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Lamb shift in muonic ions of lithium, beryllium, and boron
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We present a precise calculation of the Lamb shift (2P1/2 − 2S1/2) in muonic ions (μ6
3Li)2+, (μ7

3Li)2+,
(μ9

4Be)3+, (μ10
4 Be)3+, (μ10

5 B)4+, (μ11
5 B)4+. The contributions of orders α3 ÷ α6 to the vacuum polarization,

nuclear structure and recoil, and relativistic effects are taken into account. Our numerical results are
consistent with previous calculations and improved by additional corrections. The obtained results can be
used for the comparison with future experimental data, and extraction more accurate values of nuclear charge
radii.
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I. INTRODUCTION

In recent years there has been a special interest in the
physics of elementary particles related to muons. Experimental
study of the muon anomalous magnetic moment revealed
a certain discrepancy between theoretical and experimental
results. The subsequent 2010 measurement of the Lamb shift
in muonic hydrogen has led to another problem, called the
proton charge radius puzzle [1–4]. After a measurement of
the Lamb shift [5] in muonic deuterium, it became clear that
there was a discrepancy in the values of the charge radius of
the proton and deuteron determined by electronic and muonic
atoms. This may mean that the muons play an important
role in subatomic physics, which is not fully understood.
The experimental CREMA Collaboration program includes
other muon atoms, especially muonic helium ions [6], but it
apparently can be extended to the study of other light muonic
atoms. The transition energy 2P → 2S in light muonic atoms
can be precisely measured by laser spectroscopy as in muonic
hydrogen. Therefore, additional theoretical study of muon
bound states and a calculation of their energy levels, along
with experimental investigations, can contribute to a better
understanding of the essence of the problem.

The interest in muonic ions (μLi)2+, (μBe)3+, and (μB)4+

is also connected to the fact that, as has been established
in this case, there is a strong cancellation of two main
contributions to the one-loop vacuum polarization and the
structure of the nucleus [7,8]. As a result, the Lamb shift
value lies in a wide range of wavelengths 150 ÷ 1100 nm,
from ultraviolet to infrared region of the spectrum, making
it possible for its study of laser spectroscopy methods. The
measurement of transition frequencies gives an opportunity to
obtain more exact information about nuclear size and structure.
Another important conclusion arising out of this cancellation
is that it plays a more significant role than previously thought,
beginning with the contributions of higher order in α, as well
as contributions containing large degrees of nuclear charge
Z. The methodical analysis is very important to increase the
accuracy of calculation of the Lamb shift [9,10]. As usual,
the most important corrections in the Lamb shift are the
corrections to the vacuum polarization, the nuclear structure
and recoil, as well as complex combination corrections to the
vacuum polarization and relativism, which we explore in this
paper.

Fundamentals of calculating of energy spectra for light
muonic atoms were formulated many years ago in a relativistic
approach based on the Dirac equation and in nonrelativistic
Schrödinger method in Refs. [11–16] (see other references
in review articles, Refs. [13,15]). After recent experiments of
the CREMA Collaboration, there were many works devoted
to the muonic atoms, in order to overcome the difference in
the magnitude of the charge radius of the proton [17–26] (see
other references in Ref. [3]). They carried out an analysis
of the main contribution to the Lamb shift and hyperfine
structure of the spectrum, and the various corrections have
quite significant numerical value. They also analyzed a number
of relatively subtle effects in the fine and hyperfine structure,
which, however, did not lead to any considerable change in
the results (see, for example, Refs. [27–30]). The aim of the
present work is to extend our previous calculations of the
Lamb shift in muonic helium ions [31] to other muonic ions
such as muonic lithium, muonic beryllium, and muonic boron.
We consistently calculate the contributions of orders α3 ÷ α6

within the framework of the quasipotential method in quantum
electrodynamics [32–35]. It is important to know also the
hyperfine splitting of levels for the evaluation of observed
transition frequencies [8]. As in previous works we take
modern numerical values of fundamental physical constants
from Refs. [36,37]. Since the corrections to the structure of the
nucleus play a key role, let us write the explicitly used values
of the nuclear charge radii: r(6

3Li) = (2.5890 ± 0.0390) fm,
r(7

3Li) = (2.4440 ± 0.0420) fm, r(9
4Be) = (2.5190 ± 0.0120)

fm, r(10
4 Be) = (2.3550 ± 0.0170) fm, r(10

5 B) = (2.4277 ±
0.0499) fm, and r(11

5 B) = (2.4060 ± 0.0294) fm.

II. EFFECTS OF VACUUM POLARIZATION
IN THE ONE-PHOTON INTERACTION

Let us begin by recalling the basic assumptions of the
quasipotential approach in the calculation of the Lamb shift.
The muonic ion is described by the Schrödinger equation with
the Breit Hamiltonian [38]:

HB = p2

2μ
− Zα

r
− p4

8m3
1

− p4

8m3
2

+ πZα

2

(
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+ δI

m2
2

)
δ(r)
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(
p2 + r(rp)p
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1
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× (Lσ 1) = H0 + �V B, (1)
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where H0 = p2/2μ − Zα/r , m1, m2 are the muon and
nucleus masses, μ = m1m2/(m1 + m2), δI = 1 for nucleus
with half-integer spin, and δI = 0 for nucleus with inte-
ger spin. The exact solution of the Schrödinger equation
with the Hamiltonian H0 is then used in the calculation
of the shifts of 2S and 2P energy levels by perturbation
theory.

As is well known, the basic contribution to the Lamb
shift in muonic atoms is determined by the effect of electron
vacuum polarization (VP) in the 1γ interaction. The potential
of particle interaction corresponding to this effect has the

form

V C
vp(r) = α

3π

∫ ∞

1
dξρ(ξ )

(
−Zα

r
e−2meξr

)
,

ρ(ξ ) =
√

ξ 2 − 1(2ξ 2 + 1)

ξ 4
. (2)

It gives the shift of energy levels for 2S and 2P states,
which can be presented in analytical form (k1 = 2me/W ,
W = μZα):
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, (3)

�Evp(2P ) = −μ(Zα)2α

72π
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. (4)

Expressions (3) and (4) give the following numerical values to the Lamb shift in muonic ions (see line 1 in
Tables I–III):

�Evp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 4664.95 meV, 7

3Li : 4682.38 meV
9
4Be : 9255.79 meV, 10

4 Be : 9270.74 meV
10
5 B : 15356.42 meV, 11

5 B : 15375.55 meV

. (5)

We retain two significant figures after the decimal point in all
obtained expressions. The order of contributions (3) and (4)
is clearly extracted in front of integrals. For the calculation
of muon VP contribution we use again (3) and (4), changing
me → mμ. Corresponding numerical values which have the
order α(Zα)4 are included in Tables I–III in line 25 [see
also (60) and (61)].

The two-loop vacuum polarization effects in the one-photon
interaction can be divided into two parts: loop-after-loop
correction (vp-vp) and two-loop vacuum polarization operator
correction which we denote further as the “2-loop vp”
correction. The potential of loop-after-loop VP effect has the
form [10,31]

V C
vp−vp(r) = α2

9π2

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

(
−Zα

r

)
1

(ξ 2−η2)

× (ξ 2e−2meξr − η2e−2meηr ). (6)

Calculating the matrix elements of the potential (5) in the
first-order perturbation theory, we find the contribution to the

Lamb shift of order α2(Zα)2:

�Evp−vp(2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : 14.20 meV, 7

3Li : 14.28 meV
9
4Be : 33.79 meV, 10

4 Be : 34.06 meV
10
5 B : 64.40 meV, 11

5 B : 64.52 meV

. (7)

There is another correction to the potential which is
determined by the amplitude with two sequential electron and
muon loops:

�Vvp−mvp(r)

= −4(Zα)α2

45π2m2
1

∫ ∞

1
ρ(ξ )dξ

[
πδ(r) − m2

eξ
2

r
e−2meξr

]
. (8)

It gives the correction of order α2(Zα)4 to the Lamb shift
(2P − 2S), which is included in Tables I–III (see line 3).

The two-loop polarization operator contribution to the
potential can be presented in a form similar to (2) with more
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TABLE I. Lamb shift (2P1/2 − 2S1/2) in muonic ions (μ7
3Li)2+ and (μ6

3Li)2+. In parentheses are given the results obtained by other authors,
with some references to their works, which discuss the calculation of corrections of this type.

Contribution to the splitting (μ7
3Li)2+ (meV) (μ6

3Li)2+ (meV)

1 VP contribution of order α(Zα)2 in 1γ interaction 4682.38 (4682.4 [7]) 4664.95 (4665.0 [7])
2 Two-loop VP contribution of order α2(Zα)2 in 1γ interaction 32.54 (32.44 [7]) 32.41(32.27 [7])
3 VP and MVP contribution in one-photon interaction 0.01 0.01
4 Three-loop VP contribution in one-photon interaction 0.17 [40,44] 0.17 [40,44]
5 The Wichmann-Kroll correction −0.09 −0.09
6 Light-by-light scattering correction 0.03 [44] 0.03 [44]
7 Relativistic and VP corrections of order α(Zα)4 in the first-order PT −6.13 −6.07
8 Relativistic and two-loop VP corrections of order α2(Zα)4 in the first-order PT −0.02 −0.02
9 Two-loop VP contribution of order α2(Zα)2 in the second-order PT 5.66 5.63
10 Two-loop MVP and EVP contribution in the second-order PT 0.02 0.02
11 Relativistic and one-loop VP corrections of order α(Zα)4 in the second-order PT 8.98 8.88
12 Three-loop VP contribution in the second-order PT of order α3(Zα)2 0.08 0.08
13 Three-loop VP contribution in the third-order PT of order α3(Zα)2 0.04 [48,49] 0.05 [48,49]
14 Relativistic and two-loop VP corrections of order α2(Zα)4 in the second-order PT 0.15 0.15
15 Nuclear structure contribution of order (Zα)4 −3301 ± 117 [7,15] −3675 ± 112 [7,15]
16 Nuclear structure contribution of order (Zα)5 from 2γ amplitudes 177 ± 9 [16,46] 208 ± 9 [16,46]
17 Nuclear structure and VP contribution in 1γ interaction of order α(Zα)4 −12.78 −14.21
18 Nuclear structure and VP contribution in the second-order PT of order α(Zα)4 −20.68 −23.00
19 Nuclear structure and two-loop VP contribution in 1γ interaction of order α2(Zα)4 −0.11 −0.11
20 Nuclear structure and two-loop VP contribution in the second-order PT of order α2(Zα)4 −0.30 −0.33
21 Nuclear structure contribution of order α(Zα)5 from 2γ amplitudes with VP insertion 2.75 ± 0.13 3.19 ± 0.14
22 Recoil correction of order (Zα)4 0.13 [15,17,45,50] 0.68 [15,17,45,50]
23 Recoil correction of order (Zα)5 −1.86 [15,17,50] −2.15 [15,17,50]
24 Recoil correction of order (Zα)6 0.02 [15,17,52] 0.03 [15,17,52]
25 Muon self-energy and MVP contribution −51.36 [15,17,53] −50.99 [15,17,53]
26 Radiative-recoil corrections of orders α(Zα)5, (Z2α)(Zα)4 −0.12 [15] −0.16 [15]
27 Nuclear structure corrections of orders (Zα)6, α(Zα)5 −5.51 ± 0.17 [54,55] −6.07 ± 0.17 [54,55]
28 Muon form factor F ′

1(0), F2(0) contributions −0.16 [15,56] −0.16 [15,56]
29 Muon self-energy and VP contribution −0.23 [7,16,57] −0.23 [7,16,57]
30 HVP contribution 1.17 [7,58–60] 1.16 [7,58–60]
31 Nuclear polarizability 21 ± 4 [7] 15 ± 4 [7]
32 Total contribution 1531.78 1161.85

complicated spectral function f (v) [39]:

�V C
2-loop vp = −2

3
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r

(
α

π
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0
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− ln
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[

11

16
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1 − v2
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+ 3

8
v(5 − 3v2)

}
, (10)

where Li2(z) is the Euler dilogarithm. The potential �V C
2-loop vp(r) gives the contribution to the Lamb shift (2P − 2S) of order

α2(Zα)2:

�E2-loop vp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 18.21 meV, 7

3Li : 18.26 meV
9
4Be : 31.66 meV, 10

4 Be : 31.69 meV
10
5 B : 47.54 meV, 11

5 B : 47.57 meV

. (11)

Numerical value of corrections (7) and (11), which are included in line 2 of the tables, show that at the necessary level of
accuracy we should calculate three-loop VP contributions in one-photon interaction. One part of three-loop VP effects with
successive loops in the scattering amplitude (loop-after-loop-after-loop, two-loop-after-loop) can be derived as potential (6).
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TABLE II. Lamb shift (2P1/2 − 2S1/2) in muonic ions (μ10
4 Be)3+ and (μ9

4Be)3+. In parentheses are given the results obtained by other
authors, with some references to their works, which discuss the calculation of corrections of this type.

Contribution to the splitting (μ10
4 Be)3+ (meV) (μ9

4Be)3+ (meV)

1 VP contribution of order α(Zα)2 in 1γ interaction 9270.74 [7] 9255.79 (9255.8 [7])
2 Two-loop VP contribution of order α2(Zα)2 in 1γ interaction 65.75 [7] 65.66 (65.3 [7])
3 VP and MVP contribution in one-photon interaction 0.05 0.05
4 Three-loop VP contribution in one-photon interaction 0.42 [40,44] 0.42 [40,44]
5 The Wichmann-Kroll correction −0.24 −0.24
6 Light-by-light scattering correction 0.07 [44] 0.07 [44]
7 Relativistic and VP corrections of order α(Zα)4 in the first-order PT −22.34 −22.23
8 Relativistic and two-loop VP corrections of order α2(Zα)4

in the first-order PT −0.07 −0.07
9 Two-loop VP contribution of order α2(Zα)2 in the second-order PT 12.73 12.70
10 Two-loop MVP and EVP contribution in the second-order PT 0.04 0.04
11 Relativistic and one-loop VP corrections of order α(Zα)4 in the

second-order PT 31.93 31.74
12 Three-loop VP contribution in the second-order PT of order α3(Zα)2 0.19 0.19
13 Three-loop VP contribution in the third-order PT of order α3(Zα)2 0.05 [48,49] 0.05 [48,49]
14 Relativistic and two-loop VP corrections of order α2(Zα)4 in the

second-order PT 0.55 0.54
15 Nuclear structure contribution of order (Zα)4 −9826 ± 142 [7,15] −11200 ± 107 [7,15]
16 Nuclear structure contribution of order (Zα)5 from 2γ amplitudes 679 ± 14 [16,46] 826 ± 12 [16,46]
17 Nuclear structure and VP contribution in 1γ interaction of order α(Zα)4 −42.44 −48.35
18 Nuclear structure and VP contribution in the second-order

PT of order α(Zα)4 −70.68 −80.52
19 Nuclear structure and two-loop VP contribution in 1γ

interaction of order α2(Zα)4 −0.36 −0.41
20 Nuclear structure and two-loop VP contribution in the

second-order PT of order α2(Zα)4 −1.09 −1.25
21 Nuclear structure contribution of order α(Zα)5 from 2γ

amplitudes with VP insertion 10.64 ± 0.21 12.78 ± 0.17
22 Recoil correction of order (Zα)4 0.79 [15,17,45,50] 0.24 [15,17,45,50]
23 Recoil correction of order (Zα)5 −5.40 [15,17,50] −5.97 [15,17,50]
24 Recoil correction of order (Zα)6 0.10 [15,17,52] 0.11 [15,17,52]
25 Muon self-energy and MVP contribution −149.52 [15,17,53] −149.00 [15,17,53]
26 Radiative-recoil corrections of orders α(Zα)5, (Z2α)(Zα)4 −0.31 [15] −0.39 [15]
27 Nuclear structure corrections of orders (Zα)6, α(Zα)5 −31.04 ± 0.43 [54,55] −35.29 ± 0.33 [54,55]
28 Muon form factor F ′

1(0), F2(0) contributions −0.52 [15,56] −0.51 [15,56]
29 Muon self-energy and VP contribution −0.71 [7,16,57] −0.71 [7,16,57]
30 HVP contribution 3.75 [7,58–60] 3.74 [7,58–60]
31 Nuclear polarizability 104 ± 21 [7] 82 ± 16 [7]
32 Total contribution 30.08 −1252.82

Corresponding contributions to the potential and the Lamb shift (2P − 2S) are the following:

V C
vp-vp-vp(r) = −Zα

r

α3

(3π )3

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(ηdη

∫ ∞

1
ρ(ζ )dζ

×
[
e−2meζr ζ 4

(ξ 2 − ζ 2)(η2 − ζ 2)
+ e−2meξr ξ 4

(ζ 2 − ξ 2)(η2 − ξ 2)
+ e−2meηr η4

(ξ 2 − η2)(ζ 2 − η2)

]
, (12)

V C
vp-2-loop vp = −4μα3(Zα)

9π3

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1

f (η)dη

η

1

r(η2 − ξ 2)
(η2e−2meηr − ξ 2e−2meξr ), (13)

�Evp-vp-vp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 0.04 meV, 7

3Li : 0.04 meV
9
4Be : 0.11 meV, 10

4 Be : 0.11 meV
10
5 B : 0.20 meV, 11

5 B : 0.24 meV

, (14)

�Evpm2-loop vp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 0.12 meV, 7

3Li : 0.12 meV
9
4Be : 0.27 meV, 10

4 Be : 0.27 meV
10
5 B : 0.48 meV, 11

5 B : 0.48 meV

. (15)
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TABLE III. Lamb shift (2P1/2 − 2S1/2) in muonic ions (μ11
5 B)4+ and (μ10

5 B)4+. In parentheses are given the results obtained by other
authors, with some references to their works, which discuss the calculation of corrections of this type.

Contribution to the splitting (μ11
5 B)4+ (meV) (μ10

5 B)4+ (meV)

1 VP contribution of order α(Zα)2 in 1γ interaction 15375.55 (15376.0 [7]) 15356.42 [7]
2 Two-loop VP contribution of order α2(Zα)2 in 1γ interaction 112.09 (111.1 [7]) 111.94 (111.3 [7])
3 VP and MVP contribution in one-photon interaction 0.13 0.13
4 Three-loop VP contribution in one-photon interaction 0.77 [40,44] 0.73 [40,44]
5 The Wichmann-Kroll correction −0.50 −0.50
6 Light-by-light scattering correction 0.16, [44] 0.16, [44]
7 Relativistic and VP corrections of order α(Zα)4 in the first-order PT −59.73 −59.46
8 Relativistic and two-loop VP corrections of order α2(Zα)4 in the

first-order PT −0.17 −0.17
9 Two-loop VP contribution of order α2(Zα)2 in the second-order PT 23.43 23.39
10 Two-loop MVP and EVP contribution in the second-order PT 0.10 0.10
11 Relativistic and one-loop VP corrections of order α(Zα)4 in the

second-order PT 83.67 83.29
12 Three-loop VP contribution in the second-order PT of order α3(Zα)2 0.35 0.35
13 Three-loop VP contribution in the third-order PT of order α3(Zα)2 0.31 [48,49] 0.31 [48,49]
14 Relativistic and two-loop VP corrections of order α2(Zα)4 in the

second-order PT 1.44 1.44
15 Nuclear structure contribution of order (Zα)4 −25115 ± 618 [7,15] −25493 ± 1059 [7,15]
16 Nuclear structure contribution of order (Zα)5 from 2γ amplitudes 2217 ± 82 [16,46] 2269 ± 143 [16,46]
17 Nuclear structure and VP contribution in 1γ interaction of order α(Zα)4 −117.14 −118.86
18 Nuclear structure and VP contribution in the second-order

PT of order α(Zα)4 −200.06 −202.98
19 Nuclear structure and two-loop VP contribution in 1γ interaction of

order α2(Zα)4 −1.00 −1.02
20 Nuclear structure and two-loop VP contribution in the second-order PT

of order α2(Zα)4 −3.25 −3.30
21 Nuclear structure contribution of order α(Zα)5 from 2γ amplitudes with

VP insertion 34.60 ± 1.20 35.34 ± 2.07
22 Recoil correction of order (Zα)4 0.40 [15,17,45,50] 1.94 [15,17,45,50]
23 Recoil correction of order (Zα)5 −14.63 [15,17,50] −16.03 [15,17,50]
24 Recoil correction of order (Zα)6 0.34 [15,17,52] 0.37 [15,17,52]
25 Muon self-energy and MVP contribution −338.40 [15,17,53] −337.45 [15,17,53]
26 Radiative-recoil corrections of orders α(Zα)5, (Z2α)(Zα)4 −0.91 [15] −1.10 [15]
27 Nuclear structure corrections of orders (Zα)6, α(Zα)5 −128.14 ± 3.29 [54,55] −130.15 ± 5.68 [54,55]
28 Muon form factor F ′

1(0), F2(0) contributions −1.26 [15,56] −1.26 [15,56]
29 Muon self-energy and VP contribution −1.66 [7,16,57] −1.66 [7,16,57]
30 HVP contribution 9.18 [7,58–60] 9.15 [7,58–60]
31 Nuclear polarizability 122 ± 24 [7] 103 ± 21 [7]
32 Total contribution −8000.33 −8369.88

Another part of the diagrams corresponds to the three-
loop corrections to the polarization operator. They were first
calculated for the (2P − 2S) Lamb shift in muonic hydrogen
in Refs. [40,41]. An estimate of their contribution to the Lamb
shift is included in Tables I–III in a sum with (14) and (15) in
line 4.

Finally, there exists another one-loop vacuum polarization
correction of order α(Zα)4 in the Lamb shift known as
the Wichmann-Kroll correction [42,43]. Its calculation was
discussed repeatedly in Refs. [15,31], so we restrict ourselves
here by including numerical results in the final tables (line 5)
as well as the whole light-by-light contribution (line 6) (see
detailed calculation in Ref. [44]). Almost all of the corrections
presented in this section are written in the integral form, and
are therefore specific for each muon atom. The presented
numerical values provide important information about the
change in the value of corrections in different muonic ions.

III. RELATIVISTIC CORRECTIONS WITH THE
ACCOUNT OF VACUUM POLARIZATION EFFECTS

The electron vacuum polarization effects modify not only
the Coulomb potential but also all other terms of the Breit
Hamiltonian. Appropriate potentials, which take into account
relativistic effects and vacuum polarization effects, were built
in Refs. [10,16,45,46]:

�V B
vp(r) = α

3π

∫ ∞

1
ρ(ξ )dξ

4∑
i=1

�V B
i,vp(r), (16)

�V B
1,vp = Zα

8

(
1

m2
1

+ δI

m2
2

)[
4πδ(r) − 4m2

eξ
2

r
e−2meξr

]
,

(17)
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�V B
2,vp = −Zαm2

eξ
2

m1m2r
e−2meξr (1 − meξr), (18)

�V B
3,vp = − Zα

2m1m2
pi

e−2meξr

r

[
δij + rirj

r2
(1 + 2meξr)

]
pj ,

(19)

�V B
4,vp = Zα

r3

(
1

4m2
1

+ 1

2m1m2

)
e−2meξr (1 + 2meξr)(Lσ 1).

(20)

An averaging of these terms gives the corrections of order
α(Zα)4 to the Lamb shift (2P − 2S):

�EB
1,vp(2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : −5.55 meV, 7

3Li : −5.60 meV
9
4Be : −19.94 meV, 10

4 Be : −20.02 meV
10
5 B : −52.76 meV, 11

5 B : −52.94 meV

, (21)

�EB
2,vp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 0.04 meV, 7

3Li : 0.04 meV
9
4Be : 0.90 meV, 10

4 Be : 0.08 meV
10
5 B : 0.20 meV, 11

5 B : 0.18 meV

,

(22)

�EB
3,vp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 0.10 meV, 7

3Li : 0.09 meV
9
4Be : 0.27 meV, 10

4 Be : 0.25 meV
10
5 B : 0.68 meV, 11

5 B : 0.62 meV

,

(23)

�EB
4,vp(2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : −0.66 meV, 7

3Li : −0.66 meV
9
4Be : −2.65 meV, 10

4 Be : −2.65 meV
10
5 B : −7.58 meV, 11

5 B : −7.59 meV

. (24)

The sum of corrections (21)–(24) is included in Tables I–III
(line 7). The next step to refine the results of the Lamb shift
calculation is related to the two-loop corrections to the vacuum
polarization in the Breit Hamiltonian. So, for example, two-
loop analog of expression (17) is equal to

�V B
2-loop vp(r) = α2(Zα)

12π2

(
1

m2
1

+ 1

m2
2

) ∫ 1

0

f (v)dv

1 − v2

×
[

4πδ(r) − 4m2
e

(1 − v2)r
e
− 2mer√

1−v2

]
. (25)

The corresponding correction to the (2P − 2S) shift is on the
limit of the accuracy of our calculations. The contribution
of other two-loop corrections to the Breit potential can be
roughly estimated in the energy spectrum at 10% of the
contribution (25) (see the summary of two-loop results in
Tables I–III).

In the second-order perturbation theory (sopt) there are one-
loop and two-loop electron vacuum polarization contributions
of orders α2(Zα)2 and α(Zα)4. To better understand the
structure of these contributions, we present diagrams in Fig. 1.
The general expression for corrections has the form

�E
vp
sopt = 〈ψ |�V C

vpG̃�V C
vp|ψ〉 + 2〈ψ |�V BG̃�V C

vp|ψ〉, (26)

G̃

(a)

G̃

(c)

G̃

(b)

(f)(e)

G̃G̃ G̃

(d)

FIG. 1. Effects of one-loop and two-loop vacuum polarization in
the second-order perturbation theory (sopt). Dashed line shows the
Coulomb photon. G̃ is the reduced Coulomb Green’s function (33).
Wave line shows terms of the Breit potential.

where G̃ is the reduced Coulomb Green’s function (RCGF).
For the calculation of the Lamb shift contributions we use a
representation of the RCGF for 2S− and 2P− states obtained
in Ref. [47] (see exact expressions for G̃2S , G̃2P , g2S , and g2P

in Ref. [31]). In the case of the two-loop corrections shown in
Fig. 1(c), we get the integral expressions for 2S and 2P states:

�E
vp,vp
sopt (2S) = −μα2(Zα)2

72π2

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

×
∫ ∞

0

(
1 − x

2

)
e−x(1− 2meξ

W
)dx

×
∫ ∞

0

(
1 − x ′

2

)
e−x ′(1− 2meη

W
)dx ′g2S(x,x ′),

(27)
�E

vp,vp
sopt (2P )

= −μα2(Zα)2

7776π2

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

×
∫ ∞

0
e−x(1+ 2meξ

W
)dx

∫ ∞

0
e−x ′(1+ 2meη

W
)dx ′g2P (x,x ′),

(28)

which then give the following numerical results for the Lamb
shift (in line 9 for pure electron VP and in line 10 for mixed
electron and muon VP):

�E
vp,vp
sopt (2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : 5.63 meV, 7

3Li : 5.66 meV
9
4Be : 12.70 meV, 10

4 Be : 12.73 meV
10
5 B : 23.39 meV, 11

5 B : 23.43 meV

. (29)

The relations (27)–(29) show a sequence of steps in the
calculation of the Lamb shift. Note also that all the integrals
over the coordinates of the particles are calculated analytically.
Another contribution, corresponding to the amplitude in
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Fig. 1(c), is obtained by changing the perturbation potential
with electron vacuum polarization to the potential with muon
vacuum polarization. The order of this correction is increased
by an additional factor α2.

The second term in Eq. (26) has a similar structure
[see Fig. 1(b)]. For its evaluation we can use a number of
intermediate algebraic transformation. We show them in the
example of one part of the Breit potential, proportional to
p4/(2μ)2:

〈ψ | p4

(2μ)2

∑′
m

|ψm〉〈ψm|
E2 − Em

�V C
vp|ψ〉

= 〈ψ |
(

E2 + Zα

r

)(
Ĥ0 + Zα

r

)∑′
m

|ψm〉〈ψm|
E2 − Em

�V C
vp|ψ〉

= 〈ψ |
(

E2 + Zα

r

)2

G̃�V C
vp|ψ〉 − 〈ψ |Zα

r
�V C

vp|ψ〉

+ 〈ψ |Zα

r
|ψ〉〈ψ |�V C

vp|ψ〉. (30)

In matrix elements (30), the integration is performed ana-
lytically over the coordinates and then numerically by the
spectral parameter. Here are final numerical values of the
matrix elements for four parts of the Breit potential (1)
(relativistic term, contact term, relativistic-recoil term, and
spin-orbit term):

�E
B,vp

sopt,1 =

⎧⎪⎨
⎪⎩

6
3Li : 18.57 meV, 7

3Li : 18.79 meV
9
4Be : 68.57 meV, 10

4 Be : 68.95 meV
10
5 B : 184.95 meV, 11

5 B : 185.78 meV

, (31)

�E
B,vp

sopt,2 =

⎧⎪⎨
⎪⎩

6
3Li : −8.98 meV, 7

3Li : −9.06 meV
9
4Be : −33.20 meV, 10

4 Be : −33.34 meV
10
5 B : −90.10 meV, 11

5 B : −90.42 meV

,

(32)

�E
B,vp

sopt,3 =

⎧⎪⎨
⎪⎩

6
3Li : 0.18 meV, 7

3Li : 0.15 meV
9
4Be : 0.44 meV, 10

4 Be : 0.40 meV
10
5 B : 1.08 meV, 11

5 B : 0.98 meV

, (33)

�E
B,vp

sopt,4 =

⎧⎪⎨
⎪⎩

6
3Li : −0.89 meV, 7

3Li : −0.90 meV
9
4Be : −4.07 meV, 10

4 Be : −4.08 meV
10
5 B : −12.64 meV, 11

5 B : −12.67 meV

.

(34)

Total values of one-loop VP and relativistic corrections in the
second-order PT from (31)–(34) are presented in Tables I–III
(line 11).

Other corrections of the second-order PT shown in
Figs. 1(d)–1(f) have a similar structure. They appear after
the replacements �V C

vp → �V B and �V C
vp → �V C

vp,vp in the
basic amplitude presented in Fig. 1(c). Finally, the remaining
two-loop corrections in second-order PT appear when one
makes a replacement in Fig. 1(c), �V C

vp → �V B
vp. In general,

the calculation of the matrix elements in this case is quite
similar to expressions (27) and (28). We present in the tables
(line 14) only the full numerical results for this type of
corrections, omitting the details of the calculation.

G̃G̃ G̃

(a) (b) (c)

FIG. 2. Three-loop vacuum polarization corrections in the
second-order perturbation theory. G̃ is the reduced Coulomb Green’s
function. Dashed line represents the Coulomb photon.

Three-loop vacuum polarization contributions in the
second-order PT are presented in Fig. 2. The perturbation
potentials which should be used in this case are determined by
relations (2), (6), and (9). Omitting the intermediate expres-
sions, we give only numerical values of these contributions:

�E
vp-vp,vp
sopt (2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : 0.04 meV, 7

3Li : 0.04 meV
9
4Be : 0.10 meV, 10

4 Be : 0.10 meV
10
5 B : 0.19 meV, 11

5 B : 0.19 meV

, (35)

�E
2-loop vp,vp
sopt (2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : 0.04 meV, 7

3Li : 0.04 meV
9
4Be : 0.09 meV, 10

4 Be : 0.09 meV
10
5 B : 0.16 meV, 11

5 B : 0.16 meV

. (36)

The sum of corrections (35) and (36) is in Tables I–III in
line 12.

In the third order of perturbation theory (topt) there exists
also three-loop VP correction of order α3(Zα)2 which is
determined by the following relation [48,49]:

�E
3loopvp
topt = 〈ψ2|�V CG̃�V CG̃�V C |ψ2〉

− 〈ψ2|�V C |ψ2〉〈ψ2|�V CG̃G̃�V C |ψ2〉. (37)

Its numerical contribution to the Lamb shift (line 13 of the
tables) is equal to

�E
3loopvp
topt (2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : 0.05 meV, 7

3Li : 0.04 meV
9
4Be : 0.05 meV, 10

4 Be : 0.05 meV
10
5 B : 0.31 meV, 11

5 B : 0.31 meV

. (38)

IV. NUCLEAR STRUCTURE AND VACUUM
POLARIZATION EFFECTS

The second effect of the Lamb shift, comparable in
magnitude to the effect of vacuum polarization, is a nuclear
structure effect. The energy levels of S states are sensitive to
the nucleus finite size, owing to their spherical symmetry. In
muonic ions, the Bohr radius is ∼mμ/me ∼ 207 times smaller
than the corresponding one in electron ions, which implies
a greater overlap with the nucleus. Thus, the sensitivity to
the finite size effect is greatly enhanced, what makes muonic
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(a)

G̃

(c)(b)

FIG. 3. Leading-order nuclear structure and vacuum polarization
corrections. Thick point represents the nuclear vertex operator.

atoms are very attractive for more accurate determination of
the charge radius of the nuclei. In the leading order (Zα)4 it is
determined by the nuclear charge radius rN after an expansion
of nuclear electric form factor as follows [Fig. 3(a)]:

�Estr(2P − 2S)

=−μ3(Zα)4

12

〈
r2
N

〉

=

⎧⎪⎨
⎪⎩

6
3Li : −3674.69 meV, 7

3Li : −3300.70 meV
9
4Be : −11200.03 meV, 10

4 Be : −9825.73 meV
10
5 B : −25492.50 meV, 11

5 B : −25115.11 meV

,

(39)

(a) (b)

FIG. 4. Nuclear structure corrections of order (Zα)5. Thick point
is the nuclear vertex operator.

where we take the nuclear charge radii from Ref. [37] for
numerical estimates which are presented in line 15 of Tables I–
III. The growth of the absolute value of the contribution (39) is
due to two factors rN and Z4. The signs in formulas (5) and (39)
are opposite; thus a significant reduction of the sum (5) and (39)
occurs at a certain rN and Z. As a result this leads to significant
decrease in total value of the Lamb shift.

In the next-to-leading-order (Zα)5 there is nuclear structure
correction which is defined by one-loop exchange diagrams
(Fig. 4). Introducing only the charge form factor of the nucleus,
we can represent the contribution on finite size of nucleus to
the shift of S levels in the form

�E
2γ
str (nS) =−μ3(Zα)5

πn3
δl0

∫ ∞

0

dk

k
V (k), (40)

V (k) = 2(F 2 − 1)

m1m2
+ 8m1

[ − F (0) − 4m2
2F

′(0)
]

m2(m1 + m2)k
+ k2

2m3
1m

3
2

[
2(F 2 − 1)

(
m2

1 + m2
2

) − F 2m2
1

]

+
√

k2 + 4m2
1

2m3
1m2

(
m2

1 − m2
2

)
k

{
k2[2(F 2 − 1)m2

2 − F 2m2
1

] + 8m4
1F

2 + 16m4
1m

2
2(F 2 − 1)

k2

}

−
√

k2 + 4m2
2m1

2m3
2

(
m2

1 − m2
2

)
k

{
k2[2(F 2 − 1)−F 2] + 8m2

2F
2 + 16m4

2(F 2 − 1)

k2

}
, (41)

with n the usual principle quantum number. A subtraction of the point-like contribution and iteration term of quasipotential is
made. To perform numerical integration in Eq. (40) we use dipole and Gaussian parameterizations for the charge form factor:

FD(k2) = �4

(k2 + �2)2
, �2 = 12〈

r2
N

〉 , FG(k2) = e− 1
6 k2r2

N . (42)

Numerical values of this correction for muonic atoms are the following (the results for Gaussian parameterization are in
parentheses):

�E
2γ
str (2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : 207.83(190.63) meV, 7

3Li : 176.67(162.05) meV
9
4Be : 826.35(757.77) meV, 10

4 Be : 678.62(622.30) meV
10
5 B : 2268.56(2080.24) meV, 11

5 B : 2217.00(2032.89) meV

. (43)

We observe a significant change in the value of this contribution (approximately 10%) in the transition from the dipole to the
Gaussian parametrizations. To be specific, we place in line 16 of the tables the result obtained with dipole parametrization.

To increase the accuracy of the Lamb shift calculation we have to consider corrections, which are determined by the nuclear
structure effects and vacuum polarization simultaneously. In one-photon interaction corresponding contribution is represented by
the amplitude in Fig. 3(b). To obtain a particle interaction operator we make an expansion of the charge form factor in momentum
representation and replace the conventional Coulomb potential to the potential of the vacuum polarization. Then in coordinate
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representation we obtain

�V
vp

str (r) = 2

3
πZα

〈
r2
N

〉 α

3π

∫ ∞

1
ρ(ξ )dξ

[
δ(r) − m2

eξ
2

πr
e−2meξr

]
. (44)

Averaging (44) over wave functions we find the following integral expressions for the corrections to the levels 2S and 2P and
their numerical values in the Lamb shift:

�E
vp
str (2S) = α(Zα)4

〈
r2
N

〉
μ3

36π

∫ ∞

1
ρ(ξ )dξ

8a3
1ξ

3 + 11a2
1ξ

2 + 8a1ξ + 2

2(a1ξ + 1)4
, a1 = 2me

W
, (45)

�E
vp
str (2P ) =−α(Zα)4μ3

〈
r2
N

〉
72π

∫ ∞

1
ρ(ξ )dξ

a2
1ξ

2

(a1ξ + 1)4
, (46)

�E
vp
str (2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : −14.21 meV, 7

3Li : −12.78 meV
9
4Be : −48.35 meV, 10

4 Be : −42.44 meV
10
5 B : −118.86 meV, 11

5 B : −117.14 meV

. (47)

The same order α(Zα)4 contribution is given by the amplitude in the second-order PT presented in Fig. 3(c):

�E
vp
str,sopt(2P − 2S) =−α(Zα)4μ3

〈
r2
N

〉
36π

∫ ∞

1
ρ(ξ )dξ

× 4(a1ξ + 1)
(
2a2

1ξ
2 + 1

)
ln(a1ξ + 1) + a1ξ{4a1ξ [a1ξ (a1ξ + 3) + 1] + 11} + 3

(a1ξ + 1)5

=

⎧⎪⎨
⎪⎩

6
3Li : −23.00 meV, 7

3Li : −20.68 meV
9
4Be : −80.52 meV, 10

4 Be : −70.68 meV
10
5 B : −202.98 meV, 11

5 B : −200.06 meV

. (48)

The contributions (47) and (48) are written separately in the tables (lines 17 and 18).
Bearing in mind that the quantities (47) and (48) are large, we evaluate also nuclear structure corrections with the account of

two-loop vacuum polarization effects in 1γ interaction [Figs. 5(a)–5(c)]. The method of constructing the potentials is the same
as in this and preceding sections. Corresponding potentials have the following form:

�V
vp-vp

str (r) = 2

3
Zα

〈
r2
N

〉( α

3π

)2 ∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

[
πδ(r) − m2

e

r(ξ 2 − η2)
(ξ 4e−2meξr − η4e−2meηr )

]
, (49)

�V
2-loop vp

str (r) = 4

9
Zα

〈
r2
N

〉(α

π

)2 ∫ 1

0

f (v)dv

1 − v2

[
πδ(r) − m2

e

r(1 − v2)
e
− 2mer√

1−v2

]
. (50)

The sum of corrections to the Lamb shift (2P − 2S) that are provided by (49) and (50) is equal (see line 19 in the tables):

�E
vp,vp
str (2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : −0.11 meV, 7

3Li : −0.11 meV
9
4Be : −0.41 meV, 10

4 Be : −0.36 meV
10
5 B : −1.02 meV, 11

5 B : −1.00 meV

. (51)

There are two-loop VP corrections with nuclear structure
of order α2(Zα)4 in the second-order PT [see Figs. 6(a)–6(d)].
They can be calculated as a contribution (45) with the replace-
ment of one-loop vacuum polarization on the two-loop vacuum
polarization. Their numerical values are included in Tables I–
III (line 20). A correction by two-photon exchange diagrams
with the effect of vacuum polarization plays an important role,
as it is reinforced by the factor Z5 (see Fig. 7). An analytical
expression for this correction and its numerical values is
defined by modified potential V (p) from (41) as follows:

�E
2γ
str,vp(nS) =−2μ3α(Zα)5

π2n3

∫ ∞

0
kV (k)dk

×
∫ 1

0

v2
(
1 − v2

3

)
dv

k2(1 − v2) + 4m2
e

, (52)

(a) (b) (c)

FIG. 5. Nuclear structure and two-loop vacuum polarization
effects in the one-photon interaction. Thick point is the nuclear vertex
operator.
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(a)

G̃G̃G̃G̃

(c) (d)(b)

FIG. 6. Nuclear structure and two-loop vacuum polarization
effects in the second-order perturbation theory. Thick point is the
nuclear vertex operator. G̃ is the reduced Coulomb Green’s function.

�E
2γ
str,vp(2P − 2S)

=

⎧⎪⎨
⎪⎩

6
3Li : 3.19(3.05) meV, 7

3Li : 2.73(2.61) meV
9
4Be : 12.74(12.08) meV, 10

4 Be : 10.80(10.05) meV
10
5 B : 35.07(33.37) meV, 11

5 B : 33.67(32.63) meV

.

(53)

Since expression (52) contains the charge form factor of the
nucleus, we present in Eq. (53) two numerical values of the
contribution corresponding to the parametrizations in Eq. (42).
In the tables (line 20), we have included only one result
corresponding to the dipole parametrization. Corrections to
the Lamb shift discussed in this and previous sections are such
that analytical expressions for them are quite bulky, since the
characteristic parameter W/me is large. It cannot be used as an
expansion parameter. For this reason, it is more convenient to
present corrections in integral form, which we do in this paper.

(a) (b)

FIG. 7. Nuclear structure and electron vacuum polarization ef-
fects in the two-photon exchange diagrams. Thick point is the nuclear
vertex operator.

V. RECOIL CORRECTIONS, MUON SELF-ENERGY, AND
VACUUM POLARIZATION EFFECTS

There is another group of corrections, which were obtained
in analytical form in the study of the Lamb shift (2P − 2S)
in the hydrogen atom during many years. Their calculation
is discussed in detail in Ref. [15]. Corresponding analytical
results can be used directly for numerical estimates in muonic
atoms. For the sake of completeness we present in this section
the key expressions for such corrections, which have necessary
order in α and the ratio of particle masses and provide
significant numerical values in the Lamb shift (2P − 2S).

An analytical expression for the recoil correction of order
α4 was obtained after calculating the matrix elements of the
Breit potential [15,45,50] (table line 22):

�E(Zα)4

rec (2P − 2S) =
⎧⎨
⎩

μ3(Zα)4

48m2
2

, δI = 1,

μ3(Zα)4

12m2
2

, δI = 0,

=

⎧⎪⎨
⎪⎩

6
3Li : 0.68 meV, 7

3Li : 0.13 meV
9
4Be : 0.24 meV, 10

4 Be : 0.79 meV
10
5 B : 1.94 meV, 11

5 B : 0.40 meV

. (54)

The recoil correction of order (Zα)5 is related with two-photon exchange amplitudes in which the nucleus is considered as a
point particle [15,50]:

�E(Zα)5

rec = μ3(Zα)5

m1m2πn3

[(
2

3
ln

1

Zα
− 1

9

)
δl0 − 8

3
ln k0(n,l) − 7

3
an − 2

m2
2 − m2

1

δl0

(
m2

2 ln
m1

μ
− m2

1 ln
m2

μ

)]
, (55)

where ln k0(n,l) is the Bethe logarithm [15,51]:

ln k0(2S) = 2.811769893120563, (56)

ln k0(2P ) = −0.030016708630213, (57)

an = −2

[
ln

(
2

n

)
+

(
1 + 1

2
+ · · · + 1

n

)
+ 1 − 1

2n

]
δl0 + (1 − δl0)

l(l + 1)(2l + 1)
. (58)

The expression (55) gives the following numerical result (line 23 in the tables):

�E(Zα)5

rec (2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : −2.15 meV, 7

3Li : −1.86 meV
9
4Be : −5.97 meV, 10

4 Be : −5.40 meV
10
5 B : −16.03 meV, 11

5 B : −14.63 meV

. (59)

Numerical result for recoil correction of order (Zα)6 is presented in Tables I–III (line 24) according to analytical formula
from Refs. [15,52].
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It should be noted that there is a significant value contribution, which is given by the radiative corrections to the muon line
from the Dirac and Pauli form factors of the muon and muon vacuum polarization (mvp). It is appropriate to quote here the
relevant analytical formulas [15,53]:

�Emvp,mse(2S) = α(Zα)4

8π

μ3

m2
1

[
4

3
ln

m1

μ(Zα)2
− 4

3
ln k0(2S) + 38

45

+ α

π

(
−9

4
ζ (3) + 3

2
π2 ln 2 − 10

27
π2 − 2179

648

)
+ 4πZα

(
427

384
− ln 2

2

)]
, (60)

�Emvp,mse(2P ) = α(Zα)4

8π

μ3

m2
1

[
−4

3
ln k0(2P ) − m1

6μ
− α

3π

m1

μ

(
3

4
ζ (3) − π2

2
ln 2 + π2

12
+ 197

144

)]
, (61)

which lead to numerical results (line 25 in the tables):

�Emse,mvp(2P − 2S) =

⎧⎪⎨
⎪⎩

6
3Li : −50.99 meV, 7

3Li : −51.36 meV
9
4Be : −149.00 meV, 10

4 Be : −149.52 meV
10
5 B : −337.45 meV, 11

5 B : −338.40 meV

. (62)

The radiative-recoil corrections of orders α(Zα)5 and (Z2α)(Zα)4 from Tables 8 and 9 in Ref. [15] are significantly smaller
(see their explicit form in Ref. [31]). We have included the numerical values in the summary, Tables I–III (line 26).

On the basis of Refs. [54,55] we give an estimate of the nuclear structure corrections of orders (Zα)6 and α(Zα)5 to the Lamb
shift in muonic ions. So, for the structure correction of order (Zα)6 we obtain:

�E
(Zα)6

str (2P − 2S) = (Zα)6

12
μ3

{
r2
N

[
〈ln μZαr〉 + C − 3

2

]
− 1

2
r2
N + 1

3
〈r3〉

〈
1

r

〉
− I rel

2 − I rel
3 − μ2FNR + 1

40
μ2〈r4〉

}

=

⎧⎪⎨
⎪⎩

6
3Li : −7.38 meV, 7

3Li : −6.69 meV
9
4Be : −40.60 meV, 10

4 Be : −35.70 meV
10
5 B : −145.27 meV, 11

5 B : −143.04 meV

. (63)

where the quantities I rel
2,3,FNR are written explicitly in

Ref. [54]. Significant growth of the numerical values in
Eq. (63) in the transition from one to the other muonic ions
muon is caused by two factors, Z and rN . A summary result for
structure corrections of orders (Zα)6 and α(Zα)5 is presented
in Tables I–III (line 27).

An amplitude in Fig. 8(b) gives the contribution to the
energy spectrum, which can be expressed in terms of the
slope of the Dirac form factor F ′

1 and the Pauli form factor
F2. Numerical values in the Lamb shift are obtained by
means of two-loop corrections to form factors F ′

1(0) and F2(0)
which were calculated in Ref. [56] (line 28 of the tables).
Another contribution with vacuum polarization in Fig. 8(a)
was investigated in Refs. [16,57]. It is included in final tables

(a) (b)

FIG. 8. Radiative corrections with the vacuum polarization effects.

on line 29. The contribution of hadron vacuum polarization
to the Lamb shift can be derived by means of corresponding
result for muonic hydrogen [58–60] (table line 30).

VI. SUMMARY AND CONCLUSION

In this study, we perform a calculation of the Lamb shift
(2P1/2 − 2S1/2) in the number of muonic ions with different
nuclear charge and nuclear charge radius. Various corrections
with fairly high degrees of fine structure constant α3 ÷ α6 have
been taken into account. All contributions that are analyzed
may be divided into two groups. The first group includes the
corrections specific to each muonic ion, which are presented in
the integral form and calculated analytically and numerically.
The second group of corrections is obtained on the basis of
the known analytical expressions derived in the study of the
Lamb shift in the hydrogen atom. Numerical values of all
corrections are written explicitly in Tables I–III. Since for these
muonic ions numerical values of the contributions previously
have been hardly discussed, with a few exceptions [7], we are
limited to only the key papers containing analytical results. As
we wrote above in Sec. V, we use these expressions to obtain
numerical contributions to the Lamb shift. The resulting total
numerical values of shifts in muonic ions of lithium, beryllium,
and boron can be used for comparison with future experimental
data. These numerical values allow us to trace the dynamics of
changes in the values of corrections during the transition from
one ion to another.
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It is known that the position of the energy levels of the
2S1/2 and 2P1/2 in atoms of electronic hydrogen and muonic
hydrogen differs significantly. We have seen a similar change
in the study of muonic ions (μLi)2+, (μBe)3+, and (μB)4+: If a
muonic lithium ion 2P level is above the 2S level, then for ions
of muonic beryllium and boron we get the reverse arrangement
of levels. This effect is due to the compensation for two basic
contributions to the Lamb shift from a one-loop electronic
vacuum polarization and nuclear structure of order (Zα)4. As
a result the corrections of higher order in α, enhanced by
nuclear charge degrees, become more important.

As noted above, the problem of the Lamb shift in muonic
ions of lithium, beryllium, and boron was studied many years
ago in Ref. [7]. One part of results in Ref. [7] was obtained with
the use of nonrelativistic wave functions and treatment of the
finite nuclear size and vacuum-polarization potentials as small
perturbations. It is consistent with our results within a small
change in the fundamental physical constants. Another part
of the results in Ref. [7] was obtained by means of numerical
solution of the Dirac equation and treatment of the remaining
small corrections due to the muon self-energy, the higher-
order Källen-Sabrey vacuum polarization term, and nuclear
polarization by perturbation theory. To compare our results
with such calculations in Ref. [7] we must take the sum of a few
lines of our tables, corresponding to the first- and second-order
perturbation theory, and in the case of effects on the structure
of the nucleus to the sum of corrections of one-photon and two-
photon amplitudes. Since our other corrections are numerically
small, it is convenient further to compare the complete results
for the Lamb shift. Our values of the charge radii of nuclei are
slightly different from the values of Ref. [7], what is one of the
reasons for the differences of total numerical results. Another
reason is related to corrections of a higher order, accounted for
in this paper. For example, we use the value of the charge radius
of lithium nucleus r(6

3Li) = 2.5890 fm from Ref. [37]. It is
slightly different from the value 2.560 fm used in Ref. [7]. This
difference gives an addition of 82 meV to our result from Ta-
ble I due to structure correction of order (Zα)4 (39). In turn, our
structure correction of order (Zα)5 (43) becomes smaller on
7 meV and reduces essentially the divergence from the value of
the Lamb shift in Ref. [7]. The remaining difference can be re-
ferred to a difference in model assumptions for the charge form
factor in our work and in Ref. [7] (uniform charge distribution),
which, as noted above, provides a 10% change in results. The
same situation occurs for the other nuclei.

Note also that there is another contribution to the polar-
izability of the nucleus, for which we use an estimate from
Ref. [7]. It is expressed in terms of the (−2) moment of

the total electric-dipole photoabsorption cross section σ−2. In
the case of light nuclei there exists a simple formula σ−2 =
3.5kA5/3 μb

MeV [61] which allows us to obtain an estimate for the
cross sections of lithium, beryllium, and boron. We add error
margins for many contributions in the tables connected with
the nuclear structure and polarizability. Other contributions in
the tables are presented with the accuracy 0.01 meV. The errors
of these contributions related to uncertainties in determining
the fundamental physical constants are much smaller. As
follows from Tables I–III, the contributions containing 〈r2

N 〉
are obtained with the errors significantly exceeding 0.01 meV.
However, we indicate in the tables that the contributions are to
an accuracy of 0.01 meV, as this will provide a more accurate
value of the charge radii of nuclei in the presence of the
relevant experimental data, as was done for muonic hydrogen
and muonic deuterium.

The question of the parametrization of the charge form
factors of light nuclei, too, should be studied further in order
to reduce the errors connected with the determination of con-
tribution (43). In the summary Tables I–III, we have assumed
that there is a dipole parametrization for the nuclear charge
form factor. If it turns out that the more correct (corresponding
to the experimental data on the scattering of leptons on
nuclei) is, for example, the Gaussian parametrization, then
it will be necessary to recalculate only the contributions to
the nuclear structure and to use other corrections obtained
in this work. For this reason, it is useful to present total
results for the Lamb shifts in muonic ions of Li, Be, and
B in the form: �E(2P − 2S) = A + B〈r2

N 〉 + C2γ + Dpol +
EFriar, introducing the factor of 〈r2

N 〉 outside the brackets in
a number of terms. For example, in the case of 6

3Li nucleus
the coefficients in meV are the following: A = 4654.38, B =
−1434.01, C2γ = 211.19, Dpol = 15, and EFriar = −6.07,
where the coefficients A and B are written out with a precision
of 0.01 meV. This representation of total results identifies
the main sources of uncertainty connected with the nucleus
charge radius, two-photon exchange diagrams, contribution
to the nucleus polarizability, and correction to the nucleus
structure, obtained in Ref. [54]. Weak interaction contribution
is very small and is not considered in this study (see Ref. [62]).
Thus, with proper experimental accuracy we can obtain more
precise values of the nuclear charge radii.
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