
PHYSICAL REVIEW A 94, 062508 (2016)

Multiconfiguration calculations of electronic isotope shift factors in Al I

Livio Filippin,1,* Randolf Beerwerth,2,3,† Jörgen Ekman,4,‡ Stephan Fritzsche,2,3,§

Michel Godefroid,1,|| and Per Jönsson4,¶

1Chimie Quantique et Photophysique, Université libre de Bruxelles, B-1050 Brussels, Belgium
2Helmholtz-Institut Jena, D-07743 Jena, Germany

3Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
4Group for Materials Science and Applied Mathematics, Malmö University, S-20506 Malmö, Sweden
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The present work reports results from systematic multiconfiguration Dirac–Hartree–Fock calculations of
electronic isotope shift factors for a set of transitions between low-lying levels of neutral aluminium. These
electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes
in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of
the mass- and field-shift factors. Within these approaches, different models for electron correlation are explored
in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the
isotope shift factors.
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I. INTRODUCTION

When the effects of the finite mass and the extended
charge distribution of the nucleus are taken into account
in a Hamiltonian describing an atomic system, the isotopes
of an element display different electronic energy levels [1].
The isotope shift (IS) of spectral lines, which consists of the
mass shift (MS) and the field shift (FS), plays a key role for
extracting changes in mean-square charge radii of the atomic
nuclei [2–4]. For a given atomic transition k with frequency
νk , it is assumed that the electronic response of the atom to
variations in the nuclear mass and charge distribution can be
described by only two factors: the mass-shift factor �Kk,MS

and the field-shift factor Fk . The observed IS δν
A,A′
k between

any pair of isotopes with mass numbers A and A′ is related to
the change in nuclear masses and in mean-square charge radii,
δ〈r2〉A,A′

[1,2]. With this respect, transitions between low-
lying levels of neutral aluminium (Al I) are under investigation
in bunched-beam collinear laser spectroscopy experiments [5]
along the Al isotopic chain in order to determine nuclear
properties of the targeted isotopes.

The lack of accurate theoretical calculations of IS in Al I

must be pointed out. Hence, we perform ab initio calculations
of IS electronic factors by using the multiconfiguration
Dirac–Hartree–Fock (MCDHF) method implemented in the
RIS3/GRASP2K [1,6] and RATIP [7] program packages. Using
the MCDHF method, two different approaches are adopted
for the computation of the IS electronic factors in Al I. The
first one is based on the estimate of the expectation values of
the one- and two-body recoil Hamiltonian for a given isotope,
including relativistic corrections derived by Shabaev [8,9],
combined with the calculation of the total electron densities
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at the origin. In the second approach, the relevant factors are
extracted from the calculated transition shifts for given triads
of isotopes. The results of the two approaches are compared.
The same kind of comparison has been performed on neutral
copper (Cu I) [10,11] in order to determine a set of δ〈r2〉65,A′

values from the corresponding observed IS.
Very recently, the first computational approach above has

been applied to neutral magnesium (Mg I) [12], where several
transition ISs have been determined for the 26Mg -24Mg
pair of isotopes. In the present work, the same electron
correlation models are applied to Al I. The second approach
was applied to heavier elements such as polonium [13],
where a good consistency with a King plot analysis was
obtained. A similar consistency check was also performed
on two transitions in manganese [14], where excellent agree-
ment for the mass-shift factors computed with RIS3 was
observed.

Within both computational approaches, the different cor-
relation models are systematically explored to determine a
reliable computational strategy and to estimate theoretical
error bars of the IS factors.

In Sec. II, the principles of the MCDHF method are
summarized. In Sec. III, the expressions of the MS and
FS factors are recalled and the two approaches are further
discussed. Section IV enumerates the studied transitions in
Al I and presents the active space expansion strategy adopted
for the electron correlation models. In Sec. V, numerical
results of the transition energies, as well as of the MS and
FS factors, are reported for each studied transition. Section VI
gives concluding remarks.

II. NUMERICAL METHOD

The MCDHF method [15], as implemented in the GRASP2K

program package [6,16], is the fully relativistic counter-
part of the nonrelativistic multiconfiguration Hartree–Fock
(MCHF) method [17,18]. The MCDHF method is employed
to obtain wave functions that are referred to as atomic state
functions (ASFs), i.e., approximate eigenfunctions of the
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Dirac–Coulomb Hamiltonian given by

HDC =
N∑

i=1

[c αi · pi + (βi − 1)c2 + Vnuc(ri)] +
N∑

i<j

1

rij

,

(1)

where Vnuc(ri) is the nuclear potential corresponding to an
extended nuclear charge distribution function, c is the speed
of light, and α and β are the (4 × 4) Dirac matrices. An ASF
is given as an expansion over NCSFs jj -coupled configuration
state functions (CSFs), �(γν�JMJ ), with the same parity �,
total angular momentum J , and its projection on the z axis,
MJ :

|	(γ �JMJ )〉 =
NCSFs∑
ν=1

cν |�(γν �JMJ )〉. (2)

In the MCDHF method, the one-electron radial functions
used to construct the CSFs and the expansion coefficients cν are
determined variationally so as to leave the energy functional

E =
NCSFs∑
μ,ν

cμcν〈�(γμ �JMJ )|HDC|�(γν �JMJ )〉 (3)

and additional terms for preserving the orthonormality of
the radial orbitals stationary with respect to their variations.
The resulting coupled radial equations are solved iteratively
in the self-consistent field (SCF) procedure. Once radial
functions have been determined, a configuration-interaction
(CI) calculation is performed over the set of configuration
states, providing the expansion coefficients for building the
potentials of the next iteration. The SCF and CI coupled
processes are repeated until convergence of the total wave
function (2) and energy (3) is reached.

III. ISOTOPE SHIFT THEORY

The finite mass of the nucleus gives rise to a recoil effect
that shifts the level energies slightly, called the mass shift
(MS). Due to the variation of the IS between the upper and
lower levels, the transition IS arises as a difference between
the IS for the two levels. Furthermore, the transition frequency
MS between two isotopes, A and A′, with nuclear masses M

and M ′, is written as the sum of normal mass shift (NMS) and
specific mass shift (SMS),

δν
A,A′
k,MS ≡ νA

k,MS − νA′
k,MS = δν

A,A′
k,NMS + δν

A,A′
k,SMS, (4)

and can be expressed in terms of a single parameter

δν
A,A′
k,MS =

(
1

M
− 1

M ′

)
�Kk,MS

h

=
(

1

M
− 1

M ′

)
�K̃k,MS. (5)

Here, the mass-shift factor �Kk,MS = (Ku
MS − Kl

MS) is the
difference of the KMS = KNMS + KSMS factors of the upper
(u) and lower (l) levels involved in the transition k. For
the �K̃ factors, the unit (GHz u) is often used in the
literature. As far as conversion factors are concerned, we use
�Kk,MS [meEh] = 3609.4824 �K̃k,MS [GHz u].

Neglecting terms of higher order than δ〈r2〉 in the Seltzer
moment (or nuclear factor) [19]

λA,A′ = δ〈r2〉A,A′ + b1δ〈r4〉A,A′ + b2δ〈r6〉A,A′ + · · · , (6)

the frequency shift in the transition k arising from the differ-
ence in nuclear charge distributions between two isotopes, A

and A′, can be written as [20–22]

δν
A,A′
k,FS ≡ νA

k,FS − νA′
k,FS = Fk δ〈r2〉A,A′

. (7)

In the expression above, δ〈r2〉A,A′ ≡ 〈r2〉A − 〈r2〉A′
and Fk

is the electronic factor. Although not used in the current
work, it should be mentioned that there are computationally
tractable methods to include higher-order Seltzer moments in
the expression for the transition frequency shift [23,24].

The total transition frequency shift is obtained by merely
adding the MS (4) and FS (7) contributions:

δν
A,A′
k =

δν
A,A′
k,MS︷ ︸︸ ︷

δν
A,A′
k,NMS + δν

A,A′
k,SMS + δν

A,A′
k,FS

=
(

1

M
− 1

M ′

)
�K̃k,MS + Fk δ〈r2〉A,A′

. (8)

In this approximation, it is sufficient to describe the total
frequency shift between the two isotopes A and A′ with only
the two electronic parameters given by the mass-shift factor
�K̃k,MS and the field-shift factor Fk . Furthermore, they relate
nuclear properties given by the change in mass and mean-
square charge radius to atomic properties. Both factors can
be calculated from atomic theory, which is the subject of this
work. The two different methods that are applied to compute
these quantities are outlined in the next two sections.

A. Expectation values of the relativistic recoil operator
and total electron densities at the origin

The main ideas of this approach are outlined here and
more details can be found in the works by Shabaev [8,9]
and Palmer [25], who pioneered the theory of the relativistic
mass shift used in the present work. Gaidamauskas et al. [26]
derived the tensorial form of the relativistic recoil operator
implemented in RIS3 [1] and its extension [23].

The nuclear recoil corrections within the (αZ)4m2
e/M

approximation [8,9] are obtained by evaluating the expectation
values of the one- and two-body recoil Hamiltonian for a given
isotope,

HMS = 1

2M

N∑
i,j

[
pi · pj − αZ

ri

(
αi + (αi · r i)r i

r2
i

)
· pj

]
. (9)

Separating the one-body (i = j ) and two-body (i �= j ) terms
that constitute the NMS and SMS contributions, respectively,
the Hamiltonian (9) can be written as

HMS = HNMS + HSMS. (10)

The NMS and SMS mass-independent K factors are defined
by the following expressions:

KNMS ≡ M〈	|HNMS|	〉, (11)
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and

KSMS ≡ M〈	|HSMS|	〉. (12)

Within this approach, the electronic factor Fk for the
transition k is estimated by

Fk = Z

3�

(
e2

4πε0

)
�|	(0)|2k, (13)

which is proportional to the change of the total electron
probability density at the origin between the levels l and u,

�|	(0)|2k = �ρe
k (0) = ρe

u(0) − ρe
l (0). (14)

The potential Vnuc(ri) of Eq. (1) being isotope-dependent,
the radial functions vary from one isotope to another, which
defines isotopic relaxation. However, the latter is very small
and hence neglected along the isotopic chain. Thus, the wave
function 	 is optimized for a specific isotope within this
approach.

B. Direct diagonalization of the Hamiltonian matrix

Another way to determine �Kk,MS and Fk , using an ab
initio method, is to compute the energies of the upper and
lower atomic levels for several isotopes. In this approach
we diagonalize the full Hamiltonian matrix including the
contribution from the mass shift and the extended nuclear
charge distribution [27,28], as implemented in RATIP [7].

For a given transition and a given triad of isotopes
(A,A′,A′′), Eq. (8) yields a (2 × 2) system of equations
that expresses the computed transition shifts in terms of the
unknown IS factors �Kk,MS and Fk . Very much resembling
the experimental procedure, the system of equations is subse-
quently solved to obtain the two electronic factors [3,7].

This method has the advantage of providing a single
set of average mass- and field-shift factors for a chain of
isotopes, adopting the same standard parametrization as for
the experimental analysis. Furthermore, the reliability of
Eq. (8) can be estimated by investigating the magnitude of
the variations in the calculated factors for different choices
of isotope triads. For light and neutral systems like Al I, this
variation is much smaller than the uncertainty due to electron
correlation.

The main disadvantage of this method is that it requires
the relativistic CI (RCI) calculations to be performed for
a series of selected isotopes. We adopt this approach by
first computing the wave functions for the 27Al isotope,
which we use in subsequent RCI calculations for a series of
aluminium isotopes to get the transition energies and deduce
the corresponding transition IS. For the computations, we used
the isotopes A = 19,23,27,31,35, that cover a wide range
of the observed isotopes and the entire range targeted in the
planned experiments [5]. The triads later used for the extraction
of the factors are all ten that arise from the above-mentioned
choice of five isotopes.

The NMS factor is calculated by including a me

M

∑
i Ti

term in the Hamiltonian, where Ti = c αi · pi + (βi − 1)c2 is
the Dirac kinetic-energy operator associated with electron i

[29–31], which is an approximation of the ( 1
2M

∑
i p

2
i ) operator

built on the relativistic electron momenta. The SMS operator
that is included in the Hamiltonian for the RCI calculations is

3s23p 2P o
1/2

3s23p 2P o
3/2

3s24s 2S1/2

3s23d 2D3/2

396.26
nm

394.51
nm

30
9.
37

nm
30

8.
30

nm

FIG. 1. Schematic diagram of the Al I transitions of interest.

limited to the standard mass polarization term 1
M

∑
i<j pi · pj ,

as described in the write-up of the SMS92 program [32].
To separate the normal and specific mass shift, different

calculations have to be carried out. Furthermore, by diago-
nalization without any mass-shift contribution, the field-shift
factor can be determined independently. This reduces to the
direct computation via Fk = δνk/δ〈r2〉 from Eq. (7), if the
atomic masses are kept constant. In this approximation, the
effect due to the varying nuclear mass along an isotopic chain
on the field shift is neglected. However, we did not neglect it
in the present calculations, even though a small deviation from
the approximate computation via δνk/δ〈r2〉 was found.

IV. ACTIVE SPACE EXPANSION

Four transitions are under investigation in laser spec-
troscopy experiments [5] along the Al isotopic chain in
order to determine nuclear properties of the targeted iso-
topes (see Fig. 1): 3s23p 2

P
o
1/2 → 3s24s 2S1/2 (394.51 nm),

3s23p 2
P

o
3/2 → 3s24s 2S1/2 (396.26 nm), 3s23p 2

P
o
1/2 →

3s23d 2
D3/2 (308.30 nm), and 3s23p 2

P
o
3/2 → 3s23d 2

D3/2

(309.37 nm).
To effectively capture electron correlation, CSFs of a

particular symmetry J and parity � are generated through
excitations within an active space of orbitals, consisting
of orbitals occupied in the reference configurations and
correlation orbitals. From hardware and software limitations,
it is impossible to use complete active space (CAS) wave
functions that would include all CSFs with appropriate J and �

for a given orbital active space. Hence the CSF expansions have
to be constrained to ensure that major correlation excitations
are taken into account [18].

Single (S) and double (D) substitutions are performed
on a multireference (MR) set, which contains the CSFs
that have large expansion coefficients and account for the
major correlation effects. These SD-MR substitutions take
into account valence-valence (VV), core-valence (CV) as well
as core-core (CC) correlations. The VV correlation model
only allows SD substitutions from valence orbitals, while
the VV + CV correlation model considers SrD substitutions
(single and restricted double) from core and valence orbitals,
limiting the excitations to a maximum of one hole in the core.
By contrast, the VV + CV + CC correlation model allows all
SD substitutions from core and valence orbitals.
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TABLE I. Reference configurations for the lower and upper states of the studied transitions in Al I. The MR cutoff values εMR determine
the set of CSFs in the MR space. NCSFs represents the number of CSFs describing each MR space.

Transition εMR J � Reference configurations NCSFs

3s23p 2
P

o
1/2 → 3s24s 2S1/2 0.025 1/2− [Ne]{3s23p,3s24p,3s3p3d,3s3d4p,3s4s4p,3p3,3p24p,3p3d2,3s3p5s,3s4p5s} 14

1/2+ [Ne]{3s24s,3s3p2,3s3p4p,3s4s2,3p24s,3p4s4p,3s4s5s} 13

3s23p 2
P

o
3/2 → 3s24s 2S1/2 0.025 3/2− [Ne]{3s23p,3s24p,3s3p3d,3s3d4p,3s4s4p,3p3,3p24p,3p3d2,3s4p5s} 17

1/2+ [Ne]{3s24s,3s3p2,3s3p4p,3s4s2,3p24s,3p4s4p,3s4s5s,4s4p2} 14

3s23p 2
P

o
1/2 → 3s23d 2

D3/2 0.05 1/2− [Ne]{3s23p,3s3p3d,3s3p4d,3p3} 7

3/2+ [Ne]{3s23d,3s24d,3s3p2,3s3p4f,3s3d2,3s3d4d,3s3d4s,3p23d} 12

3s23p 2
P

o
3/2 → 3s23d 2

D3/2 0.05 3/2− [Ne]{3s23p,3s3p3d,3s24p,3p3} 7

3/2+ [Ne]{3s23d,3s24d,3s3p2,3s3p4f,3s3d2,3s3d4d,3s3d4s,3p23d} 12

Within this approach, a common orbital basis set is chosen
for the lower and upper states of each transition. The reference
states are obtained using a valence-CAS procedure: SDT
(SD + triple) substitutions are performed within the n = 3,4
valence orbitals, also including the 5s orbital in the active
space for the transitions to the 2S1/2 state (see Table I). The 5s

orbital is added to improve the convergence of the 4s orbital
in the optimization of the energy functional.

An SCF procedure is then applied to the resulting CSFs,
providing the orbital set and the expansion coefficients. Due to
limited computer resources, such a valence-CAS MR set would
be too large for subsequent calculations when the active orbital
space increases. Hence, for reducing the size of the MR set,
only the CSFs whose expansion coefficients are, in absolute
value, larger than a given MR cutoff are kept, i.e., |cν | > εMR.
For each transition, the εMR values and the resulting MR sets
are listed in Table I for the lower and upper states.

The 1s orbital is kept closed in all subsequent calculations,
i.e., no substitution from this orbital is allowed. Tests show
that opening the 1s orbital does not affect the MS and
FS factors to any notable extent. Only orbitals occupied in
the single-configuration DHF approximation are treated as
spectroscopic, i.e., are required to have a node structure similar
to the corresponding hydrogenic orbitals [18]. The occupied
reference orbitals are frozen in all subsequent calculations.
The J levels belonging to a given term are optimized
simultaneously with standard weights through the extended
optimal level (EOL) scheme [33] and the set of correlation
orbitals is increased layer by layer.

For a given transition, the optimization procedure is
summarized as follows:

(1) Perform simultaneous calculations for the lower state
and the upper state of the transition by using an MR set
consisting of CSFs with the form 2s22p6nln′l′n′′l′′J� with
n,n′,n′′ = 3,4 (+5s) and l,l′,l′′ = s,p,d,f . Optimize all
orbitals simultaneously. These CSFs account for a fair amount
of the VV correlation.

(2) Keep the orbitals fixed from step (1), and optimize an
orbital basis layer by layer up to nl = 9h for both states of the
transition, described by CSFs with respective J� symmetries.
These CSFs are obtained by SD-MR substitutions with the
restriction that there is at most one excitation from the 2s22p6

core.
(3) Perform a CI calculation on the CSF expansion with

the J� symmetry of both states, describing VV, CV, and CC

correlations obtained by SD-MR substitutions to the orbital
basis up to nl = 9h from step (2).

Following the procedure in steps (1) and (2) or (1)–(3)
respectively yields results labeled “CV” or “CC” in Tables V
and VI.

The CC effects are more balanced if a common orbital basis
is used for describing both the upper and lower states, resulting
in more accurate transition energies, as discussed in Ref. [34].

The CSF expansions become significantly large when CC
correlations are taken into account, counting up to 2 × 106

CSFs. Hence, applying an SCF procedure to such a number of
CSFs takes too much computing time. This justifies the use of
the CI method at this stage.

The effect of adding the Breit interaction to the Dirac–
Coulomb Hamiltonian (1) is found to be much smaller than
the uncertainty in the transition IS factors with respect to
the correlation model. This interaction has therefore been
neglected in the procedure.

V. NUMERICAL RESULTS

Let us first study the convergence of the level MS factors,
KNMS and KSMS (in meEh), and the electron probability density
at the origin, ρe(0) (in a−3

0 ), of a given transition as a function
of the increasing active space. Table II displays the values
computed with the RIS3 approach for the 3s23p 2

P
o
1/2 →

3s24s 2S1/2 and 3s23p 2
P

o
3/2 → 3s23d 2

D3/2 transitions.

A. Valence and core-valence correlations

For both transitions, the active space is extended within the
VV + CV model until convergence of the transition results
�u

l is achieved, which requires the nl = 9h correlation layer
(“CV 9h” in Table II). Let us start the analysis with the
3s23p 2

P
o
1/2 → 3s24s 2S1/2 transition. For �KNMS, adding the

orbital layers optimized on VV + CV correlations leads to
a change of 10% in comparison with the “VV 4f ” result.
The behavior is similar for �KSMS and �ρe(0), where the
CV 9h values differ from the VV 4f ones by 4% and 12%,
respectively.

The convergence analysis is different concerning the
3s23p 2

P
o
3/2 → 3s23d 2

D3/2 transition. Indeed, from VV 4f to
CV 9h, the �KNMS value is strongly modified (25%), due to a
larger variation of KNMS for the upper level than for the lower
level. This change is even stronger for �KSMS and �ρe(0),
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TABLE II. Level MS factors, KNMS and KSMS (in meEh), and the electron probability density at the origin, ρe(0) (in a−3
0 ), as functions of

the increasing active space for the 3s23p 2
P

o
1/2 → 3s24s 2S1/2 and 3s23p 2

P
o
3/2 → 3s23d 2

D3/2 transitions in Al I. Results are computed with
RIS3. �u

l stands for the difference between the values of the upper level and the lower level.

KNMS (meEh) KSMS (meEh) ρe(0) (a−3
0 )

Active space Notation Lower Upper �u
l Lower Upper �u

l Lower Upper �u
l

3s23p 2
P

o
1/2 → 3s24s 2S1/2

VV model (MR)

5s4p4d4f VV 4f 241.9374 241.8043 −0.1331 −35.3798 −35.2045 0.1753 1497.7637 1498.8441 1.0804

VV + CV model

6s5p5d5f 5g CV 5g 241.9312 241.8051 −0.1261 −35.2342 −35.0512 0.1830 1498.0509 1499.2225 1.1716

7s6p6d6f 6g6h CV 6h 241.9528 241.8352 −0.1176 −35.2143 −35.0387 0.1756 1498.0608 1499.2964 1.2356

8s7p7d7f 7g7h CV 7h 241.9629 241.8378 −0.1251 −35.2040 −35.0249 0.1791 1498.1162 1499.3015 1.1853

9s8p8d8f 8g8h CV 8h 241.9614 241.8404 −0.1210 −35.2032 −35.0225 0.1807 1498.1050 1499.3215 1.2165

10s9p9d9f 9g9h CV 9h 241.9629 241.8438 −0.1191 −35.2030 −35.0210 0.1820 1498.1121 1499.3249 1.2128

VV + CV + CC model

10s9p9d9f 9g9h CC 9h 242.2185 242.0891 −0.1294 −31.5788 −31.4009 0.1779 1498.0782 1499.2434 1.1652

3s23p 2
P

o
3/2 → 3s23d 2

D3/2

VV model (MR)

4s4p4d4f VV 4f 241.9521 241.7665 −0.1856 −35.4048 −35.3722 0.0326 1497.6122 1497.5254 −0.0868

VV + CV model

5s5p5d5f 5g CV 5g 241.9174 241.7866 −0.1308 −35.2381 −35.2320 0.0061 1497.9986 1497.9804 −0.0182

6s6p6d6f 6g6h CV 6h 241.9459 241.8160 −0.1299 −35.2149 −35.2140 0.0009 1498.0332 1498.0300 −0.0032

7s7p7d7f 7g7h CV 7h 241.9534 241.8179 −0.1355 −35.2053 −35.2033 0.0020 1498.0799 1498.0510 −0.0289

8s8p8d8f 8g8h CV 8h 241.9521 241.8151 −0.1370 −35.2049 −35.1900 0.0149 1498.0782 1498.1535 0.0753

9s9p9d9f 9g9h CV 9h 241.9539 241.8150 −0.1389 −35.2057 −35.1894 0.0163 1498.0886 1498.1518 0.0632

VV + CV + CC model

9s9p9d9f 9g9h CC 9h 242.1767 242.0466 −0.1301 −31.6025 −31.5899 0.0126 1497.9558 1497.9980 0.0422

respectively 50% and 173%. The fluctuating transition results
from “CV 5g” to “CV 7h” are due to differences of values that
are very close to each other for the lower and upper states, and
an actual convergence is only achieved at the CV 9h stage.

A look at the MS and FS factors displayed in Table II
shows that small variations in the level values due to correlation
effects can lead to a significant variation in the transition values
�u

l . This illustrates how sensitive these electronic factors are
to the active orbital space used, and hence how challenging it is
to obtain reliable values with such a computational approach.
This observation also holds for the other transitions studied in
this work.

Let us now investigate the agreement of the transition
IS factors obtained from the two computational approaches
described in Sec. III, i.e., RIS3 and RATIP. Table III displays the
MS factors, �K̃NMS,�K̃SMS, and �K̃MS (in GHz u), and the
FS factors, F (in MHz/fm2), of the studied transitions in Al I

within the VV + CV model.
For each of the two computational approaches, both

common and separate optimization strategies of the orbital
basis sets are considered for the lower and upper states of the
transitions. The former strategy corresponds to that presented
in Sec. IV, while the latter strategy implies separate calcula-
tions for the lower and upper states, leading to two different
orbital basis sets in which orbital relaxation is allowed. Hence,
differences in the results of the transition IS factors may

arise from two different sources: (i) discrepancies between
RIS3 and RATIP approaches considering a given optimization
strategy and (ii) discrepancies between common and separate
optimization strategies considering a given computational
approach. Both sources of discrepancies provide error bars
of the IS factors within the VV + CV model.

For both optimization strategies, a very good consistency
is found between the results of RIS3 and RATIP, despite the
intrinsic differences in the two approaches. Indeed the agree-
ment is not expected to be perfect, since the two approaches
do not involve the same operators in the computation of the IS
factors. Relativistic corrections to the recoil Hamiltonian (9)
are part of the explanation for the small discrepancies that are
observed.

The major part of the error bars of the IS factors arises from
the discrepancies between the two optimization strategies,
whether RIS3 or RATIP is used. Concerning the transitions to the
2S1/2 state, the relative differences stay within 5% for �K̃MS

and F and are slightly larger for the transitions to the 2
D3/2

state for the reason discussed above.

B. Core correlations

Let us go back to Table II and analyze the effect of core
correlations on the transition IS factors, starting the discussion
again with the 3s23p 2

P
o
1/2 → 3s24s 2S1/2 transition. For
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TABLE III. MS factors, �K̃NMS, �K̃SMS, and �K̃MS (in GHz u), and FS factors, F (in MHz/fm2), of the studied transitions in Al I within
the VV + CV model. Comparison of the results obtained with RIS3 and RATIP. Both common (“Com.”) and separate (“Sep.”) orbital basis sets
are considered for the lower and upper states of each transition.

�K̃NMS (GHz u) �K̃SMS (GHz u) �K̃MS (GHz u) F (MHz/fm2)

RIS3 RATIP RIS3 RATIP RIS3 RATIP RIS3 RATIP

Transition Com. Sep. Com. Sep. Com. Sep. Com. Sep. Com. Sep. Com. Sep. Com. Sep. Com. Sep.

3s23p 2
P

o
1/2 → 3s24s 2S1/2 −430 −439 −430 −439 657 674 667 684 227 235 237 245 77.6 74.5 77.3 78.4

3s23p 2
P

o
3/2 → 3s24s 2S1/2 −432 −437 −427 −432 656 676 660 679 224 239 233 247 77.5 74.0 77.2 78.4

3s23p 2
P

o
1/2 → 3s23d 2

D3/2 −513 −562 −518 −567 58 75 64 81 −455 −487 −454 −486 4.5 4.0 4.5 4.0
3s23p 2

P
o
3/2 → 3s23d 2

D3/2 −501 −553 −500 −552 59 78 58 78 −442 −475 −442 −474 4.0 3.4 4.0 3.9

�KNMS and �KSMS, the relative differences from CV 9h

to “CC 9h” are respectively 9% and 2%, of the same order
as those within the VV + CV model, while the difference is
lower for �ρe(0) (4% against 12%).

Turning to the 3s23p 2
P

o
3/2 → 3s23d 2

D3/2 transition, the
relative differences from CV 9h to CC 9h reach 6% for
�KNMS, 23% for �KSMS and and 33% for �ρe(0), which
is much lower than from VV 4f to CV 9h. However, the last
two differences are still large, illustrating again the sensitivity
of these factors to electron correlation for this transition.

Let us also study the agreement of the transition IS
factors obtained with RIS3 and RATIP when core correlations
are taken into account. Table IV displays the MS factors,
�K̃NMS,�K̃SMS, and �K̃MS (in GHz u), and the FS factors,
F (in MHz/fm2), of the studied transitions in Al I within the
VV + CV + CC model.

For each of the two computational approaches, only a
common orbital basis set is considered for the lower and upper
states of each transition. Treatment with two separate orbital
bases provides inaccurate transition IS factors in addition to
inaccurate transition energies mentioned in Sec. IV, due to the
fact that the CC effects are not balanced between the two sets
of orbitals. Hence, differences in the results may only arise
from discrepancies between RIS3 and RATIP, and provide error
bars of the IS factors within the VV + CV + CC model.

As for valence and core-valence correlations, a very good
consistency is obtained between the results of RIS3 and RATIP

with, for each of the studied transitions, relative differences
staying within 5% for �K̃MS and 0.3% for F . The error bars
within the VV + CV + CC model are systematically smaller
than those within the VV + CV model, due to the fact that

they are only deduced from a comparison between RIS3 and
RATIP.

C. Comparison and discussion

Up to now, convergence within a given correlation model
has been investigated together with consistency between
two computational approaches or between two optimization
strategies. However, convergence and consistency obviously
do not imply accuracy, simply because the adopted correlation
model may not be adequate for the studied properties. Hence,
one also needs to compare the obtained results of the transition
energies and IS factors with reference values existing in the
literature. Table V displays the energies �E (in cm−1) of the
studied transitions in Al I. As mentioned in Sec. IV, the labels
“CV” and “CC,” respectively correspond to the procedure
in steps (1) and (2) (VV + CV model) or steps (1)–(3)
(VV + CV + CC model). The values of �E, obtained with a
common optimization strategy, are compared with theoretical
coupled-cluster results from Das et al. [35] and NIST data [36].
The relative errors with NIST values are 0.5%–0.6% at the
CV stage and 0.01%–0.5% at the CC stage. The accuracy of
the transition energies is thus systematically improved when
CC correlations are accounted for. Furthermore, both sets of
values are more accurate than the results from Ref. [35], whose
accuracy ranges from 1.6% to 2%.

Table VI displays the MS factors, �K̃NMS,�K̃SMS, and
�K̃MS (in GHz u), and FS factors, F (in MHz/fm2), of the
studied transitions in Al I. The associated error bars are given
within each correlation model, with the use of the notation
a(b) standing for a ± b, where the values a and b respectively

TABLE IV. MS factors, �K̃NMS, �K̃SMS and �K̃MS (in GHz u), and FS factors, F (in MHz/fm2), of the studied transitions in Al I within
the VV + CV + CC model. Comparison of the results obtained with RIS3 and RATIP. Only a common orbital basis set is considered for the
lower and upper states of each transition.

�K̃NMS (GHz u) �K̃SMS (GHz u) �K̃MS (GHz u) F (MHz/fm2)

Transition RIS3 RATIP RIS3 RATIP RIS3 RATIP RIS3 RATIP

3s23p 2
P

o
1/2 → 3s24s 2S1/2 −467 −467 642 652 175 185 74.5 74.3

3s23p 2
P

o
3/2 → 3s24s 2S1/2 −451 −447 649 652 198 205 75.2 75.0

3s23p 2
P

o
1/2 → 3s23d 2

D3/2 −534 −538 8 14 −526 −524 3.8 3.8
3s23p 2

P
o
3/2 → 3s23d 2

D3/2 −470 −469 45 45 −425 −424 2.7 2.7
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TABLE V. Energies, �E (in cm−1), of the studied transitions in Al
I. Results obtained with a common optimization strategy. Comparison
with other theory [35] and NIST [36].

�E (cm−1)

Transition CV CC Ref. [35] NIST [36]

3s23p 2
P

o
1/2 → 3s24s 2S1/2 25 495 25 351 24 943 25 347.7576

3s23p 2
P

o
3/2 → 3s24s 2S1/2 25 376 25 173 24 730 25 235.6956

3s23p 2
P

o
1/2 → 3s23d 2

D3/2 32 638 32 595 33 038 32 435.4333
3s23p 2

P
o
3/2 → 3s23d 2

D3/2 32 525 32 245 32 826 32 323.3739

correspond to the half sum and the half difference of the two
extremal results. These error bars do not have any statistical
meaning; they only measure the agreement between different
versions of the calculations for a given correlation model.

The NMS factor, �K̃k,NMS, can be approximated with the
scaling law [37,38]

�K̃k,NMS ≈ −meν
expt
k , (15)

where ν
expt
k is the experimental transition energy of transition

k, available in the NIST database [36]. Although only strictly
valid in the nonrelativistic framework, Eq. (15) is used as a
reference value since the relativistic effects are expected to be
small for Z = 13. The relativistic corrections to �K̃NMS can
be deduced with RIS3 by computing the expectation values of
the nonrelativistic part of the recoil Hamiltonian (9). These
corrections are of the order of a few percent for the studied
transitions in Al I.

An analysis of the NMS and SMS factors indicates that
the CV results are more reliable than the CC ones. Indeed,
an inspection of the transitions to the 2

D3/2 state shows that
core correlations induce changes in �K̃NMS and �K̃SMS that
vary much from one transition to another. The two lower states
2
P

o
1/2 and 2

P
o
3/2 are separated by a small fine-structure splitting.

Hence, no strong J dependence of the IS factors is expected to
occur between these two transitions, as shown by results from
the scaling law (15) (“Scal.”). This argument is only fulfilled
by the CV results and also holds for the transitions to the 2S1/2

state.
The values of �K̃NMS are compared with the scaling-law

results. The CV values are in better agreement with Eq. (15)
than the CC ones for three transitions, while the agree-
ment is comparable for the remaining one, 3s23p 2

P
o
1/2 →

3s23d 2
D3/2. This observation on Al I contrasts the recent

study on Mg I [12], where it has been shown that core

correlations improve the accuracy of the NMS factors. A
possible explanation of this inconsistency lies in the values of
the MR cutoffs considered in this work. Although it has been
shown in Ref. [12] that lowering εMR improves the accuracy of
the NMS factors, the accuracy of the calculations performed
on Al I is limited by computer resources. Hence, considering
larger MR sets would be too time consuming.

Unlike the NMS factor, no comparison of the computed
SMS and FS factors is possible with reference values from
state-of-the-art atomic calculations. To our knowledge, no
ab initio study of IS electronic factors in Al I is available.
From the experimental point of view, Refs. [39,40] report
measurements of total IS between 26Al and 27Al for the
transitions to the 2

D3/2 state [adopting the sign conven-
tions (4) and (7) of the present work]: δν26,27 ≡ ν26 − ν27 =
−616(3) MHz for 3s23p 2

P
o
1/2 → 3s23d 2

D3/2 and −613(1)
MHz for 3s23p 2

P
o
3/2 → 3s23d 2

D3/2, where the numbers
in parentheses correspond to systematic uncertainties. The
FS contribution is estimated to be very small, less than
−7 MHz [39]. Multiplying the CV results of �K̃MS by
(1/M26 − 1/M27) yields −669(14) MHz and −652(25) MHz,
adopting the same meaning for the error bars as in Table VI.
Comparison between theory and experiment shows that they
do not agree within the error bars, although the discrepancies
are not large.

Subtracting from the total MS the NMS contribution given
by the scaling law

δν
26,27
k,NMS ≈

(
me

M27
− me

M26

)
ν

expt
k (16)

yields the SMS contribution: δν
26,27
SMS = 141(8) MHz and

δν
26,27
SMS = 140(8) MHz. Multiplying the CV results of �K̃SMS

by (1/M26 − 1/M27) yields 98(17) and 97(14) MHz, and the
comparison shows the same conclusion.

Turning to the FS factors, it is seen that core correlations
do not significantly affect the F values for the transitions
to the 2S1/2 state, where the CC results lie within the error
bars of the CV ones. This is not the case for the two other
transitions. Nevertheless, these two transitions are not relevant
for future experiments due to their very low F values. Because
1/F is used by experimentalists in a King-plot technique
as the slope of a linear fit, a small error in these F values
can induce a large error in the slope, leading to inaccurate
results. With this respect, a good subject for laser spectroscopy
experiments along the Al isotopic chain would be the study
of the 3s23p 2

P
o
J → 3s3p2 4

PJ intercombination transitions

TABLE VI. MS factors, �K̃NMS, �K̃SMS, and �K̃MS (in GHz u), and FS factors, F (in MHz/fm2), of the studied transitions in Al I and
their associated error bars. The notation a(b) in use stands for a ± b (see text). �K̃NMS is compared with values from the scaling law (15)
(“Scal.”).

�K̃NMS (GHz u) �K̃SMS (GHz u) �K̃MS (GHz u) F (MHz/fm2)

Transition CV CC Scal. (15) CV CC CV CC CV CC

3s23p 2
P

o
1/2 → 3s24s 2S1/2 −434(5) −467(0) −417 670(14) 647(5) 236(9) 180(5) 76.5(2.0) 74.4(0.1)

3s23p 2
P

o
3/2 → 3s24s 2S1/2 −432(5) −449(2) −415 667(12) 650(2) 235(12) 201(4) 76.2(2.2) 75.1(0.1)

3s23p 2
P

o
1/2 → 3s23d 2

D3/2 −540(27) −536(2) −533 69(12) 11(3) −470(17) −525(1) 4.2(0.3) 3.8(0.0)
3s23p 2

P
o
3/2 → 3s23d 2

D3/2 −526(27) −469(1) −532 68(10) 45(0) −458(17) −424(1) 3.7(0.3) 2.7(0.0)
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in Al I, since the FS factor is much larger for these transitions
than for the other ones, due to the different occupations of the
3s orbital.

VI. CONCLUSION

This work describes an ab initio method for the relativistic
calculation of the IS electronic factors in many-electron atoms
using the MCDHF approach. Two computational approaches
are adopted for the estimation of the MS and FS factors for
transitions between low-lying levels of Al I. The first one,
implemented in RIS3, is based on the expectation values of
the relativistic recoil Hamiltonian for a given isotope, together
with the field-shift factors estimated from the total electron
densities at the origin. The second one, implemented in RATIP,
consists of extracting the relevant factors from the calculated
transition shifts for given triads of isotopes. In both of them,
different correlation models are explored in a systematic way
to determine a reliable computational strategy and estimate
theoretical error bars. Results obtained with RIS3 and RATIP

agree well with each other, since the relativistic corrections
to the recoil operator, implemented differently in these two
codes, are expected to be small for Al I.

Within each correlation model, the convergence of the level
MS factors and the electronic probability density at the origin,
as a function of the increasing active space, is studied for the
3s23p 2

P
o
1/2 → 3s24s 2S1/2 and 3s23p 2

P
o
3/2 → 3s23d 2

D3/2

transitions. It is shown that small variations in the level values
due to correlation effects can lead to a significant variation in
the transition values, more pronounced in the latter transition.
This observation highlights the challenge in obtaining accurate
IS factors with such an approach.

The study performed on Al I shows that CC correlations
need to be accounted for in the computational strategy in order
to obtain more accurate values for the transition energies. By

contrast, the accuracy of the NMS factors in comparison with
results from the scaling law is not improved when CC effects
are added, which is in contrast with a similar work performed
on Mg I [12]. Decreasing the MR cutoff further is possible
in Mg I due to a smaller restricted CSF space, but impossible
in Al I due to computer limitations. Furthermore, both works
show that the SMS factors are less accurate within the VV +
CV + CC model, while no significant change in the FS factors
is found. Hence, the most reliable correlation model remains
the VV + CV model.

A possible way to improve the accuracy of the present
results is the use of the partitioned correlation function inter-
action (PCFI) approach [41]. It is based on the idea of relaxing
the orthonormality restriction on the orbital basis and breaking
down the very large calculations in the traditional multiconfig-
uration methods into a series of smaller parallel calculations.
This method is very flexible for targeting different electron
correlation effects. CC effects in IS factors could then be
treated more accurately and efficiently with the use of this tech-
nique. Additionally, electron correlation effects beyond the
SD-MR model (such as triple and quadruple excitations) can be
included perturbatively. Work is being done in these directions.
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