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Since quantum coherence is an undoubted characteristic trait of quantum physics, the quantification and
application of quantum coherence has been one of the long-standing central topics in quantum information science.
Within the framework of a resource theory of quantum coherence proposed recently, a fiducial basis should be
preselected for characterizing the quantum coherence in specific circumstances, namely, the quantum coherence
is a basis-dependent quantity. Therefore, a natural question is raised: what are the maximum and minimum
coherences contained in a certain quantum state with respect to a generic basis? While the minimum case is trivial,
it is not so intuitive to verify in which basis the quantum coherence is maximal. Based on the coherence measure
of relative entropy, we indicate the particular basis in which the quantum coherence is maximal for a given state,
where the Fourier matrix (or more generally, complex Hadamard matrices) plays a critical role in determining
the basis. Intriguingly, though we can prove that the basis associated with the Fourier matrix is a stationary point
for optimizing the l1 norm of coherence, numerical simulation shows that it is not a global optimal choice.
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I. INTRODUCTION

Quantum coherence, as a prominent resource for quantum
information processing, has found its various diversified
applications in quantum cryptography [1], quantum compu-
tation [2,3], and quantum metrology [4,5]. Nevertheless, until
very recently, a rigorous information-theoretic framework for
characterizing coherence has been lacking and a great deal of
effort has been devoted to this significant and long-standing
topic [6]. Exploiting the quantum resource theory [7,8], Baum-
gratz et al. proposed a framework for quantifying coherence
based on distance or pseudodistance measures [9], by noting
that a similar line of thought has been successfully applied
in the theory of quantum entanglement [10,11]. Within this
framework, several reasonable postulates have been proposed
which should be satisfied by all bona fide measures of quantum
coherence. Moreover, as a prerequisite, a fiducial basis should
be preselected for determining the exact value of quantum
coherence, according to the specific theoretic considerations
or physical implementations. In other words, the coherence
measures defined in Ref. [9] are all basis-dependent quantities.
For a simple example, the eigenvectors of Pauli matrices σx

and σz constitute two mutually unbiased bases; that is, each
incoherent basis pure state is a maximally coherent state with
respect to the other basis [12].

Therefore, a natural question is raised: what are the
maximum and minimum coherences contained in a given
quantum state with respect to a generic basis? Notably,
this problem is not only theoretically motivated but also
experimentally relevant. Since quantum coherence has been
identified as the essential resource for certain quantum
information tasks, it is preferred to extract the coherence
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content of a given state as much as possible. Obviously, the key
issue is to find out a reference basis with respect to which the
coherence value is maximal. It is noteworthy that a similar but
distinct problem has been discussed by Singh et al. [13], where
the notion of maximally coherent mixed states (MCMSs)
was considered and in fact they obtained the maximally
achievable quantum coherence for a fixed mixedness in the
computational basis. However, while in Ref. [13] the purity
is the only independent variable, here we expect that the
maximally achievable value of quantum coherence may
depend on the entropy or eigenvalues of the given state.

In this work, we mainly focus on the coherence measures of
relative entropy and the l1 norm, which are the only monotones
that are found to satisfy all criterions proposed in Ref. [9]
until now. While any pure state can always be transformed to
a maximally coherent state by a change of basis, we realize
that for general mixed states the situation becomes much
more complicated and subtle. For the relative entropy of
coherence, we demonstrate that the basis associated with
the Fourier matrix (in fact, all complex Hadamard matrices)
is optimal for achieving the maximal coherence. Since
all bona fide measures of quantum coherence satisfy the
same set of constraints, intuitively one might be tempted
to conjecture that this particular basis is also optimal for
other measures of quantum coherence. However, although
we prove that this particular basis is a stationary point (e.g., a
local extremum) for optimizing the l1 norm of coherence, the
numerical simulation shows that in general it is not a global
optimal choice, especially for high-dimensional mixed states.
Therefore, this seemingly counterintuitive finding illustrates
that the condition for achieving maximum values of coherence
is not universal, but rather is measure dependent.

The paper is organized as follows. In Sec. II, we briefly
review the resource framework of quantum coherence and
define the problem in standard notations. In Sec. III, we
identify the basis in which the relative entropy of coherence
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of a given state is maximal and the significance of the Fourier
matrix (complex Hadamard matrices) is illustrated. In Sec. IV,
we prove that this basis is a stationary point for optimizing the
l1 norm of coherence and the properties of the circulant matrix
are emphasized. In Sec. V, we perform a detailed numerical
simulation and demonstrate that the basis associated with the
Fourier matrix is not global optimal. Section VI is devoted to
the conclusion and discussion of the main results and several
open questions are presented for future investigation.

II. DEFINING THE PROBLEM

Throughout the paper, we adopt the resource theory of
quantum coherence proposed by Baumgratz et al. in Ref. [9].
A general framework of quantum resource theory consists of
three key ingredients: (i) the free states, (ii) the resource states,
and (iii) the restricted or free operations [7,8]. Quantum entan-
glement theory is another prominent and familiar application
of this theoretical framework, where the three basic ingredients
are separable states, entangled states, and local operations
and classical communication (LOCC), respectively [10,11].
Except for these basic notions, such as the free states and free
operations defined in their own context, the quantum resource
theories mainly rely on the following two aspects: (i) a series of
reasonable postulates that should be fulfilled by each measure
or indicator of genuine resource and (ii) a set of contractive
geometric metrics [8]. In the corresponding resource theory
of coherence, the free (incoherent) states are those diagonal
in a pre-selected basis in the d-dimensional Hilbert space
H, denoted by the set I. Accordingly, the free (incoherent)
operations are completely positive and trace-preserving
quantum maps �I admitting an operator-sum representation
where every Kraus operator Ki will transform the set of
incoherent states into itself [9], that is, KiIK

†
i ⊂ I.

Except for the nullity condition and convexity requirement,
each bona fide measure of quantum coherence C(ρ) is
assumed to be a monotone function under the nonselective
and subselective incoherent measurements, namely [9],

C(�I (ρ)) � C(ρ), (1)∑
i

piC(ρi) � C(ρ), (2)

where pi = tr(KiρK
†
i ) and ρi = KiρK

†
i /pi . Note that the

latter constraint combined with the convexity condition will
lead to the former, which implies the latter is a stronger
monotonicity requirement. Based on these criteria, several
potential candidates were put forward for the quantification of
coherence [9]. However, so far only two measures have been
identified to fulfill all the requirements, that is, the relative en-
tropy of coherence CR(ρ) and the l1 norm of coherence Cl1 (ρ):

CR(ρ) = S(ρI ) − S(ρ), (3)

Cl1 (ρ) =
∑
μ �=ν

|ρμν |, (4)

where ρI is the diagonal part of ρ = ∑
μ,ν ρμν |μ〉〈ν|. It

is worth pointing out that the coherence measures induced
by the l2 norm and the fidelity do not constitute valid
coherence monotones, since for both quantities the strong

monotonicity (2) does not hold in general [9,14]. Moreover,
though the trace-norm measure of coherence was proved to
be a strong monotone for all qubit and X states, a recent work
showed that the trace norm of coherence cannot be regarded
as a legitimate coherence measure for general states [15].

In such a framework, a predetermined fiducial basis is prior
to any evaluation of the value of coherence. Recall that a
specific orthonormal basis corresponds to a particular matrix
representation of a given density matrix (the maximally mixed
state ρ� = 1/d is an exception since it is always diagonal in
any bases). From the definitions of CR(ρ) and Cl1 (ρ), it is
easy to see that any density matrix with off-diagonal entries
in such a representation will be identified as a resource state
(having nonzero coherence value) with respect to this fiducial
basis. Furthermore, it is noteworthy that any two distinct
orthonormal bases are connected with a unitary operator [3]
and this remarkable fact indicates that with reference to the
computational basis {|i〉}di=1, any generic basis {|ai〉}di=1 can be
fully characterized by a unitary operator U , with a one-to-one
correspondence |ai〉 = U |i〉. Therefore, for a given density
matrix ρ, the evaluation of quantum coherence in a generic
basis {|ai〉} is equivalent to considering the coherence of U †ρU

in the the computational basis {|i〉}, that is,

〈ai |ρ|aj 〉 = 〈i|U †ρU |j 〉, i,j = 1, . . . ,d. (5)

Therefore, the problem of determining in which basis the
matrix representation will display the maximum or minimum
coherence is tantamount to finding out the corresponding
unitary transformations. In fact, according to the spectral
theorem [3,16], any normal operator is diagonalizable and
thus, for a given density matrix ρ, the minimum coherence
is always zero, in which case the eigenvectors of ρ form the
columns of this particular U . However, on the other hand, it
is not immediately intuitive in which basis we can acquire the
maximum coherence.

III. RELATIVE ENTROPY OF COHERENCE

A. Complex Hadamard matrices

Now let us consider a fixed density matrix ρ in the
d-dimensional Hilbert space H. In this section we mainly
concentrate on CR, since the entropy function solely depends
on the eigenvalues of its argument and is usually easier to
handle. To begin with, two observations caught our attention.
First, regardless of the fiducial basis, CR is universally upper
bounded by

0 � CR(ρ) = S(ρI ) − S(ρ) � log d − S(ρ). (6)

In fact, this inequality stems from the majorization relation
diag{1/d, . . . ,1/d} ≺ ρI ≺ ρ, also known as the Schur-Horn
theorem [17]. Note that though ρ itself always remain
unchanged with respect to the basis change, the diagonal part
ρI definitely depends on different matrix representations. The
tightness of this upper bound is equivalent to whether there
exists a specific basis in which the matrix representation of
ρ has equal main diagonal elements. The second observation
is recapitulated in the following lemma, which was proved by
Horn and Johnson using two different approaches [18,19].

Lemma 1. Denote the set of d-dimensional square matrices
by Md . Then for each A ∈ Md , there exists a unitary matrix
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U ∈ Md such that all the diagonal entries of U †AU have the
same value trA/d.

This lemma is a rather general result and implies that CR
can always achieve the upper bound of Eq. (6) through the
change of basis. However, the proofs in Refs. [18,19] do not
indicate the explicit form of this particular U . The following
theorem spells out the exact form of this type of U and thus the
corresponding basis, where the complex Hadamard matrices
play an essential role. Recall that a complex Hadamard matrix
H is commonly defined as a d-dimensional square matrix with
the properties of unimodular and orthogonality [20–22]:

|Hij | = 1, ∀ i,j = 0, . . . ,d − 1, (7)

HH † = d1. (8)

Theorem 1. There exists a set of unitary operators U such
that CR achieves the maximum value log d − S(ρ) for a given
density matrix ρ, where the reference basis is defined by
{U |i〉}d−1

i=0 . The unitary transformation has the form U = V H †,
where V consists of the eigenvectors of ρ as its column vectors
and H belongs to the set of (rescaled) complex Hadamard
matrices.

Proof. From Eq. (5), the evaluation of the coherence value
of ρ in the transformed basis {U |i〉}d−1

i=0 is equivalent to that
of U †ρU in the computational basis. Due to the spectral
decomposition of ρ = V �V †, without any loss of generality,
we assume

� = diag{λ0,λ1, . . . ,λd−1}, λi � λi+1, (9)

by proper arrangement of the order of the eigenvectors in V .
Then we have

U †ρU = HV †ρV H † = H�H †. (10)

Let us denote the elements of the matrix A as [A]ij = Aij .
Adopting the Einstein convention, the diagonal entries in this
matrix representation are

[H�H †]ii = [H ]ikλkδkl[H
†]li = λkHikH

∗
ik

= 1

d

∑
k

λk = 1

d
, (11)

where we prefer the rescaled definition of complex Hadamard
matrices, that is, HH † = 1 with complex entries of equal
modulus |Hij | = 1/

√
d . �

To gain a better understanding of how the theorem works,
we would like to take some time to further illustrate the notion
of complex Hadamard matrices. Here we rescale a complex
Hadamard matrix to a corresponding unitary matrix, and thus
the d vectors formed by the columns of such a matrix constitute
a complete set of orthogonal basis of Cd . It is noteworthy
that each of this set of basis vectors is mutually unbiased
with respect to the computational basis. That is, following
the notations of Ref. [9], these basis vectors are maximally
coherent states in the standard basis. Another important
concept is the equivalence relation between two different
complex Hadamard matrices. Two Hadamard matrices H1 and
H2 are called equivalent, denoted by H1 � H2, if there exist
diagonal unitary matrices D1 and D2 and permutation matrices

P1 and P2 such that [20–22]

H1 = D1P1H2P2D2 = M1H2M2, (12)

where M1 = D1P1 and M1 = P2D2 are so-called generalized
permutation matrices or monomial states [23], which are
unitary matrices with the matrix representation in the standard
basis containing precisely one nonzero entry in each row and
column.

Therefore, the reordering of the rows and columns or the
rephasing of the off-diagonal entries of a complex Hadamard
matrix does not alter its equivalence class. Consequently,
every complex Hadamard matrix can be transformed to a
dephased form, where the entries of its first row and column
are all equal to 1/

√
d [20–22]. An important example is

the Fourier matrix, which exists for all dimensions and is
naturally of the dephased form

[Fd ]μν = 1√
d

e
2π iμν

d = 1√
d

ωμν, μ,ν = 0, . . . ,d − 1, (13)

where we denote by ω = e2π i/d the dth root of unity. On the
other hand, if we choose the standard basis {|i〉}d−1

i=0 to be the
incoherence basis, then the diagonal unitary matrices D and
the permutation matrices P (and thus monomial matrices M)
in such a basis are all incoherent unitary operators, due to
the criterion derived in Ref. [24]. Moreover, since the inverse
matrices of D and P are still incoherent operations, all these in-
coherent unitary matrices are coherence-value-preserving op-
erations (CVPOs) [25]. Intriguingly, it is easy to prove that the
CVPOs admitted by all valid coherence measures are mono-
mial matrices, which in fact are combinations of rephasing and
relabeling. Therefore, due to its simplicity and significance,
henceforth we adopt the Fourier matrix as the primary repre-
sentative of complex Hadamard matrices, though some of the
following conclusions also hold for this whole set of matrices.

B. Dual basis

For a qubit system, the Fourier matrix is just the so-called
Hadamard gate of quantum computation:

F2 = 1√
2

(
1 1
1 ω

)
= 1√

2

(
1 1
1 −1

)
. (14)

By applying the Hadamard gate to the standard basis {|0〉,|1〉},
the following two vectors can also be obtained:

|φμ〉 = F2|μ〉 = 1√
2

[|0〉 + (−1)μ|1〉], μ = 0,1. (15)

Obviously, the transformed basis {|φ0〉,|φ1〉} is mutually
unbiased with respect to {|0〉,|1〉}, or, equivalently, each
basis state in one set is the maximally coherent state with
respect to another. In this context, the Hadamard gate can
be termed as a maximally coherent operator for a qubit
system [24]. As a generalization of the Hadamard gate in
arbitrary finite dimension, the Fourier matrix (in fact, all
complex Hadamard matrices) inherits the properties of the
Hadamard gate. Namely, we can obtain a so-called dual basis
by applying Fd on the computational basis:

|φk〉 = Fd |k〉 = 1√
d

d−1∑
n=0

ωkn|n〉, k = 0,1, . . . ,d − 1. (16)
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To certify the orthogonality of the basis states, one can verify
the overlap:

〈φν |φμ〉 = 1

d

d−1∑
n=0

ω(μ−ν)n = δμ,ν, (17)

where δμ,ν is the Kronecker δ function. Remarkably, {|j 〉} and
{|φj 〉} are the eigenvectors of the generalized Pauli operator
Zd and Xd , respectively [26,27],

Zd |j 〉 = ωj |j 〉, Xd |j 〉 = |j + 1〉, (18)

and further we have

Zd |φj 〉 = |φj+1〉, Xd |φj 〉 = ω−j |φj 〉. (19)

In fact, in terms of {|φj 〉} and the eigenvectors {|ψj 〉} of
ρ = ∑

j λj |ψj 〉〈ψj |, the unitary operators V and Fd defined
in Eq. (13) can be written as

V =
d−1∑
j=0

|ψj 〉〈j |, (20)

Fd = 1√
d

d−1∑
i,j=0

ωij |i〉〈j | =
d−1∑
j=0

|φj 〉〈j |. (21)

Therefore, U = V F†
d = ∑

j |ψj 〉〈φj | and the transformed
state U †ρU is given by

U †ρU =
d−1∑
j=0

λj |φj 〉〈φj |. (22)

Since |φj 〉 are maximally coherent states in the computational
basis, the transformed state U †ρU is a weighted mixture of
{|φj 〉} and thus has equal main diagonal entries with respect
to the standard basis.

C. l2 norm of coherence

As a by-product, we can arrive at a conclusion that the
l2 norm of coherence Cl2 also achieves the maximum value
exactly in the same basis, though the strong monotonicity
condition is not satisfied by Cl2 . First, for a given density matrix
ρ = ∑

μ,ν ρμν |μ〉〈ν|, the l2 norm of coherence is defined by [9]

Cl2 (ρ) =
∑
μ �=ν

|ρμν |2 = ‖ρ‖2
2 −

d−1∑
μ=0

|ρμμ|2, (23)

where ‖•‖2 is called the Hilbert-Schmidt norm or the
Frobenius norm (and is occasionally written as ‖•‖F for that
reason) [18,28]. An important property of the Frobenius norm
is the unitary invariance, that is, for any A ∈ Md and arbitrary
unitary matrices U,V ∈ Md

‖UAV ‖2
2 = ‖A‖2

2 = tr(A†A) =
∑
μ,ν

|Aμν |2. (24)

Therefore, basis change does not alter the Frobenius norm of
a given density matrix and one can only focus on the diagonal
parts of matrix representations for distinct bases, as can be
seen from Eq. (23).

Moreover, in an arbitrary basis, the diagonal part of the cor-
responding matrix representation constitutes a non-negative

vector of Rd with elements summing to unity. Denote such a
vector by eI and the uniformly distributed probability vector
by e0. According to the majorization theory, e0 is majored by
the arbitrary vector eI , that is [17,28],

e0 = 1

d
(1,1 . . . ,1) ≺ eI = ({ρμμ}d−1

μ=0

)
, (25)

where ρμμ = 〈μ|ρ|μ〉 and {|μ〉} is the specified incoherent
basis (not necessarily the computational basis). Since the
function f (x) = ∑

i x
k
i (for k � 1, here we choose k = 2) is

Schur convex [17,28], we have

f (e0) = 1

d
� f (eI ) =

d−1∑
μ=0

|ρμμ|2. (26)

Therefore, the maximum value of Cl2 for a fixed ρ is given by

Cmax
l2

(ρ) = tr(ρ2) − 1

d
, (27)

which is only dependent on the purity of the density matrix
and is thus reminiscent of the results and discussions in
Refs. [13,29].

IV. l1 NORM OF COHERENCE

In this section we concentrate on the l1 norm of coherence
Cl1 . Among all the valid quantifiers, the concept of quantum
coherence is more directly embodied in the mathematical
definition of Cl1 , due to the fact that any nonzero off-diagonal
elements of a density matrix will definitely contribute to the
“nonclassicality” in a given basis. However, despite the simple
structure of Cl1 , it seems difficult to immediately find out in
which basis Cl1 (ρ) achieves the maximum value for a given
state. Indeed, in view of Theorem 1, it is natural to assume
the optimal basis is also related to the standard basis by a
compound unitary operator, e.g., W = V U †, where V still
diagonalizes the density matrix ρ but the structure of U is
unknown. At this stage, the transformed state is given by

W †ρW = UV †ρV U † = U�U †. (28)

Using the Einstein summation convention, the elements of
U�U † are of the form

[U�U †]ij = [U ]ikλkδkl[U
†]lj =

∑
k

λkUikU
∗
jk. (29)

Therefore, the l1 norm of coherence is equal to

Cl1 (ρ) = 2
∑
i<j

∣∣∣∣∣∑
k

λkUikU
∗
jk

∣∣∣∣∣. (30)

Nevertheless, so far what we know about U is only the unitary
property, that is,

∑
k UikU

∗
jk = δij .

The mathematical subtlety does not prevent us from
guessing the structure of the unitary matrix U . The first thing
coming into our sight is the universal freezing phenomenon
that occurs for quantum correlation or quantum coherence
measures [30–34]. Here the word universal means that under
certain initial conditions this phenomenon will inevitably
occur independently of the adopted measures; e.g., it is
a common feature of all known bona fide measures. This
consistency makes one wonder whether the optimal basis
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for CR also leads to the maximal value of Cl1 . However, in
the following it is illustrated that the same basis which is
optimal for CR is also optimal for Cl1 only in the case of qubit
and pure states. Moreover, although this basis corresponds
to a stationary point for the optimization problem, there is
numerical evidence that for high-dimensional systems it does
not represent a global maximum for Cl1 .

A. Qubit and pure states

For a qubit system, the general one-qubit unitary operator
can be parametrized as

U = eiϕ

(
a b

b∗ −a∗

)
, (31)

where |a|2 + |b|2 = 1. Note that the diagonalization process
of ρ can be absorbed into the unitary transformation due to the
basis change. The transformed state U�U † is given by

U�U † =
(

a b

b∗ −a∗

)(
λ0 0
0 λ1

)(
a∗ b

b∗ −a

)

=
(

|a|2λ0 + |b|2λ1 abλ0 − abλ1

a∗b∗λ0 − a∗b∗λ1 |b|2λ0 + |a|2λ1

)
. (32)

It follows that Cl1 (ρ) for this particular basis (associated with
V U †) is equal to

O2 = 2|ab||λ0 − λ1| � |λ0 − λ1|. (33)

The above inequality is satisfied as an equality when |a| =
|b| = 1/

√
2. Indeed, such a unitary matrix is equivalent to

the dephased form, e.g., the Fourier matrix F2. Therefore, we
proved that this basis is indeed optimal for general qubit states.

Besides, it is easy to see that this basis also holds for the
case of pure states in arbitrary dimensions, since any pure
state has only one nonzero eigenvalue, e.g., λ0 = 1 and λi = 0
(1 � i � d − 1). From Eq. (30), we obtain

OPURE
d = 2

∑
i<j

|Fi0F
∗
j0| = d − 1, (34)

where we denote the elements of the Fourier matrix by [Fd ]ij =
Fij . Note that the value of Cl1 is upper bounded by d − 1, and
moreover, the maximal coherence value of Cl1 can only be
assigned to the maximally coherent states [25,35]. Thus, this
result implies that every pure state in finite dimensions can be
represented as a maximally coherent state through the change
of basis and this optimal basis is the one defined by the Fourier
matrix (in fact, by all complex Hadamard matrices).

However, the optimization problem starts to become com-
plicated even for general mixed qutrit states. In fact, a complete
parametrization of the space of unitary matrices includes
d2-independent real parameters (e.g., Euler angles) [36,37].
Nevertheless, for reference, here we still present the analytical
expression of Od , which is associated with the specific basis
W = V F†

d (see Appendix A for details):

Od =
d−1∑
n=1

√√√√d−1∑
i=0

λ2
i +

d−1∑
k �=l

λkλl cos

[
2πn

d
(k − l)

]
. (35)

B. Lagrange multiplier method

In essence, the issue discussed in this work is an optimiza-
tion problem. More precisely, we pursue the maximum value
of Eq. (30) subject to the unitarity property

∑
k UikU

∗
jk = δij .

Therefore,we introduce the Lagrange function

L =
∑
i �=j

∣∣∣∣∣∑
k

λkUikU
∗
jk

∣∣∣∣∣ −
∑
i,j

αij

(∑
k

UikU
∗
jk − δij

)

=
∑
i,j

|�ij | − 1 −
∑
i,j

αij

(∑
k

UikU
∗
jk − δij

)
, (36)

where αij are the Lagrange multipliers, and to simplify the
notation, we define

�ij =
∑

k

λkUikU
∗
jk. (37)

Note that �ij is the matrix element of the given density matrix
with respect to the basis {V U †|i〉} and thus the symmetry
�∗

ij = �ji holds. The (local) extreme value of Cl1 corresponds
to a stationary point for the Lagrange function L. The first-
order partial derivatives are given by

∂L
∂Umn

=
∑

j

λnU
∗
jn�jm

|�jm| −
∑

j

αmjU
∗
jn = 0, (38)

∂L
∂U ∗

mn

=
∑

j

λnUjn�mj

|�mj | −
∑

j

αjmUjn = 0. (39)

Multiplying Eq. (38) by Ukn and summing over n, we obtain

αmk =
∑

j

�jm�kj

|�jm| . (40)

Similarly, from Eq. (39) we have

αkm =
∑

j

�jk�mj

|�mj | . (41)

Therefore, the very condition for the local extremum can be
cast as ∑

j

�jm�kj

|�jm| =
∑

j

�kj�jm

|�kj | . (42)

Now we can demonstrate that this condition is indeed
fulfilled by the Fourier matrix. For Fd , the matrix elements
�ij reduce to

�ij = 1

d

d−1∑
k=0

λkω
(i−j )k. (43)

Therefore, apart from �ij = �∗
ji , there are two additional

properties possessed by �ij : (i) the periodic property
�i+d,j = �i,j+d = �ij (ii) the circulant property �i,j =
�[(i − j ) mod d], which means that the value of �ij is only
dependent on the difference of subscripts. Due to the periodic
property (i), the summation term in Eq. (42) is also a periodic
function. Thus the summation over j can be rearranged to any
such region {r,r + 1, . . . ,r + d − 1} for an arbitrary integer r .
By defining r = k + m − d + 1, the left-hand side of Eq. (42)
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amounts to
d−1∑
j=0

�jm�kj

|�jm| =
m+k∑

j=m+k−d+1

�jm�kj

|�jm|

=
d−1∑
j=0

�m+k−j,m�k,m+k−j

|�m+k−j,m| , (44)

where in the last equality we have made the substitution j →
m + k − j . Finally, the circulant property (ii) guarantees that
Eq. (42) indeed holds for the Fourier matrix.

Moreover, we observe that the elements �ij constitute a
celebrated circulant matrix, which is a special kind of Toeplitz
matrix [38] (see Appendix B). It is noteworthy that circulant
matrices have many significant connections to problems in
physics, image processing, cryptography, and geometry. For
more details and further discussions, we refer the readers to
the book by Davis [39]. In summary, the above results can be
recapitulated into the following theorem.

Theorem 2. The basis associated with the unitary matrix
W = V F†

d is (at least) a stationary point for the l1 norm
of coherence. Moreover, the transformed state W †ρW is a
circulant matrix in the standard basis.

V. NUMERICAL SIMULATIONS

To verify whether or not this particular basis is global
optimal, we can perform a numerical simulation aiming at
exhausting the different fiducial bases. As argued in Sec. II, the
choice of a random basis is equivalent to uniformly sampling
an element from the group of unitary matrices. To generate
random unitary matrices, here we adopt a simple method
proposed by Mezzadri, which is constructed according to the
Haar measure [40]. Such a space of unitary matrices is usually
referred to as the circular unitary ensemble (CUE) [41].

For a general qutrit state ρ, the analytical expression of O3

is given by

O3(ρ) =
√

2
√

(λ0 − λ1)2 + (λ0 − λ2)2 + (λ1 − λ2)2, (45)

where λ0, λ1, and λ2 are the (fixed) eigenvalues of ρ. As
a typical example, the vector of eigenvalues is chosen to
be λ = (0.5,0.3,0.2) in descending order. We have run the
simulation program from 102 to 108 times (see Table I). Two
observations caught our attention: (i) with the increasing count
of randomly generated unitary matrices, the maximal values

TABLE I. Numerical results for d = 3, where λ = (0.5,0.3,0.2).
The corresponding value of O3 is

√
2(0.09 + 0.04 + 0.01) ≈

0.529 15.

Counts The found maximal values

102 0.508 397
103 0.528 649
104 0.528 674
105 0.528 876
106 0.529 063
107 0.529 139
108 0.529 144

found in the simulations are getting closer to but never exceed
the corresponding value of O3, and (ii) the corresponding
unitary matrices are also becoming closer to the complex
Hadamard matrices. For instance, among 108 random unitary
matrices, the optimal one takes the form

|U | =
⎛⎝0.578 963 0.578 962 0.574 112

0.575 579 0.576 753 0.579 711
0.577 504 0.576 332 0.578 213

⎞⎠, (46)

where |U | is the matrix of entrywise absolute values of U , and
note that 1/

√
3 ≈ 0.577 35. It is worth emphasizing that for

d = 2, 3, and 5, all complex Hadamard matrices are isomor-
phisms to the Fourier matrix, which implies it represents the
only equivalence class of complex Hadamard matrices [42].
Moreover, the expression of O3 remains unchanged with
respect to permutations of the vector of eigenvalues λ =
(λ0,λ1,λ2). These facts present strong evidence that for d = 3
the Fourier matrix is optimal for the l1 norm of coherence.

However, for d = 4 the situation is totally different from the
former case. For later discussion, here we present the analytical
formula of O4 as

O4 = 2
√

(λ0 − λ2)2 + (λ1 − λ3)2 + |λ0 − λ1 + λ2 − λ3|.
(47)

First, as for the example chosen in Fig. 1, we have not observed
any violation ofO4 up to 104 random runs (here we only plotted
103 runs for simplicity and the statistics of 104 is similar). Yet
from 105 runs we begin to observe the violations of O4 (see
Fig. 1). Up to 106 runs, in total 40 violations can be observed.

(a)

(b)

FIG. 1. The horizontal coordinate represents random runs. (a) No
violation is observed for 103 (in fact, 104) runs. (b) We picked up the
top ten values of Cl1 for 105 runs and in total four violations are
observed. Here λ = (0.4,0.3,0.2,0.1) and the dashed red line denotes
the corresponding value of O4 ≈ 0.765 685.
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Corresponding to the maximal value of Cl1 (≈0.771 506) found
in our simulation, the matrix of entrywise absolute values of
U is of the form

|U |=

⎛⎜⎝0.374 814 0.722 579 0.053 719 2 0.578 367
0.588 384 0.047 510 0.690 752 0.417 623
0.400 215 0.667 041 0.190 933 0.598 689
0.594 261 0.175 156 0.695 357 0.364 216

⎞⎟⎠,

(48)

which indicates that U is far from being a complex Hadamard
matrix.

Moreover, when considering the whole class of complex
Hadamard matrices that is equivalent to the Fourier matrix
(e.g., H = D1P1FdP2D2), only the permutation P2 contributes
to the the coherence value of H�H †, since D1 and P1 are
incoherent unitary operations [25]. In fact, the unitary matrix
V can also provide this freedom by rearranging the order of its
columns. Therefore, the larger value in the equivalence class
would be given by

Õd = max
π∈P

Od [π (λ)], (49)

whereP is the set of all permutations of the vector λ. However,
by convention we perviously assume that the vector λ is in
descending order and for the example raised in Fig. 1 this
order already gives the maximum value in Eq. (49). Thus, the
numerical simulations demonstrate that in general not only the
Fourier matrix but also the whole equivalent class of complex
Hadamard matrices is not optimal for the l1 norm of coherence.

Besides, we also performed a simulation for d = 5 and
observed that only up to 104 runs does the maximal value
found in the simulation already violates that of Od [for
a chosen eigenvalue-vector λ = (0.30,0.25,0.20,0.15,0.10)].
For higher dimensions (d � 6), the simulations can also be
carried out via our program, but it is a very time-consuming
task. For given density matrices in d � 6, it is still easy to
find the violations of Od , which implies the Fourier matrix
(or the Fourier family) is not global optimal. However, for
example, there exist at least six known distinct equivalence
classes for d = 6 [21]. Thus, for high dimensions (d � 6),
the above evidence does not exclude the possibility that other
inequivalent classes of complex Hadamard matrices may result
in the global optimal coherence value. Note that the full
construction and classification of complex Hadamard matrices
in arbitrary finite dimensions is still an open question and this
problem is unsolved even for d = 6 [21,22]. Therefore, for
high dimensions, a much more complicated numerical method
is needed to verify the optimality of some other classes of
complex Hadamard matrices.

VI. CONCLUSIONS

In this work, we concentrate on the following question: for
a given density matrix, in which basis will the valid measures
of quantum coherence achieve the maximum values? On one
hand, we have proved that all the bases associated with the
unitary operator V H † are genuinely optimal for the relative
entropy of coherence and the l2 norm of coherence, where
H represents all complex Hadamard matrices. Indeed, this
result stems from the fact that the columns (or rows) of

complex Hadamard matrices are mutually unbiased with the
standard basis. On the other hand, although we also proved
that this type of basis is still optimal for general qubit states
and pure states in arbitrary dimensions, numerical simulations
show that the Fourier matrix (and its equivalent class) is only
suboptimal for our purpose, especially in high-dimensional
Hilbert space. In contrast to the freezing phenomenon for
all coherence measures [32–34], this result is somewhat
counterintuitive and indicates that the condition for achieving
maximum values of coherence measures is not universal
but rather is measure dependent. Quite recently, Zanardi
et al. investigated the coherence power of quantum unitary
operators and they found that all complex Hadamard matrices
have maximal coherence-generating power [43]. However, the
quantity defined in Ref. [43] involves an ensemble averaging
process over all pure states, while in this work we consider
the coherence-generating power of a unitary operation with
respect to an arbitrary fixed state.

In view of these results, it is worth pointing out that there
exist several interesting connections between our work and
some previous findings. First, since the issue discussed in this
work can also be regarded as a coherence-creating problem,
the method raised in Ref. [44] is a particular case of Theorem
1, by noting that the basis {|φj 〉} used to construct the optimal
unitary operation is just induced by the Fourier matrix:

|φj 〉 = Fd |j 〉 = 1√
d

d−1∑
i=0

ωij |i〉 = Zj

d |φ0〉, (50)

where Zd is the generalized Pauli operator and satisfies
Zd |j 〉 = ωj |j 〉. In some other context, the basis introduced
in Theorem 1 is also termed as the contradiagonal basis [45].
Second, the maximum achievable coherence values pursued
in this work can also be viewed as a basis-independent
quantity. This is thus reminiscent of the concepts introduced
in Refs. [13,29], that is,

CP (ρ) =
√

(d − 1)(dtrρ2 − 1), (51)

CF (ρ) =
√

d

d − 1

∥∥∥∥ρ − 1

d

∥∥∥∥
2

, (52)

where CP (ρ) denotes the upperbound of the l1 norm of
coherence for fixed mixedness in a system while CF (ρ)
characterizes to what extent the given state deviates from the
maximally mixed state. In fact, there exists a simple direct
relationship between them, CP (ρ) = (d − 1)CF (ρ), which
indicates that the basis-independent quantity CF (ρ) can also be
viewed as a renormalized measure of the maximal coherence
contained in a given state. Intriguingly, we found that for d = 2
and 3, the formula of CP (ρ) coincides with that of Od , due to
an equivalent expression of CF (ρ) [29]:

CF (ρ) =
√√√√ 1

2(d − 1)

d−1∑
j,k=0

(λj − λk)2. (53)

Combining with the numerical results, this fact probably
implies that the Fourier matrix is optimal for arbitrary qutrit
states. However, an analytical proof is still missing.
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Finally, since Od is only suboptimal for the l1 norm of
coherence, the global optimal basis and the exact structure of
the associated unitary matrix are still left as open questions.
We wonder whether this optimal basis can be directly derived
from the criteria that any valid coherence measures should
satisfy [9].
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APPENDIX A: DERIVATION OF Od

As shown in Theorem 2, for the unitary matrix W = V F†
d

the transformed state W †ρW is actually a circulant matrix. In
this specific basis, the l1 norm of coherence can be expressed as

Cl1 (ρ) = d

d−1∑
n=1

|�n|, (A1)

where we define �n = 1
d

∑
k λkω

nk . Furthermore, we have

|�n| = 1

d

√√√√(
d−1∑
k=0

λkωnk

)(
d−1∑
l=0

λlω−nl

)

= 1

d

√√√√d−1∑
i=0

λ2
i +

d−1∑
k �=l

λkλlω(k−l)n

= 1

d

d−1∑
n=1

√√√√d−1∑
i=0

λ2
i +

d−1∑
k �=l

λkλl cos

[
2πn

d
(k − l)

]
, (A2)

which is the desired formula.

APPENDIX B: CIRCULANT MATRIX

As a special kind of Toeplitz matrix, the rows (or columns)
of a circulant matrix are composed of cyclically shifted
versions of a length-d vector. Namely, a d-dimensional
circulant matrix C takes the form

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 cd−1 . . . c2 c1

c1 c0 cd−1
. . . c2

... c1 c0
. . .

...

cd−2
. . .

. . .
. . . cd−1

cd−1 cd−2 . . . c1 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B1)

That is, a circulant matrix is fully specified by a vector c = {ci}
and the entries of C only rely on the difference of the subscript
(i,j ):

[C]ij = c(i−j ) mod d . (B2)

In our context, the elements of the circulant matrix are given
by [C]ij = �ij = 1

d

∑
k λkω

(i−j )k and especially the entries on
the main diagonal are all equal to c0 = 1/d.

Another important property of circulant matrices is that they
can always be diagonalized by the Fourier matrix [38,39]. In
this work, the diagonalization is of the form

C = Fd�F†
d , (B3)

where � = diag{λ0,λ1, . . . ,λd−1} with {λi} being the eigen-
values of ρ (and also of C). In fact, for general circulant
matrices, the eigenvalues are given by

λ̃j = c0 + cd−1ω
j + · · · + c1ω

j (d−1) =
d−1∑
k=0

cd−kω
jk.

(B4)

It is easy to check that λ̃j = λj in our case by use of the identity
Eq. (17).
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