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Asymmetric electron energy sharing in electron-impact double ionization of helium
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We present the fully fivefold differential cross sections (FDCSs) for (e, 3e) processes in helium within the
first Born approximation. The calculation is performed for a coplanar geometry in which the incident electron
is fast (∼6 keV), the momentum transfer is small (0.24 a.u.), and for an asymmetric energy sharing between
both slow ejected electrons at excess energy of 20 eV. Two cases have been considered: E1 = 15 eV, E2 = 5 eV
and E1 = 8 eV, E2 = 12 eV. While waiting for new theoretical and experimental results for confrontations, in
particular for asymmetric energy sharing, our results clearly demonstrate that, for the same incident energy, the
same momentum transfer and the same excess energy, the (e, 3e) process in helium with asymmetric energy
sharing between ejected electrons is more likely than the case with symmetric energy sharing. The two- and
three-dimensional representation of the FDCSs covering all possible values of the angle of ejections are presented
and discussed. The theoretical cross sections are calculated by using a compact-kernel-integral-equation approach
associated with the Jacobi matrix method to calculate a three-body wave function and which leads to a full
convergence in terms of the basis size.
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I. INTRODUCTION

The study of the double ionization of atoms by photon or
electron impact allows one to gain information on correlated
systems. In a kinematically complete (e, 3e) experiment, the
particles are detected in coincidence and fivefold differential
cross sections are deduced. In the case of two-electron atomic
targets, such as helium, one deals in the final state with a pure
four-body Coulomb problem which, for high incident energies,
can be reduced to a three-body problem from a theoretical point
of view. However, even in this case, no analytic exact wave
function is known for either the scattering or the bound states.
Hence, approximations are made, and (e, 3e) cross sections
obtained with different theoretical descriptions of the initial
and final states are generally not in agreement either with each
other or with high-energy experimental data on helium [1–4].
Several discrete-basis-set methods for the calculation of
such processes have recently been developed, including
the Coulomb–Sturmian separable expansion method [5,6],
the convergent close coupling (CCC) method [1,7], the
J -matrix method combined with the Faddeev–Merkuriev
equations [8–10], and the generalized Sturmian function
(GSF) method [11,12]. In all these approaches, the continuous
Hamiltonian spectrum is represented in the context of complete
square-integrable bases. Despite the enormous progress made
so far in discretization and subsequent numerical solutions
of three-body differential and integral equations of Coulomb
scattering theory, a number of related problems (one of them
is the magnitude of cross sections ...) remain open.

Kinematically completely determined experiments for
photo-double ionization of helium have been performed by
Bräuning et al. [13]. Except for asymmetric electron energy
sharings (where discrepancies were found), the corresponding
absolute data were in good agreement with the results of
various theoretical treatments. In this contribution, we are
interested by asymmetric electron energy sharing in He(e, 3e)
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processes. None of the experimental works cited above have
studied this case in particular for ∼6 keV impact energy.
Beside the absolute data of Lahmam–Bennani et al. [1,2], Dorn
et al. [3] used 2 keV projectiles and registered collision events
with a low-to-intermediate momentum transfer (0.5 a.u.) but
undertook only the study of equal-energy sharing. Overall,
there is a lack of studies devoted to asymmetric-energy-sharing
configurations. The challenging task of this contribution aims
to partially fill this gap.

In this paper, we use a compact-kernel-integral-equation
approach associated with the Jacobi matrix method to cal-
culate a three-body wave function that describes the double
continuum of an atomic two-electron system. This technique
has been recently [14] applied to the (e, 3e) experimental
kinematic conditions of Refs. [1,2] for symmetric-electron-
energy sharing and the fully fivefold differential cross sections
(FDCSs) obtained satisfactorily agree both in shape and in
magnitude with experiment. In addition, a full convergence in
terms of the basis size has been obtained and shown. In the
present contribution, we apply this method to the calculation
within the first Born approximation of the FDCS for (e, 3e)
processes in helium in the small-momentum-transfer regime
(0.24 a.u.). The calculation is performed for a coplanar
geometry in which the incident electron is fast ∼6 keV and
for an asymmetric energy sharing between both slow ejected
electrons. Two cases have been considered: E1 = 15 eV,
E2 = 5 eV and E1 = 8 eV, E2 = 12 eV. To be more general
and predictable in our investigation, we have covered all the
possible values of ejected angles θ1 and θ2. The two- and
three-dimensional representation of the FDCSs corresponding
to the two cases mentioned are presented and discussed.

The paper is organized as follows: After this introduction, in
the second section, we briefly present the theoretical approach
used. The third section is devoted to the results and discussion.
The FDCSs are presented for the two asymmetric cases dubbed
hereafter case A (E1 = 15 eV, E2 = 5 eV) and case B (E1 =
8 eV, E2 = 12 eV). Seen that the excess energy share is the
same as the one in Ref. [1], a confrontation curve between
symmetric and asymmetric energy sharing is shown. The paper
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ends in Sec. IV with a brief summary. Atomic units are used
throughout.

II. THEORY

The two-electron continuum wave function, i.e., the double
continuum wave function with an asymptotic ingoing wave
behavior, is a solution of the following Schrödinger equation:[

E + 1

2
�1 + 1

2
�2 + Z

r1
+ Z

r2
− 1

r12

]
×�(−)(k1,k2; r1,r2) = 0, (1)

where r1, r2 are the position vectors of electrons 1 and 2
and k1, k2 are their corresponding momentum. r12 = |r2 − r1|
is the interelectronic distance. Z denotes the charge of the
infinitely massive nucleus, the position of which coincides
with the origin of the laboratory system. E is the total energy
of the two electrons.

Equation (1) is solved in a numerically exact fashion with
the approach developed in Ref. [14]. Since the formulation
together with relevant computational aspects can be found
in our previous work in Ref. [14], only a succinct review is
provided hereafter for the sake of providing a self-contained
work. Both electrons are identical particles, so we can
introduce the new functions �

(−)
i (k1,k2; r1,r2) (i = 1,2), such

that �(−) = (1/
√

2)[�(−)
1 + �

(−)
2 ].

Taking into account the exchange symmetry of the so-
lution of Eq. (1), �(−)(k1,k2; r1,r2) = g�(−)(k1,k2; r2,r1),
where g = +1 (−1) for a singlet (triplet) state, we
have �

(−)
2 (k1,k2; r1,r2) = gP̂12�

(−)
1 (k1,k2; r1,r2), so �(−) =

(1/
√

2)[1 + gP̂12]�(−)
1 . While taking into consideration the

method of effective charge, we can now perform a partial-wave
decomposition of the wave function �

(−)
1 and write

�
(−)
1 (k1,k2; r1,r2)

= 2

π

1

k1 k2

∑
L,M,λ0,l0

{
ψLM

l0λ0
(r1,r2; k1,k2)YLM∗

l0λ0
(̂k1 ,̂k2)

× θ (k1 − k2) + gψLM
l0λ0

(r1,r2; k2,k1)YLM∗
l0λ0

(̂k2 ,̂k1)

× θ (k2 − k1)
}
. (2)

L is the total angular momentum and M its projection on
the quantization axis. l0 and λ0 are the individual angular
momenta of the two electrons. The modified step function θ

with θ (0) = 1/2 in Eq. (2) is introduced to ensure that, when
k1 > k2, the fast ejected electron momentum k1 is associated
with the effective charge Z − 1 while the slow ejected electron
momentum k2 is associated with the charge Z and inversely.
When k1 = k2, the momentum k1 can be associated with
either Z or Z − 1. YLM

l0λ0
(̂p,̂q) is the bipolar harmonics. The

partial-wave function ψLM
l0λ0

in Eq. (2) can be further expanded
in a basis of Coulomb–Sturmian functions [15] and bipolar
harmonics:

ψLM
l0λ0

(r1,r2) =
∑

l, λ, n, ν

CL(lλ)
nν (E)〈r1,r2|n l ν λ; LM〉, (3)

where the coefficients CL(lλ)
nν (E) are calculated in Ref. [14],

and

〈r1,r2|n l ν λ; LM〉 = φκ
nl(r1)

r1

φκ
νλ(r2)

r2
YLM

lλ (̂r1, r̂2). (4)

The Coulomb–Sturmian functions φκ
νλ(r) form a complete and

discrete set of L2-integrable functions defined as follows:

φκ
νλ(r) =

[
κ(ν − λ − 1)!

ν(ν + λ)!

]1/2

(2κr)λ+1e−κrL2λ+1
ν−λ−1(2κr),

ν � 1 + λ, (5)

where κ is a nonlinear basis parameter. Lα
n(x) is a Laguerre

polynomial. These functions are known to be orthogonal with
the weight 1/r:∫ ∞

0

dr

r
φκ

νλ(r)φκ
ν ′λ(r) = κ

ν
δνν ′ .

The theoretical approach described above to calculate
double continuum wave functions is now applied to (e, 3e)
processes in helium. Here, we consider the case of very
high incident energies and small momentum transfer. In this
dipole limit, it is expected that a first-order Born treatment
is sufficient. The FDCS, which is the most differential cross
section, is given by

σ (5) ≡ d5σ

d
sdE1d
1dE2d
2

= 4ksk1k2

ki

1

K4
| 〈�(−)(k1,k2)| exp(iK · r1)

+ exp(iK · r2) − 2|�0〉 |2 , (6)

where (Ei,ki), (Es,ks), (E1,k1), and (E2,k2) are the energy
and momentum of the incident, scattered, and the two ejected
electrons, respectively, and K = ki − ks is the momentum
transfer. The squared term on the right-hand side of Eq. (6)
represents the transition matrix. Its amplitude depends only on
three vectors: k1, k2, and the momentum transfer K. For small
K this amplitude can be Taylor expanded in K , which leads to
the optical limit [16]. Within the optical limit, and for first order
in K , final and initial states are always orthogonal because
only the odd-parity part of the final state contributes to the
matrix element, and this odd-parity final state is automatically
orthogonal to the even initial state.

�0 and �(−) are the initial and the final double continuum
wave function of helium. The ground-state wave function �0

is expanded in a basis of the Coulomb–Sturmian functions (5)
for the radial coordinates and bipolar harmonics for the angular
coordinates [15]:

�0(�r1,�r2) =
∑
l1l2

∑
n1n2

γ l1l2
n1n2

�l1l200
n1n2

×A
(

φκ
n2l2

(r2)

r2
Y00

l1l2
(r̂1,r̂2)

φκ
n1l1

(r1)

r1

)
, (7)

where �l1l2LM
n1n2

is the expansion coefficient. They are obtained
by diagonalizing the atomic Hamiltonian in Eq. (7). The
operator A projects onto either singlet or triplet states in order
to ensure the symmetry or antisymmetry of the spatial wave
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FIG. 1. 3D representation of the FDCS of electron-impact double
ionization of helium in the case of asymmetric energy sharing between
ejected electrons. The ejected electrons have energies E1 = 15 eV
and E2 = 5 eV. The angle of the scattered electron is 0.45◦ while the
angles θ1 and θ2 of the ejected electrons vary from 0 to 360◦.

function, as required by the Pauli principle. The coefficient
γ l1l2

n1n2
= 1 + (1/

√
2 − 1)δl1l2

n1n2
controls the redundancies which,

from the exchange of the electrons, may occur in the basis.

III. RESULTS AND DISCUSSION

Calculations of the fully fivefold differential cross section
(FDCS) for the He(e, 3e)H2+

e reaction on the helium atom were
performed. As we mentioned above in Eq. (6), �0 and �(−)

are the initial and the final double continuum wave function of
helium. The helium ground-state wave function �0 is obtained
as a result of diagonalization of the matrix of the Hamiltonian
of the three-body system. In the present calculation, we put
nmax = νmax = 20 and lmax = 3. By choosing the nonlinear
parameter κ0 = 2, we obtain E0 = −2.903 27 a.u. for the
ground-state energy [17].

The wave function �(−) for the final state of the (e−, e−,
H2+

e ) system is obtained by the method outlined above. In
these calculations, it is sufficient to take into account three
values (0, 1, and 2) of the total angular momentum L and a
maximum value lmax = 3 for the individual angular momenta.
The number N of Coulomb–Sturmian functions is 50 with
the dilation parameter κ = 0.6. The parameters of the cutoff
function are the optimized ones which lead to the convergence
of the FDCS in term of basis size in Ref. [14]. They are α = 5
and M = 10. For the same incident energy E0 = 5599 eV, and
the same momentum transfer (0.24 a.u.), we have considered
the following two cases:

(1). Case A, in which the ejected electrons energies and
effective charge are E1 = 15 eV and Z1 = Z − 1 for the
electron 1 and E2 = 5 eV and Z2 = Z = 2 for electron 2.

(2). Case B, in which the ejected electrons energies and
effective charges are E1 = 8 eV and Z1 = Z = 2 for the
electron 1 and E2 = 12 eV and Z2 = Z − 1 for electron 2.

As mentioned above, no experimental data were found
for the He(e, 3e) processes with asymmetric energy sharing
between ejected electrons at this incident energy. Thus to be
more general and predictable in our investigation, we have
covered all the possible values of θ1 and θ2. This allows us to
plot in two and in three dimensions the curves of the FDCS
for cases A and B.

The incident electron energy and the excess energy shared
by ejected electrons are the same as in Ref. [1]. Thus we can
compare the magnitude of the FDCS in both cases (symmetric
and asymmetric electron energy sharing) in order to output
the effect of nonequipartition of energy. Within the same
spirit state, we will also point out the variation of the minima
predicted by the optical limit [16,18] or, more precisely, the
one due to Coulomb repulsion.

A. Case A (E1 = 15 eV, E2 = 5 eV)

We start from a general view of the FDCS for the first case
in which the incident electron have an energy of 5599 eV while
electrons 1 and 2 have energies E1 = 15 eV and E2 = 5 eV,
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FIG. 2. Comparison between (a) the FDCS with asymmetric energy sharing and (b) the FDCS with symmetric energy sharing [14] between
ejected electrons. The result is presented for the same excess of energy of the ejected electrons (20 eV) and the same value of the angle θ1 = 41◦,
0◦ � θ2 � 360◦. The solid dots with error bars in panel (b) are the absolute experimental data of Lahmam–Bennani [1].
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FIG. 3. FDCS (a.u.) of asymmetric electron energy sharing in electron-impact double ionization of helium. The incident energy is
E0 = 5599 eV and the energies of the slow ejected electrons are E1 = 15 eV, E2 = 5 eV. The scattering angle θs of the fast incident electron
is fixed and equal to 0.45◦ while the angles of the ejected electrons are θ1 and θ2. One of these angles, θ1 is fixed and the other varies.

respectively. The scatter angle is 0.45◦ and the momentum
transfer is equal to 0.24 a.u. Figure 1 is a three-dimensional
(3D) representation of the FDCS of electron-impact double
ionization of helium in the case of asymmetric energy sharing
between ejected electrons (case A) within the first Born
approximation (FBA).

In Fig. 2, we compare the FDCS with asymmetric energy
sharing [Fig. 2(a)] and the FDCS with symmetric energy
sharing [Fig. 2(b)] [14] between ejected electrons. The result
is presented for the same excess of energy of 20 eV and the
same value of the angle θ1 = 41◦, 0◦ � θ2 � 360◦. The solid
dots with error bars in Fig. 2(b) are the absolute experimental
data of Lahmam–Bennani [1].

As first observation from Fig. 1, one point a two-lobe
structure for the FDCS angular distribution. In contrast to the
case with symmetric energy sharing in Fig. 2(b), the two lobes
are not separated in Fig. 2(a) by zero intensity as predicted by
the optical limit. This simply means that the electron-electron
interaction is weak in a double-ionization process with E1 =
15 eV and E2 = 5 eV. The range of intensity of FDCS is also
remarkable in the confrontation curves Figs. 2(a) and 2(b). It
is clearly seen that, for the same incident energy, the same
momentum transfer, and the same excess energy sharing, the
(e, 3e) process in helium with asymmetric energy sharing is
more plausible than the case with symmetric energy sharing.

In Fig. 3, we present our results of asymmetric electron en-
ergy sharing in electron-impact double ionization of helium for
two arbitrary values of the angle θ1 of one of the ejected elec-
tron. The first curve, θ1 = 9◦ is for an ejection in the half front
plane while the second θ1 = 270◦ is for an ejection in the half
rear plane. The two-lobe structure mentioned above is visible.
It is clearly seen from Figs. 1–3 that the intensity of the binary
lobe which correspond to direction +K is less than the intensity
of the recoil one corresponding to direction −K. Therefore, the
residual ion is more implicated in the process when E1 > E2.

B. Case B (E1 = 8 eV, E2 = 12 eV)

Here we have performed the same theoretical study as
above. The individual energies of the ejected electrons are

respectively E1 = 8 eV and E2 = 12 eV. The energy of
the incident electron remains 5599 eV for a momentum
transfer of 0.24 a.u. and a scattered angle equal to θs = 45◦.
We have initially plotted a three-dimensional (3D) curve
that then follows the two-dimensional curves. Figure 4
is a 3D representation of the FDCS of electron-impact
double ionization of helium in the case of asymmetric
energy sharing between ejected electrons (case B) within the
FBA.

The first interesting observation from Fig. 4 is the mag-
nitude of the FDCS. They are greater than case A in which
the ejected electrons energies were E1 = 15 eV and E2 = 5
eV. The two-lobe structure as well as the approximate zero
between lobes predicted in the optical limit are visible. For
more detail about these observations, we have plotted in Fig. 5
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FIG. 4. 3D representation of the FDCS of electron-impact double
ionization of helium in the case of asymmetric energy sharing between
ejected electrons. The ejected electrons energies are E1 = 8 eV and
E2 = 12 eV. The angle of the scattered electron is 0.45◦ while the
angles θ1 and θ2 of the ejected electrons vary from 0 to 360◦.
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FIG. 5. FDCS (a.u.) of asymmetric electron energy sharing in electron-impact double ionization of helium for θ1 = 72◦, 144◦, 270◦, and
333◦. The incident energy is 5599 eV while the electrons individual energies are E1 = 8 eV, E2 = 12 eV.

the results of the FDCS as a function of the one of the ejected
electron angle θ2, for four arbitrary selected values of the
another ejected electron angle θ1.

From Fig. 5, we notice that, in the two curves θ1 = 72◦ and
θ1 = 144◦ for an ejection in the half-front plane, the binary
lobes in the direction of +K are smaller than the recoil ones.
The opposite is observed on the two curves θ1 = 270◦ and θ1 =
333◦ for an ejection in the half-rear plane, which means that the
residual ion does not participate more actively in the collisional
process in this latter case. The positions of the minima at
k̂1 = ±k̂2 predicted by the dipole limit are violated in case B.
In fact, for a fixed momentum transfer K , the dynamical matrix
element in Eq. (6) depends very strongly on the scattering
geometry, i.e., on k1 and k2. This means that, for a fixed K ,
the optical limit might be approached for certain combination
of k1 and k2 but violated for other k

′
1 and k

′
2.

IV. SUMMARY

In this paper, we present the results of the fully fivefold
differential cross section of asymmetric electron energy
sharing in electron-impact double ionization of helium by
using the approach presented in Ref. [14]. In that approach the
wave function is calculated in a way such as the corresponding

Lippmann–Schwinger-type equation for the (e−, e−, H2+
e )

system possess a compact kernel. We performed a first-order
Born calculation of the FDCS where we considered a coplanar
kinematic that involve a very high incident energy ∼6 keV,
a very small momentum transfer of 0.24 a.u., and slow
ejected electrons sharing asymmetrically the excess energy of
20 eV. Two cases have been considered: case A (E1 = 15 eV,
E2 = 5 eV) and case B (E1 = 8 eV, E2 = 12 eV).

From the theoretical results obtained, it comes out that
the magnitude of FDCSs in case B are greater than those
in case A. The two- and three-dimensional plots of the
FDCSs in both cases A and B showed a two-lobe structure
as predicted by the dipole limit. In this optical limit, the
positions of the predicted minima were approximately better
reproduced in case A than in case B. Let us stress that
the minima are just approximated because, in an asymmetry
energy sharing, the electron-electron interaction between both
ejected electrons is weaker than in a symmetric energy
sharing. We also notice that the residual ion is more impli-
cated in the process when E1 > E2. Finally, Fig. 2 clearly
demonstrates that, for the same incident energy, the same
momentum transfer and the same excess energy, the (e, 3e)
process in helium with asymmetric energy sharing is more
likely than the case with symmetric energy sharing. While
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waiting for new (e, 3e) experiments, especially for ∼6 keV
impact and for asymmetric energy sharing, we are of the
opinion that this work could stimulate additional studies.

ACKNOWLEDGMENTS

The authors thank the Université Catholique de Louvain
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