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Spectral investigation of the noise influencing multiqubit states
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Characterizing and understanding noise affecting quantum states has immense benefits in spectroscopy as
well as in realizing quantum devices. Transverse relaxation times under a set of dynamical decoupling (DD)
sequences with varying interpulse delays were earlier used for obtaining the noise spectral densities of single-qubit
coherences. In this work, using a pair of homonuclear spins and NMR techniques, we experimentally characterize
noise in certain decoherence-free subspaces. We also explore the noise of similar states in a heteronuclear spin
pair. Further, using a 10-qubit system, we investigate noise profiles of various multiqubit coherences and study
the scaling of noise with respect to the coherence order. Finally, using the experimentally obtained noise spectrum
of the 10-qubit NOON state, we predict the performance of a Uhrig DD sequence and verify it experimentally.

DOI: 10.1103/PhysRevA.94.062334

I. INTRODUCTION

The inevitable presence of local or global electromagnetic
noise may cause the loss of quantum coherences of spin
systems or induce the redistribution of spin populations. This
phenomenon, which is often described in terms of decoherence
or depolarization, appears in NMR as a net relaxation of
transverse or longitudinal magnetization. Combating decoher-
ence is of utmost importance in spectroscopy and in realizing
quantum devices such as quantum information processors
(QIPs). Passive techniques such as decoherence-free subspaces
(DFSs) [1,2] as well as active techniques such as dynamical
decoupling (DD) [3] and quantum error correcting codes
[4,5] have been developed to overcome decoherence. While
the passive techniques rely on exploiting the symmetries
in the interaction Hamiltonian, the active techniques focus on
the systematic modulation of the quantum states to suppress
decoherence. In the following we discuss the noise in various
types of quantum coherences including DFSs, and single-
quantum as well as multiple-quantum coherences.

An example of DFS is the singlet subspace in a two-qubit
system [2]. In NMR, an excess population in the singlet state,
over the uniformly distributed triplet states, is termed as a
singlet order. It has been shown that, such an order, under
favorable circumstances, has much longer lifetimes than the
usual longitudinal relaxation time scales, and is therefore
known as a long-lived singlet state (LLS) [6]. Similarly, the
coherence between the singlet state and the zero-quantum
triplet state also has longer lifetimes than the usual transverse
relaxation time scales, and is therefore termed as a long-
lived coherence (LLC) [7]. On the other hand, several other
single- and multiple-quantum coherences lack the symmetry
properties and are therefore prone to stronger decoherence [8].

In this paper we attempt to extract the noise spectra
acting on various quantum coherences of NMR spin systems.
Learning about the noise spectrum not only provides insights
into the physical process of noise in quantum systems, but
also assists in optimizing DFS conditions as well as in
designing better controls for the active suppression of noise.
Quantum noise spectroscopy (QNS), a tool to characterize the
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environmental noise, was independently proposed by Yuge
et al. [9] and Àlvarez and Suter [10].

The paper is organized as follows. In the following section
we describe the theoretical formalism of QNS. In Sec. III, we
apply QNS and experimentally extract the noise spectra of
some interesting quantum coherences. Finally, we conclude in
Sec. IV.

II. THEORY AND METHODS

Here, we review the theoretical aspects of characterizing
the noise using a single two-level quantum system (qubit)
as a probe. We consider the qubit to be coupled to a bath
via a purely dephasing interaction. Assuming the system
Hamiltonian HS = ω0σz/2 and the bath Hamiltonian HB , the
joint evolution is described by the Hamiltonian

H = HS + HSB + HB. (1)

Here, HSB = jSBσzB/2 describes the system-bath interaction
with B being the bath operator and jSB being the system-
bath coupling strength. In the interaction picture of the bath
Hamiltonian, the bath operator

B ′(t) = e−iHB tBeiHB t (2)

becomes time dependent. After tracing out the bath variables,
the interaction Hamiltonian reduces to

H′
S(B) = jSBb′(t)σz/2, (3)

where b′(t) is a stochastic function. We treat the bath to be
classical and b′(t) to be a zero-mean stationary Gaussian
process, as has been assumed before [9,10]. However, an
extension to a non-Gaussian case has also been reported
recently [11].

Suppose a DD sequence involving a series of π pules is
applied to refocus the dephasing caused by H′

S(B). In the
interaction representation associated with the DD sequence,
the Hamiltonian H′

S(B) transforms to

H′′
S(B) = f (t)jSBb′(t)σz/2, (4)

where f (t) is the modulation function that switches between
+1 and −1 with the application of every π pulse (see Fig. 1).
The Fourier transform of f (t) is known as the filter function
F (ω,τf ), where τf is the period of f (t).

2469-9926/2016/94(6)/062334(7) 062334-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.062334


DEEPAK KHURANA, GOVIND UNNIKRISHNAN, AND T. S. MAHESH PHYSICAL REVIEW A 94, 062334 (2016)

FIG. 1. The modulation functions f (t) (left column) and the
corresponding Fourier transforms, i.e., filter functions F (ω,nτf )
(right column). The first-order sampling points of the filter functions
are illustrated using a schematic spectral density function S(ω) as
shown in the lowest trace of the right column.

Noise spectral density S(ω) is defined as the Fourier trans-
form of the autocorrelation function g(τ ) = 〈b′(τ )b′(t + τ )〉.
The decay of quantum coherence is influenced by the noise
spectral density as well as the filter function [12,13]. This
decay can be modeled in the form exp[−tR(t)], wherein the
time-dependent argument for n iterations of a DD sequence is
given by

tR(t) =
√

π

2

∫ ∞

−∞
dωS(ω)|F (ω,nτf )|2 (5)

[14–16].
A Fourier analysis of DD-induced modulations is similar to

that of a diffraction grating. For time scales much larger than
the noise correlation times, i.e., for large n, the filter function
becomes time independent and reduces to a delta comb

|F (ω,nτf )|2 =
∞∑

k=−∞

n
√

2π

τf

δ(ω − ωk)|F (ω,τf )|2, (6)

where ωk = 2πk/τf and k ∈ [−∞,∞] is the Fourier index
of f (t) [17]. The exponential decay factor now becomes time
independent, i.e., R = 1/T2. Hence, for a long time point t =
nτf ,

1

T2
= 2π

τ 2
f

∞∑
k=0

S(ωk)|F (ωk,τf )|2

=
∞∑

k=0

S(ωk)A2
k, (7)

where A2
k = 2π

τ 2
f

|F (ωk,τf )|2 [10].

In the case of a free evolution without any DD sequence, the
modulation function f (t) becomes constant and therefore the
filter function F (ω,τf ) is a sinc function centered at ω = 0,
and the decay rate 1/T2 depends only on S(0).

For the Carr-Purcell-Meiboom-Gill (CPMG) sequence
[18,19] with uniformly distributed π pulses at an interval 2τ ,
f (t) switches between +1 and −1 with a period τf = 4τ .
The schematic diagrams of f (t) and the corresponding filter
functions |F (ω,τf )|2 for a set of τ values are shown in Fig. 1.
In this case, A2

k = (4/π2k2) for odd k and Ak = 0 otherwise.
Hence,

1

T2
= 4

π2

∞∑
l=0

1

(2l + 1)2
S(ω2l+1). (8)

Thus the decay rate 1/T2 for a given τ is determined by the
harmonics at ω2l+1 = π (2l + 1)/2τ , as illustrated in Fig. 1.
Hence, from the experimentally measured T2 values for τ ∈
[τmin,τmax], one can extract the spectral density points S(ω2l+1)
in the range ω ∈ [π/2τmax,π/2τmin] by inverting the above
equation. In the following we discuss two ways of extracting
the noise spectrum S(ω) from Eq. (8).

An approximate way is to truncate the series in Eq. (8) to
the zeroth-order term so that

S
( π

2τ

)
≈ π2

4T2
. (9)

This method is suitable for spectral densities with sharp cutoffs
at low frequencies [20]. Otherwise, ignoring higher-order
terms may introduce an error up to about 10%.

On the other hand, we can account for the zeroth- as
well as many higher-order terms of spectral density by
using a suitable model function for the spectral density.
Random isotropic rotations of liquid molecules usually lead
to exponential autocorrelation function and therefore the
corresponding spectral density is Lorentzian [12]. Multiple
relaxation sources may lead to a multi-Lorentzian spectral
density as observed in the experiments described in the next
section. Our phenomenological model thus consists of a linear
combination of Lorentzians

SL(ω) =
L∑

j=1

λj

(ω − ωj )2 + λ2
j

. (10)

The parameters ωj (center frequency) and λj (linewidth)
can be determined by numerically maximizing the overlap
between the experimental T2 values and those calculated using
the model function SL(ω). Another benefit of obtaining the
functional form of the spectral density is that it allows one to
evaluate the performance of various DD sequences at arbitrary
interpulse spacing, as illustrated in Sec. III C.

Although noise filtering techniques for multiqubit states
are currently being developed [21,22], in this work we use a
single-probe qubit to capture the effective noise influencing
multiqubit states.

III. EXPERIMENTS AND RESULTS

In this section, we describe the experimental noise spec-
troscopy of certain interesting multiqubit coherences.

A. LLS and LLC

We used the two phenyl 1H nuclei of 2,3,6-trichlorophenol
dissolved in dimethyl sulfoxide-D6 (DMSO). The experiments
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FIG. 2. Pulse sequences used to measure the noise spectrum of
(a) ρLLS , (b) ρLLC , and (c) ρSL . Here, τ1 = 1/(4J ), τ2 = 1/(4J ) +
1/(2	ν), τ3 = 1/(4	ν), and n is the number of times the loop
is repeated. (d) Structure of 2,3,6-trichlorophenol. The CPMG DD
sequence with spin lock along the x axis is shown in the inset (DDSL).

were carried out at 300 K in two different magnetic fields
corresponding to Larmor frequencies ν0 = 400 MHz as well as
ν0 = 600 MHz. The chemical shift difference 	ν × 106/ν0 =
0.21 ppm and the scalar coupling constant J = 8 Hz. Under a
weak-coupling approximation, the NMR Hamiltonian is

H = π	νIz − π	νSz + πJ2IzSz, (11)

where Iz and Sz are the spin operators.
The natural choice for expressing LLS and LLC is the

singlet-triplet basis, formed by the eigenvectors of the isotropic
interaction Hamiltonian I · S, i.e.,

|T0〉 = 1√
2

(|01〉 + |10〉),

|T+〉 = |00〉,
(12)

|T−〉 = |11〉,
|S0〉 = 1√

2
(|01〉 − |10〉),

where {|00〉,|01〉,|10〉,|11〉} form the Zeeman eigenbasis.
In particular, we focus on the following coherences:

ρLLS = |S0〉〈S0| − |T0〉〈T0|,
ρLLC = |S0〉〈T0| + |T0〉〈S0|,
ρSL = |T+〉〈T+| − |T−〉〈T−|. (13)

In the above, ρLLS , ρLLC , and ρSL are realized by preparing the
states −I · S, Ix − Sx , and Ix + Sx , respectively, and applying
a strong spin lock along the x axis [6,7]. Here, we have
considered ρSL for the sake of comparison with the other
long-lived states. The pulse sequences corresponding to these
states are shown in Fig. 2.

We use the multi-Lorentzian model function described in
Sec. II to extract the noise spectrum. The best fit was achieved
with a minimum of three Lorentzian functions (i.e., L = 3)
as described in Eq. (10). We scan over a range of spectral

FIG. 3. (a) Experimental decay constants (dots) of 2,3,6-
trichlorophenol (averaged for both protons) in a 400 MHz spectrom-
eter for a range of τ values and for different states as indicated.
The solid lines correspond to decay constants obtained from the best
fit by the three-Lorentzian model as described in Eq. (10). (b) The
corresponding noise spectral density bands. The dashed line at 125 Hz
corresponds to the maximum harmonics sampled with τ = 2 ms.

frequencies ω = π/2τ by varying the duration 2τ between the
π pulses, and measure the corresponding T2 values. A WALTZ-
16 spin lock of 2 kHz amplitude was applied along the x axis
during the delays between the π pulses. The experimental T2

values for all the three states and for τ values ranging from 2 ms
to 2 s are displayed in Fig. 3(a). The uncertainties in the noise
spectrum (represented by the width of the bands) are estimated
by several iterations of maximizations also considering the
standard deviations in T2 values.

As expected, ρLLS has the lowest noise in the whole
frequency range, indicating long lifetimes. On the other hand,
ρSL has the highest noise, indicating a relatively short-lived
state. The long-lived coherence ρLLC has an intermediate
noise profile. Owing to the hardware limitations, the highest
frequency sampled by the experiments is 125 Hz [indicated
by a dotted line in Fig. 3(b)], corresponding τ = 2 ms. The
noise profiles above this cutoff frequency are basically an
extrapolation obtained by the model functions. Interestingly,
in all the three spectral density profiles we observe a hump
close to 100 Hz. Replacing the hydroxyl proton with deuterium
did not affect the hump. We have also observed a systematic
dependence of the hump with the spin-lock power, which
possibly relates its origin to an interference between spin-
lock and DD sequences. However, further investigations are
required to confirm this point.

Although it is well known that the singlet state is longer
lived at lower fields [23], it is not obvious how the spectral
characteristics of noise changes under a higher field. Therefore,
it is useful to compare the noise spectrum at two different
fields. With this intention, we have measured the noises of
a singlet state of the same system, i.e., the proton pair of
2,3,6-trichlorophenol, at 400 MHz as well as at 600 MHz
spectrometers under identical conditions. The T2 values and
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FIG. 4. (a) The experimental decay constants (dots) at various τ

delays for the singlet state ρLLS at two different magnetic fields, i.e.,
400 and 600 MHz, as indicated. The solid lines correspond to decay
constants obtained from the best fit by the three-Lorentzian model as
described in Eq. (10). (b) The corresponding noise spectra.

the corresponding spectral density bands are shown in Fig. 4.
As expected, the noise is significantly stronger at 600 MHz.

B. Heteronuclear spin pair

In a hetronuclear spin pair, such as 1H -13C in 13C
chloroform [dissolved in CDCl3; see Fig. 5(b)], the singlet
subspace is not a DFS, because a strong magnetic field breaks
the symmetry between two spins and a spin lock to restore the
symmetry is not practical. Therefore, a heteronuclear singlet
state, though easy to prepare, is no longer an eigenstate of
the interaction Hamiltonian. A pulse sequence to measure
their noise spectrum is shown in Fig. 5(a). It begins with a
θ = cos−1(1/4) pulse on the 1H spin followed by a pulsed-field
gradient to equalize the polarizations and prepare the state
Iz + Sz. The following rf pulses and delays convert it to
−IxSx − IySy ≡ |S0〉〈S0| − |T0〉〈T0|. A CPMG DD sequence

FIG. 5. (a) Pulse sequence to measure the noise spectrum in a
heteronuclear spin system. (b) Molecular structure of chloroform.
Here, the singlet state is prepared on 1H and 13C spins with a coupling
constant JCH = 209 Hz between them. The CPMG DD sequence is
shown in the inset.

FIG. 6. (a) The experimental decay constants (dots) of 13C
chloroform at various τ delays for single-spin states ρH = Ix , ρC =
Sx , and the singlet state ρS at 500 MHz. The solid lines correspond
to decay constants obtained from the best fit by the three-Lorentzian
model as described in Eq. (10). (b) The corresponding noise spectra.

with a variable τ delay followed by a final 90y on 1H is then
used to measure the noise spectrum. The results are shown
in Fig. 6. For comparison, we have also included the noise
spectra of single-spin states Ix and Sx . Here 1H spin has longer
T2 values and accordingly lower noise profile compared to
13C. Unlike in the homonuclear case, the heteronuclear singlet
has the shortest T2 values and therefore the highest noise
profile. Therefore, a heteronuclear singlet is not an LLS at high
fields [24].

C. Large quantum coherences

Consider an N -spin star-topology system wherein a central
spin (denoted by M) is uniformly coupled to N − 1 magnet-
ically equivalent spins (denoted by A). Such a system allows
a convenient way to prepare many large quantum coherences.
The method involves applying a Hadamard gate (denoted by H)
on the central spin followed by a controlled-NOT (CNOT) gate as
described in Fig. 7. In thermal equilibrium, the central spin will
have an excess |0〉M population while the surrounding spins
have a Boltzmann distribution over all the states |N − 1,0〉A
to |0,N − 1〉A, wherein the first and second numbers denote
the numbers of spins in the |0〉 and |1〉 states, respectively. The
effect of Hadamard and CNOT gates can now be described as

|0〉M
N−1∑
k=0

|N − 1 − k,k〉A

H→ |0〉M + |1〉M√
2

N−1∑
k=0

|N − 1 − k,k〉A

CNOT−→ 1√
2

N−1∑
k=0

|0〉M |N − 1 − k,k〉A + |1〉M |k,N − 1 − k〉A.
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FIG. 7. Pulse sequence to measure noise spectra of the MSSM
states. An initial INEPT (insensitive nuclei enhanced by polarization
transfer) [25] operation is used to transfer magnetization from 1H
to 31P. The PFGs G1 and G2 are chosen such that φ2(k) = −φ1(k)
to select out an MSSM state with a particular lopsidedness l(k). A
CPMG-DD sequence with composite π pulses was used.

The last sum represents a collection of coherences with quan-
tum numbers N,N − 2, . . . ,0 for even N and N,N − 2, . . . ,1
for odd N . Such coherences are often referred to as |MSSM〉
(many-some, some-many) states [8]. A special MSSM state is
the N -quantum |NOON〉 state

|NOON〉 = (|000 . . . 0〉 + |111 . . . 1〉)/
√

2. (14)

The MSSM states can be individually studied by selective
filtering of their signals using a pair of pulsed-field gradients
(PFGs) (see Fig. 7). If γA and γM denote the respective
gyromagnetic ratios of A and M spins, we can express the
dephasing caused by the first PFG by

φ1(k) ∝ γM + (N − 2k − 1)γA

γA

= l(k), (15)

where the term in the right-hand side is known as the
lopsidedness of the MSSM state and

γM − (N − 1)γA

γA

� l(k) � γM + (N − 1)γA

γA

. (16)

Each MSSM state is converted back into an observable
single-quantum M spin coherence by the application of a
second CNOT,

1√
2

N−1∑
k=0

|0〉M |N − 1 − k,k〉A + eiφ1(k)|1〉M |k,N − 1 − k〉A

CNOT−→
(

N−1∑
k=0

|0〉M + eiφ1(k)|1〉M√
2

)
|N − 1 − k,k〉A.

Selection of the signal from a desired MSSM state with
a particular l(k) value is achieved with the help of a second
PFG which introduces a phase φ2(k) = −φ1(k). The noise
spectroscopy of the MSSM states can be studied by inserting
the DD sequence just before the second CNOT (see Fig. 7).

FIG. 8. The spectral lines corresponding to various MSSM states
with varying lopsidedness l. Each spectral line is individually
normalized. The reference spectrum with all the lines is shown at
the front. The structure of trimethylphosphite is also shown at the
top-left-hand corner.

Experiments were carried out in a Bruker 500 MHz spec-
trometer at 300 K. Trimethylphosphite (see Fig. 8) dissolved in
DMSO was used as a 10-spin star-topology system including
a central 31P spin (M spin) and the nine surrounding 1H spins
(A spins). The scalar spin-spin coupling JPH was about 11 Hz.
The signals from various MSSM states (obtained with the pulse
sequence shown in Fig. 7) along with a reference spectrum are
shown in Fig. 8.

Results and discussions. The results of the noise spec-
troscopy of various MSSM states are shown in Fig. 9. As
expected, the spectral density profiles appear to go higher with

FIG. 9. Trimethylphosphite noise spectra for various MSSM
states with different lopsidedness l. The dashed lines parallel to
the l axis represent the maximum frequency (250 Hz) sampled in
experiments. The inset shows the scaling of low-frequency spectral
density values with l.
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the magnitude of the lopsidedness, and accordingly the NOON
state has the highest noise profile.

It is interesting to study the scaling of the low-frequency
noise [≈S(0)] versus the lopsidedness. The inset of Fig. 9
shows the experimental values of low-frequency noise (at the
lowest frequencies sampled) and a fit with a shifted parabola
c2l

2 + c0. The best fit was found at c2 = 0.06 ± 0.01 and c0 =
3.37 ± 0.34. A quadratic scaling of noise with lopsidedness is
obvious from the inset in Fig. 9.

According to Redfield theory of relaxation, the trans-
verse relaxation is a result of two processes, adiabatic and
nonadiabatic [12,26]. The energy conserving adiabatic part
arises by longitudinal noise and leads to dephasing. The
nonadiabatic part is due to the transverse noise and can induce
transitions. Tang et al. had observed that the completely
correlated longitudinal noise results in relaxation rates that
vary quadratically with the coherence order [27]. In our system,
the coherence order is characterized by lopsidedness. Thus the
quadratic dependence of spectral density with lopsidedness
points out that the noise is predominantly correlated, i.e.,
noise affects all the spins identically. The background part
in the scaling (c0) is due remaining contributions including the
nonadiabatic relaxation and the self-relaxation of the probe
qubit (31P).

It can be noted that similar studies of scaling of decoherence
were earlier reported in a solid-state NMR system by Krojanski
et al. [28].

An immediate application of extracting the noise spectrum
is in evaluating the performances of various types of DD
sequences and selecting the optimum sequence for preserving
quantum coherences. Uhrig dynamical decoupling (UDD)
[29], for example, involves a nonuniform distribution of π

pulses placed at time instants

tj = τc sin2

(
πj

2Nπ + 2

)
, (17)

where Nπ is the total number of π pulses in one period (τc), also
known as the order of the UDD sequence (denoted UDD-Nπ ).
It can be easily seen that UDD-1 and UDD-2 are identical to a
CPMG sequence.

Having the functional form of the noise spectral density
we can now predict the relative decay rates of a quantum
state under a given DD sequence. As an example, the band in
Fig. 10 shows the predicated decay rates of the NOON state
(spectral density shown in Fig. 9) under the UDD-3 sequence
for a range of τc values. The corresponding experimental
decay rates are shown by dots. The reasonable agreement
between experimental and predicted values of decay rates
demonstrates the benefit of extracting the spectral distribution
of noise. Similar results were obtained in the case of other
MSSM states. It should be noted that imperfections in the π

pulses such as finite duration, sensitivity to rf inhomogeneity
over the sample volume, and calibration errors may introduce
additional uncertainties in the noise-spectrum estimation and
may affect DD performance as well.

IV. CONCLUSIONS

While we are entering the era of quantum devices, noise
remains a hurdle in storing quantum superpositions. Exploiting

FIG. 10. Decay rates vs UDD-3 cycle duration τc calculated using
Eq. (7) for the experimental noise spectrum of a 10-qubit NOON state.
The dots correspond to experimental results.

decoherence-free subspaces (DFSs) is one of the convenient
ways to preserve quantum coherences. DFS is already be-
ing used for storing hyperpolarization [30], studying slow
molecular dynamics [31], characterizing molecular diffusion
[32,33], precise measurements of coupling constants [34], as
well as in fault-tolerant quantum computing [35]. However,
the noises influencing such special quantum coherences have
not been hitherto characterized experimentally. In this work
we have experimentally characterized and compared noise
spectral densities of various multiqubit coherences.

We found that the noise spectrum of the long-lived singlet
state (LLS) under spin lock of a homonuclear spin pair had
the lowest profile, indicating the strong protection offered by
the symmetry in DFS resulting in long-livedness of the state.
The long-lived coherence (LLC) between a singlet and the
zero-quantum triplet had a higher noise profile, but still lower
than the normal uncorrelated (single-spin) coherence. We have
also measured the extent of noise in LLS under different
field strengths and, as expected, we found a higher noise
with a stronger field, although the overall spectral features
remained similar. On the other hand, the uncorrelated spins
showed a lower noise content compared to singlet states in a
heteronuclear spin system, indicating an asymmetry in the
system. Further, we have also explored the noise profiles
of various higher-order coherences in a 10-spin system, and
found a predominantly quadratic scaling of noise with respect
to coherence order. Finally, using the noise spectrum of the
NOON state, we predicted its decay rates under a third-order
Uhrig dynamical decoupling sequence and verified the same
with experiments.

We believe that such studies are useful for understanding
the physics of noise affecting quantum systems as well as to
design ways to suppress decoherence. A better understanding
of noise and its suppression will be crucial not only for the
physical realization of quantum devices but also for general
spectroscopic applications.
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