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We consider the problem of optimally identifying the state of a probe qudit, prepared with given prior probability
in a pure state belonging to a finite set of possible states which together span a D-dimensional subspace of the
d-dimensional Hilbert space the qudit is defined in. It is assumed that we do not know some or all of the states
in the set, but for each unknown state we are given a reference qudit into which this state is encoded. We show
that from the measurement for optimal state identification with d = D one can readily determine the optimal
figure of merit for qudits with d > D, without solving a new optimization problem. This result is applied to
the minimum-error identification and to the optimal unambiguous identification of two qudit states with d � 2,
where either one or both of the states are unknown, and also to the optimal unambiguous identification of N

equiprobable linearly independent unknown pure qudit states with d � N . In all cases the optimal figure of merit,
averaged over the unknown states, increases with growing dimensionality d of the qudits.
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I. INTRODUCTION

In quantum state identification [1–14] the task is to identify
the state of a quantum system, prepared with certain prior
probability in a definite state out of a finite set of possible
states, where some or all of the states are unknown. The
unknown states are encoded into different reference copies,
which together have been introduced as the program register
in a programmable machine [1] for identifying the state of
the probe, carrying the data. We assume that the states to
be identified are qudits, defined in a d-dimensional Hilbert
space. Identifying an unknown probe state means to find the
particular reference copy whose state matches the state of
the probe. For this purpose a measurement for quantum state
discrimination [15–17] has to be performed on the combined
system, composed of the probe qudit and the reference qudits,
where due to the averaging with respect to the unknown states
the combined system is described by a mixed state. Because
of the specific symmetry properties inherent in the different
states of the combined system, they can be discriminated in
spite of the complete lack of knowledge about the unknown
states.

In general the states of the combined system are not
orthogonal, which implies that their discrimination and hence
the identification of the state of the probe cannot be perfect.
For discriminating nonorthogonal states a number of optimal
strategies have been developed, which are optimized with
respect to various figures of merits. The best known of these
strategies are discrimination with minimum error [18,19],
where every time a measurement is performed a decision
about the state is made, and optimal unambiguous discrim-
ination [20–23], where errors are not allowed, at the expense
of admitting inconclusive results the probability of which is
minimized.

The problem of quantum state identification has been
first introduced for the optimal unambiguous identification
of two unknown pure qubit states [1]. The investigations
have been soon extended to minimum-error identification [2],
and generalizations have been also performed to take into
account that more than one copy may be available for the
probe system and the two reference systems [2–9], including

the case that the two unknown states are mixed [7]. For two
unknown pure qudit states with Hilbert space dimension d �2,
minimum-error identification has been studied for arbitrary
prior probabilities of the states [3], while the maximum overall
success probability for unambiguous identification has been
obtained in the case when the states are equally probable [3,4].
A variant of the state identification problem, where for d = 2
one of the two pure states is known and the other is unknown,
has also been studied [5]. In addition, for two unknown qubit
states the case where some classical knowledge is available
has been treated [10,11], and a modified identification strategy
with a fixed error rate has been investigated [12].

Only very few results have been obtained so far for
optimal state identification with more than two unknown
states. For d linearly independent unknown pure qudit states
a strategy yielding the worst-case success probability for the
unambiguous identification without knowledge of the prior
probabilities of the states has been studied [13]. Supposing that
these states have equal prior probabilities, the measurement
for their optimal unambiguous identification, yielding the
maximum overall success probability, has been derived in our
earlier paper [14].

In the present paper we address the question as to how the
optimal figure of merit for qudit state identification depends
on the qudit dimensionality d. We assume that we know
the prior probabilities of the states in the given set but that
some or all of them are unknown to us. Supposing that the
possible qudit states span a D-dimensional Hilbert space, we
show in Sec. II that from an optimal measurement for state
identification with d = D one can readily obtain the optimal
figure of merit for qudits with d > D, without solving a new
optimization problem, that is without explicitly determining
the optimal operators characterizing the measurement for
d > D. In Sec. III we apply this result to the minimum-error
identification and to the optimal unambiguous identification
of two qudit states with d � 2, occurring with arbitrary
prior probabilities, where either one or both of the states are
unknown, and also to the optimal unambiguous identification
of N equiprobable linearly independent unknown pure qudit
states with d � N . The paper is concluded in Sec. IV.
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II. GENERAL THEORY

A. Formulation of the problem

Our task is to identify the state of a d-dimensional
quantum system, the probe qudit, which is prepared with
given prior probabilities η1, . . . ,ηN ′ in one of N ′ pure states
|ψ1〉, . . . ,|ψN 〉, . . . ,|ψN ′ 〉. The N states |ψ1〉, . . . ,|ψN 〉 are
unknown to us, but instead we possess N reference systems of
the same kind as the probe, into which the N unknown states
are encoded. Our total quantum system thus consists of one
probe qudit, labeled by the index zero, and N reference qudits,
labeled by the indices 1, . . . ,N . Let the probe qudit be in the
state |ψn〉0. If all possible states were known, the combined
(N + 1)-qudit system would be described by the state vector
|�n〉 with

|�n〉 = |ψn〉0|ψ1〉1 . . . |ψN 〉N (n = 1, . . . ,N, . . . ,N ′),

(2.1)

where the tensor-product signs have been omitted. Since the
states |ψ1〉, . . . ,|ψN 〉 are unknown, the average has to be taken
with respect to these states. After a suitable parametrization,
the averaging procedure amounts to multiple integrations in the
parameter space �(d) corresponding to the N unknown qudit
states. Hence the possible states of the combined quantum
system are described by the density operators

ρ(d)
n =

∫
d�(d)|�n〉〈�n| with d�(d) = d�

(d)
1 . . . d�

(d)
N

(2.2)

for n = 1, . . . ,N ′. Here d�
(d)
j refers to the parameter space

of an unknown qudit state |ψj 〉 and we suppose the nor-
malization condition

∫
d�

(d)
j × 1 = 1. The qudit states can

be expanded as |ψj 〉 = ∑d−1
i=0 cji |i〉 where {|i〉} denotes an

arbitrary orthonormal basis. The unknown states are assumed
to be independently and randomly chosen from their state
space, that is the d complex expansion coefficients cji are
uniformly distributed under the constraint

∑d−1
i=0 |cji |2 = 1,

where the distribution does not depend on the choice of the
basis. In particular, this means that

∫
d�

(d)
j |ψj 〉l〈ψj |l = I

(d)
l

d
with I

(d)
l =

d−1∑
i=0

|i〉l〈i|l . (2.3)

From Eqs. (2.1) and (2.2) we obtain in analogy to Ref. [14]

ρ(d)
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

(d + 1)dN
P

sym(d)
0,n

N⊗
l=1
l �=n

I
(d)
l if 1 � n � N,

1

dN
|ψn〉0〈ψn|0

N⊗
l=1

I
(d)
l if N < n � N ′.

(2.4)

Here the first line refers to the case that the probe state |ψn〉0 is
unknown, while the second line applies when |ψn〉0 is known
and therefore does not need to be encoded into a reference
copy. P

sym(d)
0,n is the projector onto the symmetric subspace of

the two d-dimensional Hilbert spaces belonging to the probe
qudit and to the nth reference qudit, respectively. It has the

rank d(d + 1)/2 and can be represented as [14]

P
sym(d)
0,n =

d−1∑
i=0

|i〉0|i〉n〈i|0〈i|n

+
d−1∑
j=1

j−1∑
i=0

|i〉0|j 〉n + |j 〉0|i〉n√
2

〈i|0〈j |n + 〈j |0〈i|n√
2

,

(2.5)

where the orthonormal basis states |0〉, . . . ,|d − 1〉 are arbi-
trary. For later use we note that∫

d�
(d)
j |ψj 〉0|ψj 〉n〈ψj |0〈ψj |n = 2

d(d + 1)
P

sym(d)
0,n , (2.6)

as becomes obvious from the first line of Eq. (2.4) together
with Eqs. (2.1)–(2.3).

In order to identify the state of the probe qudit we have
to discriminate between the N ′ nonorthogonal mixed states
of our combined quantum system, given by Eq. (2.2) or,
equivalently, by Eq. (2.4). A measurement discriminating
between N ′ states is in general described by N ′ + 1 positive
detection operators �0,�1, . . . ,�N ′ , where Tr(ρn�0) yields
the probability that the result obtained in the presence of
the nth state is inconclusive, while Tr(ρn�n) and Tr(ρn�m)
with m �= 0,n are the probabilities for obtaining a correct and
erroneous result, respectively [15–17]. The detection operators
fulfill the completeness relation

�0 +
N ′∑

n=1

�n = I =
N⊗

l=0

I
(d)
l =

N∑
l=0

d−1∑
i=0

|i〉l〈i|l , (2.7)

where I is the identity operator in the dN+1-dimensional
Hilbert space H belonging to our combined quantum system,
composed of the probe qudit and the N reference qudits.
Since the prior probabilities of the possible states obey the
relation

∑N ′
n=1 ηn = 1, the overall probability Pc of correctly

identifying the state of the probe qudit is given by

Pc =
N ′∑

n=1

ηnTr
(
ρ(d)

n �n

)
. (2.8)

In this paper it is our aim to find the maximum value of
Pc, subject to the constraints imposed by the two best-known
optimal strategies [15–17] for discriminating the states ρ(d)

n . In
the strategy of minimum-error discrimination it is required that
inconclusive results do not occur, which leads to the constraint
�0 = 0. We then get PE = 1 − PC , where PE is the minimum
overall error probability and where we used the notation PC

for the maximum overall probability of correct discrimination,

P max
c = PC if �0 = I −

N ′∑
n=1

�n = 0. (2.9)

On the other hand, in the strategy of optimal unambiguous
discrimination errors do not occur. This can be achieved
probabilistically, at the expense of admitting a certain min-
imum probability QF that the measurement fails to give
a conclusive outcome. The absence of errors means that
Tr(ρn�m) = 0 for m �= n,0, which requires that ρn�m = 0,

due to the positivity of the operators ρn and �m. It follows that
QF = 1 − PS , where PS denotes the maximum probability
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that the measurement succeeds to give a conclusive result,
which in this strategy is always correct. Hence we arrive at the
maximum success probability

P max
c = PS if �0 � 0, ρn�m = 0 (m �= n), (2.10)

where m,n = 1, . . . ,N ′. The two different abbreviations cho-
sen for P max

c reflect the different constraints applied in the two
discrimination strategies.

B. Treatment for arbitrary qudit dimensionality d

Let D denote the dimensionality of the Hilbert space
jointly spanned by the N ′ pure states to be identified, where
D < N ′ for linearly dependent states, while D = N ′ when
the input states are linearly independent. Since D cannot be
larger than the dimensionality d of the qudits into which
the states are encoded, it follows that d � D. The operators
�n characterizing the optimal measurement for identifying
the states are obtained when the probability Pc given in
Eq. (2.8) is maximized, subject to the constraints imposed
by the specific measurement strategy, given in Eqs. (2.9)
or (2.10), respectively. The density operators occurring in
Eq. (2.8) are described by Eq. (2.4) and do not depend on the
unknown states, but solely rely on symmetry properties. The
determination of the optimal operators �n requires the solution
of an optimization problem in the full dN+1-dimensional
Hilbert space H.

In the following we show that for d > D the value of
the maximum probability P max

c can be also derived from
the solution of the corresponding optimization problem in
a Hilbert space with the reduced dimension DN+1, and we
investigate how this value depends on d when D is fixed. For
this purpose we define for each of our N + 1 qudits the Hilbert
space

H�
l = span{|ψ1〉l , . . . ,|ψN ′ 〉l} with dim{H�

l } = D,

(2.11)

where again l = 0 refers to the probe qudit and l = 1, . . . ,N

to the N reference qudits. H�
l is a D-dimensional subspace of

the d-dimensional Hilbert space belonging to the lth qudit. By
applying the Hilbert-Schmidt orthonormalization procedure
to the input states, we can construct an orthonormal basis
in H�

l . Numbering the input states in such a way that the
first D of them are linearly independent, we introduce the set
of D orthonormal basis states {|j 〉} with j = 0, . . . ,D − 1,

defined as

|0〉 = |ψ1〉, |1〉 = |ψ2〉 − |ψ1〉〈ψ1|ψ2〉√
1 − |〈ψ1|ψ2〉|2

, (2.12)

|j 〉 = 1√
Nj

(
|ψj+1〉 −

j−1∑
k=0

|k〉〈k|ψj+1〉
)

(2.13)

with Nj = 1 −
j−1∑
k=0

|〈ψj+1|k〉|2 = |〈ψj+1|j 〉|2, (2.14)

where the subscripts l have been omitted. Here the second
equality sign in Eq. (2.14) follows directly from Eq. (2.13).
Taking into account that with these basis states Eq. (2.11) can

be alternatively written as H�
l = span{|0〉l , . . . ,|D − 1〉l}, we

introduce the projector

P̂� =
N∑

l=0

D−1∑
j=0

|j 〉l 〈j |l , where P̂� |�n〉 = |�n〉. (2.15)

P̂� projects onto the DN+1-dimensional Hilbert space

H� = H�
0 ⊗ . . . ⊗ H�

N, (2.16)

which is a subspace of our total dN+1-dimensional Hilbert
space H. Equations (2.12)–(2.15) define the projector P̂�

for an arbitrary set of linearly independent input states
|ψ1〉, . . . ,|ψD〉. We suppose that these states include the
unknown states, which means that the projector P̂� itself is
also unknown. Since P̂� is constructed in such a way that the
right equality in Eq. (2.15) holds for arbitrary input states, no
matter whether they are known or unknown, it follows from
Eq. (2.2) that

Tr
(
ρ(d)

n �n

) =
∫

d�(d)〈�n|�n|�n〉 =
∫

d�(d)〈�n|��
n |�n〉,

(2.17)

where we introduced the operator

��
n = P̂��nP̂� with

N ′∑
n=0

��
n = P̂�. (2.18)

The overall probability of correctly identifying the state of the
probe qudit, given by Eq. (2.8), then takes the alternative form

Pc =
N ′∑

n=1

ηn

∫
d�(d)〈�n|��

n |�n〉. (2.19)

Equation (2.19) shows that we can obtain the maximum of Pc

by first determining the optimal operators ��
n (n = 1, . . . ,N ′),

that is by expressing these operators in terms of the states
|0〉, . . . ,|D − 1〉 which according to Eqs. (2.12) and (2.13)
depend on the input states, and by subsequently performing
the integrations with respect to the parameter spaces of the
unknown states. Since the optimal operators ��

n , yielding after
integration the maximum of Pc, act in the DN+1-dimensional
subspace H�, they have to maximize the overall probability
of getting a correct result given that the mixed state of the
combined system falls into this particular subspace. This
means that the optimal operators ��

n also maximize the overall
joint probability P �

c that the identification is correct and the
state of the combined system falls into H�,

P �
c =

N ′∑
n=1

ηnTr
(
ρ�

n ��
n

)
with ρ�

n = P̂�ρ(d)
n P̂�. (2.20)

It should be noted that Tr(ρ�
n ) < 1 for D < d, since Tr(ρ�

n )
describes the probability that the mixed state of the combined
system falls into the subspace H� when the probe qudit is
prepared in the nth state. The overall probability that the
combined state is confined to H� is given by

∑N ′
n=1 ηnTr(ρ�

n ).
We emphasize that P �

c differs from Pc unless H� is identical
with H, that is unless D = d.

The crucial point for determining ρ�
n is the fact that the

representation of ρ(d)
n , given by Eq. (2.4), holds true when
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an arbitrary d-dimensional basis is used in the Hilbert spaces
belonging to the individual qudits. Hence the d-dimensional
basis can always be chosen in such a way that the first D

basis states are given by Eqs. (2.12)–(2.14). The operators
ρ�

n = P̂�ρ(d)
n P̂� then take the explicit form

ρ�
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

(d + 1)dN
P

sym(�)
0,n

N⊗
l=1
l �=n

I
(�)
l if 1 � n � N,

1

dN
P̂� |ψn〉0〈ψn|0P̂�

N⊗
l=1

I
(�)
l if N < n � N ′,

(2.21)

where I
(�)
l and P

sym(�)
0,n are defined by Eqs. (2.3) and (2.5)

with d = D, and where the basis states occurring in these
expressions are given by Eqs. (2.12)–(2.14). The maximization
of P �

c , yielding the optimal operators ��
n , has to be performed

on the constraints imposed by the specific strategies used for
the optimal identification. For minimum-error identification
we have to require that

��
0 = P̂� −

N ′∑
n=1

��
n = 0, (2.22)

see Eq. (2.9), while for optimal unambiguous identification the
constraints

��
0 � 0, ρ�

n ��
m = 0 (m �= n, m,n = 1, . . . ,N ′)

(2.23)
have to be satisfied; see Eq. (2.10).

Equations (2.19)–(2.23) together with Eqs. (2.12)–(2.14)
are the main result of our paper. They reduce the original op-
timization problem, defined in the dN+1-dimensional Hilbert
spaceH, to an optimization problem in the DN+1-dimensional
subspace H� . The latter problem is mathematically equivalent
to the original problem with d = D, as becomes obvious from
Eqs. (2.20) and (2.8). After maximizing P �

c we arrive at the
optimal operators ��

n , given in terms of the basis states defined
by Eqs. (2.12)–(2.14). The final result is obtained when the
expressions for ��

n are substituted into Eq. (2.19) and the
integrations in the d-dimensional parameter spaces of the
unknown qudit states are carried out. A similar treatment can
be performed when instead of the overall probability of correct
results another figure of merit has to be optimized. Hence when
the possible qudit states span a D-dimensional Hilbert space,
from an optimal measurement for state identification with
d = D one can readily determine the optimal figure of merit
for qudits with d > D, without solving a new optimization
problem, and without explicitly determining the expressions
for the detection operators �n that describe the measurement
for optimal identification in the full dN+1-dimensional Hilbert
space H.

Before proceeding, let us summarize a few equations which
will be needed for performing the integrations in Eq. (2.19).
Omitting the subscript l, we find from Eq. (2.3) that∫

d�
(d)
j |〈0|ψj 〉|2 = 1

d
,

∫
d�(d)|〈ψ1|ψ2〉|2 = 1

d
,

(2.24)

where |0〉 is an arbitrary state that does not depend on
the unknown state |ψj 〉. Here the second equation follows

from the first since |ψ1〉 is independent of |ψ2〉. Similarly,
using Eqs. (2.5) and (2.6) and determining the expression
〈0|0〈0|nP sym(d)

0,n |0〉0|0〉n, we arrive at∫
d�

(d)
j |〈0|ψj 〉|4 = 2

d(d + 1)
. (2.25)

From Eqs. (2.12) and (2.13) it becomes obvious that for j �
D the input state |ψj 〉 lies in the subspace spanned by the
basis states |0〉, . . . ,|j − 1〉 and is therefore orthogonal to the
remaining basis states |j 〉, . . . ,|D − 1〉. Hence it follows that

〈ψj |k〉 = 0 if k � j. (2.26)

Moreover, since the states |0〉, . . . ,|j − 2〉 do not depend on
|ψj 〉, we obtain with the help of Eqs. (2.14) and (2.24) the
relation∫

d�
(d)
j |〈ψj |j − 1〉|2 = 1 −

j−2∑
k=0

∫
d�

(d)
j |〈ψj |k〉|2

= 1 − j − 1

d
(2.27)

for j = 1, . . . ,D, which holds on the condition that the states
|0〉, . . . ,|D − 1〉 are given by Eqs. (2.12) and (2.13).

A general remark is in order at this place. As follows from
Eq. (2.24), the average scalar product of two randomly chosen
qudit states decreases with growing dimensionality d of the
qudits. Hence when d increases, the qudit states get more and
more orthogonal on average. It is therefore to be expected that
the maximum probability of correct qudit-state identification
will also increase with growing dimensionality d. In our paper
we shall investigate this dependence quantitatively. Since
optimal pure-state identification involving unknown states
corresponds to the optimal discrimination of mixed states, it is
in general hard to find explicit solutions. In the next section we
use our method in order to study the optimal identification of
qudit states with d > D for those problems where the solution
in the case d = D has been already obtained previously.

III. APPLICATIONS

A. Minimum-error identification

First we consider the strategy of state identification with
minimum error. We apply Eqs. (2.19)–(2.22) and restrict
ourselves to the case where only two states are to be identified,
occurring with the prior probabilities η1 and η2 = 1 − η1,
respectively. Since ��

2 = P̂� − ��
1 the maximum probability

of correct results, P max
c = PC , is given by

PC = η2 −
∫

d�(d)
(
η2〈�2|��

1 |�2〉 − η1〈�1|��
1 |�1〉

)
,

(3.1)

where the operator ��
1 maximizes the expression

P �
c = η2 − Tr[����

1 ] with �� = η2ρ
�
2 − η1ρ

�
1 .

(3.2)
The spectral decomposition of �� can be written as �� =∑D−1

k=0 λ(k)|π (k)〉〈π (k)|, where we suppose that λ(k) < 0 for k �
k0, while λ(k) � 0 for all other values of k. In analogy to the
solution for the minimum-error discrimination of two mixed
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states [18,24], we obtain the optimal operator

��
1 =

k0∑
k=0

|π (k)〉〈π (k)| if λ(k) < 0 for k � k0. (3.3)

In other words, the operator ��
1 that maximizes P �

c is equal
to the projector onto the subspace spanned by the eigenstates
of �� belonging to its negative eigenvalues.

1. Minimum-error identification of one known and one unknown
pure qudit state

We start by assuming that the first qudit state is known,
denoted without lack of generality by |0〉, while the second
state, |ψ〉, is unknown. In this case only a single reference
qudit is needed, and Eq. (2.1) takes the form

|�1〉 = |0〉0|ψ〉1 and |�2〉 = |ψ〉0|ψ〉1. (3.4)

From Eq. (2.21) with N = 1 and N ′ = D = 2 we get the
non-normalized density operators

ρ�
1 = |0〉0〈0|0 I

(�)
1

d
and ρ�

2 = 2

(d + 1)d
P

sym(�)
0,1 , (3.5)

which act in the four-dimensional subspace H� = H�
0 ⊗ H�

1 .
Here H�

l = span{|0〉l ,|ψ〉l}, or, equivalently,

H�
l = span{|0〉l ,|1〉l} with |1〉 = |ψ〉 − |0〉〈0|ψ〉√

1 − |〈ψ |0〉|2
. (3.6)

The operators I
(�)
1 and P

sym(�)
0,1 follow from Eqs. (2.3) and (2.5)

with d = 2, on the condition that the state |1〉 is defined by
Eq. (3.6).

Using Eq. (3.5) we find that for η1 > 2
d+3 the operator �� =

η2ρ
�
2 − η1ρ

�
1 has exactly two negative eigenvalues, which

correspond to the eigenstates

|π (0)〉 = c1|0〉0|1〉1 − c2|1〉0|0〉1, |π (1)〉 = |0〉0|0〉1, (3.7)

where c1/2 =
√

1
2 ± (d+1)η1

2W
with W =

√
(d + 1)2η2

1 + 4η2
2. On

the other hand, for η1 � 2
d+3 only the eigenvalue belonging to

|π (0)〉 is negative. Because of Eq. (3.3) the optimal operator
��

1 therefore reads

��
1 =

{|π (0)〉〈π (0)| if η1 � 2
d+3 ,

|π (0)〉〈π (0)| + |π (1)〉〈π (1)| if η1 > 2
d+3 .

(3.8)

In order to apply Eq. (3.1) we make use of the
expressions |〈�1|π (0)〉|2 = c2

1|〈ψ |1〉|2, |〈�2|π (0)〉|2 =
(c1 − c2)2|〈ψ |0〉|2|〈ψ |1〉|2, |〈�1|π (1)〉|2 = |〈ψ |0〉|2, and
|〈�2|π (1)〉|2 = |〈ψ |0〉|4. Using |〈ψ |1〉|2 = 1 − |〈ψ |0〉|2 and
taking into account that |0〉 does not depend on |ψ〉, the
integrations in Eq. (3.1) can be easily performed with the help
of Eqs. (2.24) and (2.25). After minor algebra we arrive at the
maximum overall probability of correct results

PC = d

d + 1
+ (d − 1)(W − dη1) + |2 − (d + 3)η1|

2d(d + 1)
, (3.9)

with W =
√

(d + 1)2η2
1 + 4(1 − η2

1) ; see Fig. 1. When the
dimensionality d of the qudits is fixed, PC takes its smallest
value if η1 = 2/(d + 3), where η1 is the prior probability of the
state that is known. In the limit d � 1 PC approaches unity,
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FIG. 1. Maximum overall probability PC of correct results for
the minimum-error identification of two qudit states when the first
state is known and the second is unknown [full lines, corresponding
to Eq. (3.9)] and when both states are unknown [dashed lines,
corresponding to Eq. (3.17)] vs the prior probability η1 of the first
state, for different values of the qudit dimensionality d .

due to the fact that according to Eq. (2.24) in this limit the
modulus of |〈0|ψ〉|2 tends to zero on average, which means
that the known state |0〉 gets more and more orthogonal to
any other state and perfect discrimination therefore becomes
possible.

We mention that in this simple example it is easy to de-
termine the optimal operator �1 for discriminating with min-

imum error between the density operators ρ
(d)
1 = |0〉0〈0|0 I

(d)
1
d

and ρ
(d)
2 = 2

(d+1)d P
sym(d)
0,1 , see Eq. (2.4), which act in the full

Hilbert space H. The maximum of the probability in Eq. (2.8)
is obtained when

�1 =
{∑d−1

j=1

∣∣π (0)
j

〉〈
π

(0)
j

∣∣ if η1 � 2
d+3 ,∑d−1

j=1

∣∣π (0)
j

〉〈
π

(0)
j

∣∣ + |π (1)〉〈π (1)| if η1 > 2
d+3 ,

(3.10)

where |π (0)
j 〉 = c1|0〉0|j 〉1 − c2|j 〉0|0〉1 and where |π (1)〉 is

defined by Eq. (3.7). Here the states |1〉, . . . ,|d − 1〉 are
arbitrary orthonormal basis states in the qudit subspace that
is orthogonal to the known state |0〉. By calculating PC =
η2 − Tr[�1(η2ρ

(d)
2 − η1ρ

(d)
1 )] Eq. (3.9) is regained. In other

cases, however, the solution of the optimization problem in the
full Hilbert space H may be very cumbersome, or the method
to determine the optimal measurement basis in H would not
have been even known yet, as in the last example of our paper,
which refers to the optimal unambiguous identification of N

equiprobable unknown qudit states with d > N .

2. Minimum-error identification of two unknown pure qudit states

When we suppose that the two possible pure states of the
probe qudit are both unknown, Eq. (2.1) yields

|�1〉 = |ψ1〉0|ψ1〉1|ψ2〉2 and |�2〉 = |ψ2〉0|ψ1〉1|ψ2〉2.

(3.11)
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From Eq. (2.21) with N = N ′ = D = 2 we get the operators

ρ�
1 = 2 P

sym(�)
0,1 I

(�)
2

(d + 1)d2
and ρ�

2 = 2 P
sym(�)
0,2 I

(�)
1

(d + 1)d2
, (3.12)

which act in the eight-dimensional subspace H� = H�
0 ⊗

H�
1 ⊗ H�

2 with H�
l = span{|0〉l ,|1〉l}, where the states |0〉

and |1〉 are given by Eq. (2.12).
To be specific, we first assume that η1 � η2. In this case

only two eigenvalues of the operator �� = η2ρ
�
2 − η1ρ

�
1 are

negative. After calculating the corresponding eigenstates and
denoting them again by |π (0)〉 and |π (1)〉, we obtain from
Eq. (3.3) the optimal operator

��
1 =

1∑
k=0

|π (k)〉〈π (k)| for η1 � η2, (3.13)

where

|π (0)〉 = |1〉0|0〉1|0〉2 − (1 + b)|0〉0|0〉1|1〉2 + b|0〉0|1〉1|0〉2√
2(1 + b + b2)

,

(3.14)

|π (1)〉 = |0〉0|1〉1|1〉2 − (1 + b)|1〉0|1〉1|0〉2 + b|1〉0|0〉1|1〉2√
2(1 + b + b2)

,

(3.15)

with b = √
1 − η1η2 − η2. Applying Eq. (3.1) we find that

PC = η2 − η2 b2 − η1(1 + b)2

2(1 + b + b2)

∫
d�

(d)
2 |〈ψ2|1〉|2 if η1 �η2,

(3.16)

where we took into account that 〈ψ1|0〉 = 1, 〈ψ1|1〉 = 0, and
|〈ψ2|1〉|2|〈ψ2|0〉|2 + |〈ψ2|1〉|4 = |〈ψ2|1〉|2, as follows from
Eq. (2.12). A similar expression for PC holds in the case
η2 � η1. Using

∫
d�

(d)
2 |〈ψ2|1〉|2 = 1 − 1

d
, see Eq. (2.27), after

minor algebra we arrive at the maximum overall probability
of correct identification

PC = 1

2
+ d + 2

6d
|η2 − η1| + d − 1

3d

√
1 − η1η2, (3.17)

in accordance with the result that was obtained in Ref. [3]
using a different approach. As becomes obvious from Fig. 1,
PC takes its smallest value when the two unknown states are
equiprobable. In this case we get PC = 1

2 + d−1
2d

√
3
, which yields

PC ≈ 0.79 in the limit d � 1.

B. Optimal unambiguous identification

1. Optimal unambiguous identification of one known and one
unknown pure qudit state

Now we turn to the strategy of optimal unambiguous state
identification. Because of Eqs. (2.19), (2.20), and (2.23) with
N ′ = 2, the optimal operators ��

1 and ��
2 have to maximize

the expression P �
c = ∑2

n=1 ηnTr(ρ�
n ��

n ) on the condition that

��
0 = P̂� − ��

1 − ��
2 � 0, ��

1 ρ�
2 = ��

2 ρ�
1 = 0.

(3.18)

In contrast to minimum-error discrimination, instead of a
general solution only an upper bound has been obtained for

the maximum success probability when two arbitrary mixed
states are to be unambiguously discriminated [25]. However,
due to the special structure of ρ�

1 and ρ�
2 the maximization of

P �
c can be easily performed in our case.

Let us again consider the situation where the first state is the
known state |0〉 and the second state is unknown, as described
by Eqs. (3.4)–(3.6). In analogy to our earlier treatment for
d = 2 [5] we find that due to the constraints given by Eq. (3.18)
the optimal operators take the general form

��
1 = α1|π1〉〈π1| with |π1〉 = |0〉0|1〉1 − |1〉0|0〉1√

2
, (3.19)

��
2 = α2|1〉0|0〉1〈1|0〈0|1 + |1〉0|1〉1〈1|0〈1|1, (3.20)

where α2 = 2−2α1
2−α1

, which is the largest value of α2 compatible
with the constraint ��

0 � 0. Using Eq. (3.5) and maximizing
P �

c in Eq. (2.20), we obtain the optimal parameter

α1 =

⎧⎪⎨
⎪⎩

0 if (d + 1)η1 � η2,

2 − 2
√

η2

(d+1)η1
if η2 � (d + 1)η1 � 4η2,

1 if (d + 1)η1 � 4η2.

(3.21)

Here the requirement 0 � α1 � 1 has been taken into account,
which results from the positivity of the optimal operators and
from the completeness relation in the form of Eq. (2.18). With
the help of Eqs. (2.19) and (3.4) the optimal operators ��

1 and
��

2 yield P max
c = PS, where

PS =
∫

d�(d)

(
η1

α1

2
|〈ψ |1〉|2

+ η2α2|〈ψ |1〉|2|〈ψ |0〉|2 + η2|〈ψ |1〉|4
)

. (3.22)

Inserting |〈ψ |1〉|2 = 1 − |〈ψ |0〉|2 and taking into account that
|0〉 does not depend on |ψ〉, the integrations over the state space
of the unknown state |ψ〉 can be easily performed by means
of Eqs. (2.24) and (2.25). Using η2 = 1 − η1, we finally arrive
at the maximum overall success probability for unambiguous
identification

PS =

⎧⎪⎪⎨
⎪⎪⎩

d−1
d

(1 − η1) if η1 � 1
d+2 ,

d−1
d

(
d+2−η1

d+1 − 2
√

η1(1−η1)
d+1

)
if 1

d+2 � η1 � 4
d+5 ,

d−1
d+1

(
1 − η1

d−1
2d

)
if η1 � 4

d+5 ,

(3.23)

see Fig. 2. The upper full line in Fig. 2 results from α1 = 0 and
α2 = 1, which means that ��

1 = 0 and ��
2 = |1〉0〈1|0 ⊗ I

ψ

1 .

In this case the known state is never identified but always yields
an inconclusive result, and the unambiguous identification
of the unknown state is realized when a projection onto a
state orthogonal to the known state |0〉0 is successful. On
the other hand, if α1 �= 0, that is in the parameter region
where the middle and the lower line of Eq. (3.23) apply, the
operators ��

1 and ��
2 are both different from zero. The lower

line of Eq. (3.23) is valid when α1 = 1 and α2 = 0, that is
when ��

1 = |π1〉〈π1| and ��
2 = |1〉0|1〉1〈1|0〈1|1. In the limit

η1 → 1 the success probability PS is only determined by ��
1 ,

which according to Eq. (3.19) with α1 = 1 then represents a
projection onto the antisymmetric subspace of the joint Hilbert
space H� belonging to the probe qudit and the reference qudit
encoding the second state.
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FIG. 2. Maximum overall success probability PS for the unam-
biguous identification of two qudit states when the first state is known
and the second is unknown [full lines, corresponding to Eq. (3.23)]
and when both states are unknown [dashed lines, corresponding to
Eq. (3.27)] vs the prior probability η1 of the first state, for different
values of the qudit dimensionality d .

2. Optimal unambiguous identification of two unknown pure
qudit states

When both qudit states are unknown, we start from
Eqs. (3.11) and (3.12). The constraints in Eq. (3.18) then
imply that the projector onto the support of �

ψ

1 is given
by I

(�)
1 P

as(�)
0,2 , in analogy to the treatment for d = 2 [1,5].

Here P
as(�)
0,2 = P̂� − P

sym(�)
0,2 projects onto the antisymmetric

state (|0〉0|1〉2 − |1〉0|0〉2)/
√

2, where |0〉 and |1〉 are given by
Eq. (2.12). A similar expression holds for the projector onto
the support of �

ψ

2 . The optimal operators take the form

��
n = αn

1∑
k=0

∣∣π (k)
n

〉〈
π (k)

n

∣∣ (n = 1,2), (3.24)

with |π (k)
1 〉 = 1√

2
|k〉1(|0〉0|1〉2 − |1〉0|0〉2), (3.25)

∣∣π (k)
2

〉 = 1√
2
|k〉2(|0〉0|1〉1 − |1〉0|0〉1), (3.26)

where α2 = 4−4α1
4−3α1

, which is the largest value of α2 compatible
with the constraint ��

0 � 0. The explicit values of α1 and α2,
arising from the maximization of P �

c in Eq. (2.20), are the
same as the values that have been obtained for d = 2 [1,5].
Using the resulting optimal operators ��

1 and ��
2 , together

with the expressions for |�1〉 and |�2〉 given by Eq. (3.11),
the integration in Eq. (2.19) can be easily carried out with the
help of Eqs. (2.12) and (2.27). We thus obtain the maximum
overall success probability P max

c = PS, which takes the form

PS =

⎧⎪⎪⎨
⎪⎪⎩

d−1
2d

(1 − η1) if η1 � 1
5 ,

2(d−1)
3d

(1 − √
η1(1 − η1)) if 1

5 � η1 � 4
5 ,

d−1
2d

η1 if η1 � 4
5 .

(3.27)

The upper line refers to the parameter region where α1 = 0 and
α2 = 1. Vice versa, the lower line applies when α2 = 0 and

α1 = 1, that is when ��
2 = 0 and �

ψ

1 = I
(�)
1 P

as(�)
0,2 , which

means that the action of �
ψ

1 corresponds to a projection
onto the antisymmetric subspace of the joint Hilbert space
H�

0 ⊗ H�
2 belonging to the probe qudit and the reference qudit

encoding the second state. In the limit η1 → 1, where PS is
only determined by �

ψ

1 , the maximum success probabilities
resulting from Eqs. (3.23) and (3.27) are identical; see
Fig. 2.

We still mention that in Ref. [1] the optimal measurement
for the unambiguous identification of two unknown pure states
has been applied to two fixed states |ψ1〉 and |ψ2〉, yielding
expressions for PS in the three regions of η1 that each contain
a factor (1 − |〈ψ1|ψ2〉|2) [1]. When we assume that the states
are qudits and use Eq. (2.24) in order to take the average in
this factor, Eq. (3.27) is regained.

3. Optimal unambiguous identification of N linearly independent
and equiprobable unknown pure qudit states

In our last example we apply the general results derived in
Sec. II to the optimal unambiguous identification of N linearly
independent unknown pure qudit states with dimensionality
d � N. Since the N states are linearly independent, they
span a Hilbert space of dimension D = N . We restrict
ourselves to the case of equiprobable states, occurring with
equal prior probabilities ηn = 1/N . Due to Eq. (2.19) with
N ′ = N , the overall probability of correct results then can be
written as

Pc = 1

N

N∑
n=1

∫
d�(d)〈�n|��

n |�n〉, (3.28)

where |�n〉 = |ψn〉0 |ψ1〉1 . . . |ψN 〉N . The operators ��
n act in

the NN+1-dimensional Hilbert spaceH� defined in Eq. (2.16),
which is a subspace of the total dN+1-dimensional Hilbert
space H. In order to find the optimal operators ��

n we have to
maximize

P �
c = 1

N

N∑
n=1

Tr(ρ�
n ��

n ), (3.29)

as follows from Eq. (2.20), where the maximization is subject
to the constraints given by Eq. (2.23). According to Eq. (2.21)
the non-normalized density operators ρ�

n take the form

ρ�
n = 2

(d + 1)dN
P

sym(�)
0,n

N⊗
l=1
l �=n

I
(�)
l (n = 1, . . . ,N).

(3.30)

Here the operators I
(�)
l and P

sym(�)
0,n are determined by

Eqs. (2.3) and (2.5) with d = N, where the basis states
|0〉l , . . . ,|N − 1〉l are defined by Eqs. (2.12)–(2.14). The
resulting maximization problem is mathematically equivalent
to the problem we solved already in our previous work [14],
where we considered the optimal unambiguous identification
of d linearly independent unknown pure qudit states, that is
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the case d = N . Using our previous result [14], we get for
n = 1, . . . ,N the operators

��
n = N

N + 1

N−1∑
k=0

∣∣π (k)
n

〉〈
π (k)

n

∣∣ (3.31)

with
∣∣π (k)

n

〉 = (−1)n√
N !

|k〉n
∑

σ

sgn(σ )
N⊗
j=0
j �=n

|σj 〉j , (3.32)

where the sum in the second line is taken over all N !
permutations σ distributing the numbers σj = 0, . . . ,N − 1
over the system of N qudits obtained by omitting the nth
reference qudit from the total system of N + 1 qudits. The
qudits are written in fixed order, and sgn(σ ) is the sign of the
permutation. For instance, for N = 3 we get∣∣π (k)

1

〉 = −1√
6
|k〉1

(|0〉0|1〉2|2〉3 − |0〉0|2〉2|1〉3 + |2〉0|0〉2|1〉3

− |2〉0|1〉2|0〉3 + |1〉0|2〉2|0〉3 − |1〉0|0〉2|2〉3
)
.

(3.33)

It is easy to check that P
sym(�)
0,m |π (k)

n 〉 = 0 if m �= n, which
ensures that the constraint ρ�

m ��
n = 0, required for unam-

biguous identification, is satisfied. The prefactor N/(N + 1)
in Eq. (3.31) yields the largest possible value of P �

c that
is compatible with the positivity constraint ��

0 = P̂� −∑N
n=1 ��

n � 0, as has been shown in Ref. [14] by using the

relations 〈π (k)
n |π (k′)

n 〉 = δk,k′ and 〈π (k)
m |π (k′)

n 〉 = − δk,k′
N

(m �= n).
The values of Tr(ρ�

n ��
n ) resulting from Eqs. (3.30)

and (3.31) are found to be the same for each number n, which
is due to the fact that the optimal operators ��

n obey the
same permutation symmetry with respect to numbering the
states as the density operators ρ�

n . Instead of Eq. (3.29) we
can therefore use the alternative expression P �

c = Tr(ρ�
1 ��

1 )
for the maximum of P �

c . Similarly, due to the permutation
symmetry it follows from Eqs. (3.28) and (3.31) that the
maximum success probability PS = P max

c can be written as

PS =
∫

d�(d)〈�1|��
1 |�1〉 = N

N+1

N−1∑
k=0

∫
d�(d)

∣∣〈�1

∣∣π (k)
1

〉∣∣2
.

(3.34)

Inserting |�1〉 = |ψ1〉0 |ψ1〉1 . . . |ψN 〉N and taking into ac-
count that in the expression for |π (k)

1 〉 the states |0〉, . . . ,|N−1〉
are defined by Eqs. (2.12)–(2.14), we find that∫

d�(d)
∣∣〈�1

∣∣π (k)
1

〉∣∣2 = δk,1

N !

N∏
j=2

∫
d�

(d)
j |〈ψj |j − 1〉j |2.

(3.35)

Here we made use of the relations 〈ψ1|k − 1〉 = δk,1 and
〈ψj |k〉 = 0 for k � j ; see Eq. (2.26). The latter condition
implies that only a single one from the N ! terms occurring
in the expression for |π (1)

1 〉 yields a nonzero contribution to
the scalar product 〈�1|π (1)

1 〉, as can be easily exemplified
for N = 3. After applying Eq. (2.27) in order to perform the
integrations in Eq. (3.35), we obtain for d � N the maximum
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FIG. 3. Maximum overall success probability PS for the un-
ambiguous identification of N equiprobable linearly independent
unknown pure qudit states vs the dimensionality d of the qudits for
N = 3 (upper dots) and N = 4 (lower dots), as given by Eq. (3.36).

overall success probability

PS = N
(
1 − 1

d

)
. . .

(
1 − N−1

d

)
(N + 1) N !

= N

(N + 1) dN

(
d

N

)
. (3.36)

For a fixed number N of unknown qudit states the overall
probability of successful identification, PS , increases with
growing dimensionality d of the qudits; see Fig. 3. From
Eq. (3.36) it becomes obvious that PS = N

N+1
1

NN for d = N

[14] and PS = N
N+1

1
N! for d � N. Hence by sufficiently

increasing the dimensionality d when N is fixed, PS can
be enhanced by a factor up to NN/N !. Although this factor
grows with increasing N , the absolute value of PS is rapidly
decreasing when the number of states is enlarged.

IV. CONCLUSIONS

In this paper we considered the optimal identification of
pure qudit states with dimensionality d that belong to a finite
set of states where some or all of the states are unknown.
Supposing that the qudit states span a D-dimensional Hilbert
space, we found that from an optimal measurement for
state identification with d = D one can readily determine
the optimal figure of merit for qudits with d > D, without
solving a new optimization problem, that is without explicitly
determining the optimal detection operators acting in the full
Hilbert space. We applied our method to a number of examples,
including the optimal unambiguous identification of N linearly
independent and equiprobable unknown pure qudit states. In all
cases we found that the maximum overall probability of correct
results for minimum-error identification, or the maximum
overall success probability for unambiguous identification,
respectively, increase with growing dimensionality d of the
qudits.

The results of this paper may be of interest when high-
dimensional quantum states are to be processed, which have
been considered as a resource for various tasks in quantum
information and communication [26–28]. These states can
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be for instance produced as superpositions of orbital angular
momentum states of a single photon, and the optimal unam-
biguous discrimination of d linearly independent symmetric
pure qudit states has been already experimentally realized
for known states with dimensions up to d = 14 [29]. While
the problems of comparing [30] and of identifying unknown
quantum states have been introduced already about a decade

ago, very recently also superpositions of unknown states have
been investigated [31].
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