Lett. 103, 060403 (2009).

[82] J. E. Baarsma, K. B. Gubbels, and H. T. C. Stoof, Phys. Rev. A
82, 013624 (2010).

[83] J. Braun, J. E. Drut, T. Jahn, M. Pospiech, and D. Roscher, Phys.
Rev. A 89, 053613 (2014).

[84] J. Braun, J. E. Drut, and D. Roscher, Phys. Rev. Lett. 114,
050404 (2015).

[85] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman,
Phys. Rep. 315, 199 (1999).

[86] V. Gurarie and L. Radzihovsky, Ann. Phys. (NY) 322, 2 (2007).
[87] P. Massignan, Europhys. Lett. 98, 10012 (2012).

062706-14

https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevD.72.045008
https://doi.org/10.1103/PhysRevD.72.045008
https://doi.org/10.1103/PhysRevD.72.045008
https://doi.org/10.1103/PhysRevD.72.045008
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevA.77.013605
https://doi.org/10.1103/PhysRevA.77.013605
https://doi.org/10.1103/PhysRevA.77.013605
https://doi.org/10.1103/PhysRevA.77.013605
https://doi.org/10.1103/PhysRevA.78.033620
https://doi.org/10.1103/PhysRevA.78.033620
https://doi.org/10.1103/PhysRevA.78.033620
https://doi.org/10.1103/PhysRevA.78.033620
https://doi.org/10.1103/PhysRevA.79.043622
https://doi.org/10.1103/PhysRevA.79.043622
https://doi.org/10.1103/PhysRevA.79.043622
https://doi.org/10.1103/PhysRevA.79.043622
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1209/0295-5075/98/10012
https://doi.org/10.1209/0295-5075/98/10012
https://doi.org/10.1209/0295-5075/98/10012
https://doi.org/10.1209/0295-5075/98/10012



