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Exact zeros of entanglement for arbitrary rank-two mixtures derived
from a geometric view of the zero polytope
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Here I present a method for how intersections of a certain density matrix of rank 2 with the zero polytope
can be calculated exactly. This is a purely geometrical procedure which thereby is applicable to obtaining the
zeros of SL- and SU-invariant entanglement measures of arbitrary polynomial degree. I explain this method in
detail for a recently unsolved problem. In particular, I show how a three-dimensional view, namely, in terms
of the Bloch-sphere analogy, solves this problem immediately. To this end, I determine the zero polytope of
the three-tangle, which is an exact result up to computer accuracy, and calculate upper bounds to its convex
roof which are below the linearized upper bound. The zeros of the three-tangle (in this case) induced by
the zero polytope (zero simplex) are exact values. I apply this procedure to a superposition of the four-qubit
Greenberger-Horne-Zeilinger and W state. It can, however, be applied to every case one has under consideration,
including an arbitrary polynomial convex-roof measure of entanglement and for arbitrary local dimension.
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I. INTRODUCTION

Entanglement is one of the key features of quantum
mechanics that is omnipresent in mutually interacting systems.
Measures of entanglement are minimally invariant under
local unitaries [1]. This invariance emerges when dealing
with the concept of local operations combined with classical
communication (LOCC). It has, however, soon been realized
that this invariance group has to be extended to the special
linear group [2–4] since in general stochastic local operations
combined with classical communication (SLOCC) have to be
included. Thus, a state |ψ〉 is said to be equivalent to the state
|ψ ′〉 := (A1 ⊗ · · · ⊗ Aq)|ψ〉 for Ai ∈ SL(di), and for each
SL-invariant measure τ of entanglement we have τ (|ψ〉) =
τ (|ψ ′〉). Every such SL-invariant entanglement measure can
be decomposed into polynomial measures of entanglement of
homogeneous degree.

The entanglement content of a mixed state is represented
by the convex-roof expression of the entanglement measure
of interest [1]. Whereas it is more easy to write the convex
roof down than to really calculate it, it has shown to be an
exactly solvable task for measures, which are SL-invariant
homogeneous polynomials of rank 2, as the concurrence [5,6],
respectively, convex functions of them. In this simple case, the
optimal decomposition has a continuous degeneracy, which is
a key ingredient to the exact solution. However, already if the
homogeneous degree is four, this degeneracy is lost in general
and one is left with a typically unique solution in terms of
normalized states, not considering global phases and permu-
tations of the states. It has therefore become one of the central
problems in modern physics to “tame” the convex roof [7].
First steps into this direction have been taken in [8–10] where
lower bounds for rank-2 density matrices have been addressed
with some thoughts about the more general case [10]. In some
specific cases this lower bound coincides with the convex-roof
solution. With these solutions, certain particular cases for
rank-3 density matrices [11] and even higher rank [12],
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which are all constructions out of separable states, have
followed.

The convexified minimal characteristic curve [8–10] of the
entanglement measure under consideration has been singled
out as a lower bound to any possible decomposition of ρ. This
has been advanced to calculate lower bounds to the three-tangle
of density matrices with general rank [13–15], a lower bound
which was shown to be sharp for the class of states with the
symmetry of the Greenberger-Horne-Zeilinger (GHZ) state,
termed GHZ symmetry. This technique for obtaining lower
bounds has served later for demonstrating bound entanglement
with positive partial transpose for qutrit states [16].

In the meantime several algorithms providing upper bounds
emerged [17–19], where [19] is departing from the solution
for the zero polytope for rank-2 density matrices. However,
also applications of the original method provided in [8–10]
are still challenging [20,21]. In their recent contribution, Jung
and Park [21] have tempted to test the monogamy relations
of Coffman, Kundu, and Wootters (CKW) [22] and for the
negativity [23,24] towards possible extended versions [25–28].
They succeeded for the negativity, however they encountered
problems for the Coffman-Kundu-Wootters monogamy, which
they highlighted using a toy example in their appendix. The
main difference to the case depicted in [8] was that no three
zeros of the three-tangle coincided for a given probability
p ∈ [0,1]. Hence their characteristic curves had zeros at three
different probabilities. There, the case of noncoinciding zeros
of the characteristic curves was posed as an open problem.

We first focus on their toy example since it shows (1)
how using C3 := √|τ3| instead of |τ3| can help in calculating
meaningful upper bounds of its convex roof and (2) the impact
noncoinciding roots have on the three-tangle of the state under
consideration. The intervals where the mixed three-tangle is
zero can be obtained in a simple geometrical way: they are
numerically exact results.

This work is outlined as follows. In the next section, I briefly
focus on the method and give as an example the three-tangle
as SL-invariant homogeneous polynomial of degree 4 with
reference to [21]. Next, I apply this method to the toy example
of [21] in Sec. IV and come to some general states in Sec. V. I
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briefly comment on extended monogamy relations in Sec. VI
before making concluding remarks in Sec. VII.

II. PRELIMINARIES

Measures of entanglement are minimally invariant under
local unitaries

∏q;⊗
i=1 SU(di)[1] where q is the number of

local objects of dimension di , i = 1, . . . ,q which are being
considered. Hence, all states |ψ ′〉 := (U1 ⊗ · · · ⊗ Uq)|ψ〉 with
Ui ∈ SU(di) are considered equivalent. An SU-invariant mea-
sure of entanglement M satisfies

M(|ψ ′〉) = M(|ψ〉). (1)

This invariance is connected to LOCC. It has, however, been
realized that this invariance group has to be extended to the spe-
cial linear version

∏q;⊗
i=1 SL(di)[2–4] since in general SLOCC

must be considered. There, a state |ψ〉 is said to be equivalent
to the state |ψ ′〉 := (A1 ⊗ · · · ⊗ Aq)|ψ〉 for Ai ∈ SL(di), and
for each SL-invariant measure τ of entanglement holds

τ (|ψ〉) = τ (|ψ ′〉). (2)

Every SL-invariant entanglement measure can be decomposed
into polynomial measures of entanglement of homogeneous
degree. I will for brevity write τ (ψ) for τ (|ψ〉).

It is, however, remarked that the entanglement content in
the state is nevertheless modified in that the modulus 〈ψ |ψ〉
is modified in general by SL operations in contrast to the SU
invariance.

I will consider C3 := √|τ3| as entanglement measures,
where the three-tangle |τ3| has been defined as [22] (see also
[29–31])

τ3 = d1 − 2d2 + 4d3,

d1 = ψ2
000ψ

2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

100ψ
2
011,

d2 = ψ000ψ111ψ011ψ100 + ψ000ψ111ψ101ψ010

+ψ000ψ111ψ110ψ001 + ψ011ψ100ψ101ψ010

+ψ011ψ100ψ110ψ001 + ψ101ψ010ψ110ψ001,

d3 = ψ000ψ110ψ101ψ011 + ψ111ψ001ψ010ψ100

and coincides with the three-qubit hyperdeterminant [32,33].
It is the only continuous SL invariant here, meaning that every
other such SL invariant for three qubits can be expressed as
a function of τ3.

III. GEOMETRIC VIEW OF THE ZERO POLYTOPE

For rank-2 density matrices ρ, the states in the range of ρ

can be written as

|ψ(z)〉 := |ψ1〉 + z|ψ2〉, (3)

with eigenstates |ψi〉 of ρ, and z ∈ C [10]. An entanglement
measure τ vanishes precisely on the polytope with the
states |ψ(z0)〉 as vertices, where z0 ∈ C satisfies the equation
τ (ψ(z0)) = 0; this object is called the zero polytope [8,10]
(see also [20]). One can hence check what triangle between
vertices of the zero polytope has an intersection with the line
connecting |ψ1〉 with |ψ2〉 at some p0;i for i ∈ I. The values
plow = mini∈I p0;i and phigh = maxi∈I p0;i is the interval
where ρ(p) := p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2| is zero. I have

plow

phigh

|ψ1

|ψ2

|Z1

|Z2

|Z3

|Z4

FIG. 1. An example for a (homogeneous) polynomial SL-
invariant τ for a density matrix of rank 2; ρ(p) = p|ψ1〉〈ψ1| + (1 − p)
|ψ2〉〈ψ2| is drawn in the Bloch sphere picture. The polynomial
invariant has the four solutions |Zi〉 for i ∈ {1, . . . ,4} defining the zero
polytope. The intersection of this polytope with the line connecting
|ψ1〉 and |ψ2〉 leads to an interval [plow,phigh] of vanishing τ [ρ(p)].
When this intersection is empty, this means that ρ(p) is always
entangled as measured by τ .

used here a part of the algorithm described in [19] [see Eqs. (10)
and (11) therein]. This procedure is illustrated in Fig. 1 where
I give an example for a polynomial of (homogeneous) degree
4 on the Bloch sphere.

For density matrices of higher rank R, the states in the range
of ρ can be written as

|ψ(z1, . . . ,zR−1)〉 := |ψ1〉 + z1|ψ2〉 + · · · + zR−1|ψR〉, (4)

and the zero polytope turns into the convexification of
the zero manifold made out of all the solutions of
τ [ψ(z0;1, . . . ,z0;R−1)] = 0.

IV. THE TOY EXAMPLE RAISED BY JUNG AND PARK

To show this method at work, I choose the toy example out
of the appendix of [21].

A. The geometric view

We define the n-qubit GHZ and W states as

|GHZn〉 = 1√
2

(|00 . . . 0〉 + |11 . . . 1〉), (5)

|Wn〉 = 1√
3

(|0 . . . 01〉 + |0 . . . 10〉 + · · · + |10 . . . 0〉) (6)

where we consider the three-qubit example first,

|GHZ3〉 = 1√
2

(|000〉 + |111〉), (7)

|W3〉 = 1√
3

(|001〉 + |010〉 + |100〉), (8)

062333-2



EXACT ZEROS OF ENTANGLEMENT FOR ARBITRARY . . . PHYSICAL REVIEW A 94, 062333 (2016)

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

C
3

π
0
+/-1.86487

FIG. 2. I show here the four characteristic curves for C3 which
become zero: two single real zeros at p ≈ 0.01636 (solid orange
curve) and p = 0.5 (dashed blue curve) corresponding to an angle
ϕ = π and 0, respectively, and the two coinciding curves which are
zero at p ≈ 0.7418 (dash-dash-dotted red curve). The latter curve
corresponds to two complex conjugate solutions z0. Both curves are
for the angle ϕ = ±1.8649 = arg(z0) as shown in the legend. The
angles of z for the different curves are shown in the legend.

and the density matrix

ρ(p) = p|ψ+〉〈ψ+| + (1 − p)|ψ−〉〈ψ−|, (9)

where

|ψ±〉 = 1√
2

(|GHZ3〉 ± |W3〉). (10)

These states satisfy the orthogonality condition 〈ψ+|ψ−〉 = 0.
In order to calculate or estimate the three-tangle in ρ(p), we
have to consider the characteristic curves [8,10], hence

C3(p,ϕ) := C3[Z(p,ϕ)] (11)

for the states

|Z(p,ϕ)〉 := √
p|ψ+〉 − eiϕ

√
1 − p|ψ−〉. (12)

Some of them are shown in Fig. 2 (more can be found in [21]).
It is hence useful to look for solutions z0 to the equation

τ3(|ψ+〉 − z|ψ−〉) = 0. (13)

The zeros z0;j , j = 1, . . . ,2n with n ∈ IN, describe the vertices
of a zero polytope, which becomes a three-dimensional zero
simplex in this case. I want to emphasize that the zero simplex
is an exact result and therefore the values p of ρ(p) which are
lying inside the zero simplex are the only values for which the
convex roof of ρ(p) vanishes. Hence, it is also clear that the
complement is made out of states with nonzero convex roof.
The zeros of Eq. (13) are

z0 = (z0;1,z0;2,z0,3,z0,4) (14)

≈ (1,−7.7543,0.5899e1.8649i ,0.5899e−1.8649i).

(15)

I want to emphasize that although the values for the zeros
are exact, they are nevertheless approximated here since it is
cumbersome to write them down analytically; in addition, I do
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FIG. 3. An upper bound to the convex roof is shown for ρ(p)
(orange line). It is piecewise linearly interpolating between (p,C3) =
(0,

√
8
√

6 − 9/6), (0.11423,0), (0.69289,0), and (1,
√

8
√

6 + 9/6).
The intersection of ρ(p) with the zero simplex of the three-tangle
is an exact result, whereas the linear extrapolation is certainly an

upper bound to Ĉ3 = √̂|τ3|; it results from a superposition of the
corresponding pure state and the density matrix with zero three-tangle
closest to it. Therefore the density matrix would be decomposed
into three states for 0 < p < 0.114230 and into four states for
0.692885 < p < 1. The characteristic curves are the gray curves
in the background; they serve in order to demonstrate how the
intersection with the zero simplex, due to its convexity, leads to a
shrinking of the region where Ĉ3[ρ(p)] = 0.

not attribute to the knowledge of the exact values any further
insight. With p0 = p(z0) = 1/(1 + |z0|2), hence

p0 = (p0;1,p0;2,p0;3,p0;4)

≈ (1/2,0.01636,0.74182,0.74182), (16)

the values p0z0 are those to be convexly combined to zero
[19,20]. The result is that for p ∈ [0.11423,0.69289] the
convex roof of the three-tangle is zero. The decomposition
of ρ(p) in p = 0.11423 is given by |Z(p0;1,0)〉 with weight
0.202362 and |Z(p0;2,π )〉 with weight 0.797638; at p =
0.692885 it is given by |Z(p0;1,0)〉 with weight 0.202362 and
the states |Z(p0;3 = p0;4, ± 1.86487)〉 with weights 0.398819
each. It is a curious coincidence that the weight of |Z(p0;1,0)〉
takes about the same value; they deviate only by 3×10−16.

An upper bound to the convex roof Ĉ3 is shown in Fig. 3
together with the characteristic (gray background) curves: the
upper bound to the convex roof is a piecewise straight (orange)
line. I will therefore call it the linearized upper bound.

B. Beyond linearization

The strong concavity of the characteristic curves around
their zeros, together with the fact that the plotted characteristic
curves close to their zeros are a lower bound to other
characteristic curves, tells that whatever decomposition vector
of the density matrix one will take it will yield a concave
result at least in the vicinity of the zero simplex. This modifies
close to p = 0 or 1 where it is rather likely that a piecewise
convex curve might be obtained, in particular in the interval
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FIG. 4. Here, I show results for some particular decompositions
of ρ(p) (see text for details). The characteristic curve with a single
zero at p = 0.01636, corresponding to an angle ϕ = π , initially is
strictly convex. Therefore those decompositions containing a state
|Z(q,π )〉 will be also strictly convex close to the points p = 0,1.
That this is indeed the case also for p close to 1 is shown by the red
dashed curves, which come to lie below the upper linearized bound
(thin black line). The corresponding new lower bound is the thick
orange line.

[0,0.11423] where one of the characteristic curves is strongly
convexly decreasing with a zero at p ≈ 0.01636. I therefore
try for a slightly different decomposition here in order to check
whether the convexity of this characteristic curve might lead to
a curve which somewhere lies below the straight line. I chose
to decompose the matrix ρ(p) into two states, namely, into the
state |Z(p0;1,0)〉 and the corresponding state |Z(q(p,p0;1),π )〉
with q(p,p0;1) in the interval given by p and p0;1 such that the
line connecting the states |Z(p0;1,0)〉 and |Z(q(p,p0;1),π )〉 on
the Bloch sphere hits the point on the z axis corresponding
to ρ(p). A further decomposition I examined is the equal
mixture of the two states |Z(p0;3 = p0;4, ± 1.86487)〉 with
|Z(q(p,p0;1),0)〉 such that the line interconnecting the two
states is again passing through ρ(p). The result is shown as
red dashed lines in Fig. 4. Some of them are lying below the
straight line, demonstrating that a better upper bound than
the linearized one is obtained for the convex roof Ĉ3. It is
linear close to the borders of the interval [0.11423,0.692885]
up to pr = 0.8240 and down to pl = 0.04395, showing that
the decomposition is made of convex decompositions of
the two states |Z(p0;3 = p0;4, ± 1.86487)〉 and a third state
|Z(q(pl/r ,p0;1),0)〉 (see [8,10]). Beyond, it is strictly convex,
telling that the decomposition is here made of the two states
|Z(p0;3 = p0;4, ± 1.86487)〉 and the state |Z(q(p,p0;1),0)〉,
which depends on p.

This procedure will be repeated for the general rank-2 case
in the next section. It can be applied for general rank-2 density
matrices and, using the results of [19], also for obtaining useful
upper bounds for general rank. It is a purely geometric method
and, therefore, it is not restricted to qubits.

V. THE INTERESTING CASE

In order to demonstrate how the combined method of the
geometric view on the zero polytope with generalized de-
compositions eventually going beyond the linearized method
of [19] works for the general case, we present the slightly
modified example from [21].

A. The geometric view

Thus, we turn to the more general example where the pure
state

|�4(p,ϕ)〉 := √
p |GHZ4〉 −

√
1 − peiϕ |W4〉 (17)

of four qubits was given [21]. It is a permutation invariant state
whose three-qubit density matrices, for their permutational
symmetries, all have the same form

ρ3(p,ϕ) = q(p)|ψ1(p,ϕ)〉〈ψ1(p,ϕ)|
+ [1 − q(p)]|ψ2(p,ϕ)〉〈ψ2(p,ϕ)| (18)

with q(p) = 2+
√

1−p2

4 and

ψ1(p,ϕ) = f1(p)eiϕ|111〉 + g1(p)|000〉 + h1(p)e−iϕ |W3〉,
(19)

ψ2(p,ϕ) = f2(p)eiϕ|111〉 + g2(p)|000〉 + h2(p)e−iϕ |W3〉.
(20)

Here, the functions are defined as

f1(p) :=
√

2

(1 + p)(3 − p) + (3 + p)
√

1 − p2
p, (21)

g1(p) :=
√√√√p

4
√

1 − p2 − 3p + 5

(3 + p)
√

1 − p2 + (1 + p)(3 − p)
, (22)

h1(p) :=
√

3p(1 − p)

(1 + p)2 − (1 − p)
√

1 − p2
, (23)

f2(p) :=
√

2

(1 + p)(3 − p) − (3 + p)
√

1 − p2
p, (24)

g2(p) :=
√√√√p

4
√

1 − p2 + 3p − 5

(3 + p)
√

1 − p2 − (1 + p)(3 − p)
,

sign (3 − 5p) (25)

h2(p) := −
√

3p(1 − p)

(1 + p)2 + (1 − p)
√

1 − p2
. (26)

The three-tangle is a periodic function of ϕ with period π/2,
because of the four-qubit permutation symmetry of the state.
We show the results of the algorithm from [19], which except
the default linearization gives an exact result for the zeros, in
Fig. 5. It is an upper bound to Ĉ3.

B. Beyond linearization

In order to test whether it is possible also here to come below
the linearized upper bound, I checked the zeros of Eq. (13) and
the particular decompositions I have described in detail in the
last section.
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FIG. 5. The upper bound for Ĉ3 where one linearizes between
the values for the states |ψi(p,ϕ)〉 and the corresponding extreme
intersection points p0:i , for i = 1,2, of the line represented by ρ(p)
and the zero simplex.

In [0.722074,1], there are four real solutions. For the
remaining values of p, there are two complex conjugate
solutions besides two which stay real. One decomposition
for which the three-tangle vanishes is always made from real
solutions here, whereas the other one is made out of three
pure states: one corresponding to a real solution and the two
complex conjugate solutions. The zero simplex is varying its
dimension as shown in Fig. 6 for ϕ = 0 and π/4, respectively.
It is becoming zero twice for ϕ = 0: a single point, where the
line spanned by the complex conjugate values with nonzero
imaginary part crosses the corresponding line between the two
other real values, and there is a whole interval [0.722074,1] for
p where the zero simplex is two dimensional. There, four real
solutions appear. This feature, however, is not stable against
small perturbations in ϕ.

The single zero disappears for ϕ � 0.5236 with the zero
simplex being everywhere three dimensional (except at the
boundaries), in particular for ϕ = π/4. This is indicated
in Fig. 7.

An upper bound to the three-tangle Ĉ3 is shown in Fig. 8 for
ϕ = 0 in the linearized version and the procedure described
in Sec. IV B (see also the discussion of Fig. 4 in the text).
It is seen that both basically coincide close to the zeros but
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FIG. 6. The volume of the zero simplex for two values of ϕ = 0
(left panel) and π/4 (right panel). For ϕ = 0 the volume grows to
a finite value for diminishing again unless it is crossing with zero
volume (staying, however, two-dimensional) to grow again up to a
value of p = 0.722074 where it again becomes two dimensional up
to p = 1. Here, the imaginary part of the two corresponding solutions
is zero and we have again four real values. This passage through zero
in between is missing for ϕ = π/4; in particular the zero simplex is
always three dimensional for p ∈ (0,1).

FIG. 7. A three-dimensional plot of the zero-simplex dimension.

they deviate considerably in between. This is not the case for
ϕ = π/4, where both curves coincide (not shown here).

VI. EXTENDED MONOGAMY

It is clear that the residual tangle is not measured in general
by an SL-invariant quantity [34]. Therefore it makes little
sense to subtract an SL-invariant quantity from the residual
tangle, which has no SL-invariance. When nevertheless doing
so, one recognizes that the monogamy cannot be extended with

the usual three-tangle |̂τ3| or even its square root
√̂|τ3|

2
= Ĉ3

2

[25–27]. The ultimate possibility would be 4̂
√|τ3|

4
, which could

not be excluded for pure states of four qubits [35]. This does
not mean that it will not be excluded for some n-qubit pure state
with n > 4. This question has to be answered in future work.
As far as the extended monogamy relations are concerned, the
states already satisfy it if one is considering Ĉ3

2
as a measure

for the three-tangle. This can be seen in Fig. 9 taking the
linearized upper bound for Ĉ3

2
; it therefore provides a lower
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FIG. 8. Two upper bounds for Ĉ3 for ϕ = 0 as a function of p.
Besides the linearized version from [19] (upper blue curve) also the
one coming out of the procedure described here (see discussion of
Fig. 4) is shown (orange lower curve). This curve is well approximated
with the straight black dash-dotted line in the figure. It can be seen,
however, that the convex roof lies at least slightly below the straight
line.
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FIG. 9. The extended residual tangle [25–27,35] using Ĉ3
2

as the

measure for the three-tangle. I do not show the outcome for
√̂

C3

4
,

since it is smaller than Ĉ3
2

[20] and accordingly the residual tangle
is bigger.

bound for the residual “four-tangle”. It is ranging from zero
(for the W states) to one (for the GHZ states).

VII. CONCLUSIONS

I have presented a method for how intersections of a
certain density matrix of rank 2 with the zero polytope can be
calculated exactly. This is an exact solution to every problem

of noncoinciding zeros of the zero polytope, as inserted in the
algorithm of [19]. I have exemplified this method on an open
problem recently raised by Jung and Park [21]. I have described
in detail for the toy example of [21] how the simplest linearized
version of an upper bound can be obtained, and how one can go
beyond it. To this end, I calculate a meaningful upper bound
of the three-tangle C3 = √|τ3| for their toy example which
is better than the linear interpolation in [19]. As a proof of
principles, I apply this formalism further to the general case of
superpositions of four-particle GHZ and W states, calculating
the linearized form for the upper bound together with the
extended version for C3. As a byproduct I briefly comment
on the extended CKW monogamy and provide a graph also
for a generalized four-tangle. I want to mention that the cal-
culation of the three-tangle of ρ = p|GHZ4〉〈GHZ4| + (1 −
p)|W4〉〈W4| is trivially zero for each three-qubit subsystem.

As a purely geometrical procedure the findings of this
work are applicable to obtaining the zeros of general SL-
and also of arbitrary SU-invariant polynomial entanglement
measures with bidegree (d1,d2) [36,37]; this holds as well for
the procedure of going beyond the linear interpolation. They
are also applicable to qudits. The same line of thought can be
adopted for arbitrary rank density matrices [19].
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