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Jaehak Lee,* Se-Wan Ji, Jiyong Park, and Hyunchul Nha†

Department of Physics, Texas A & M University at Qatar, P.O. Box 23874, Doha, Qatar
(Received 2 October 2016; published 15 December 2016)

Quantum teleportation (QT) is a fundamentally remarkable communication protocol that also finds many
important applications for quantum informatics. Given a quantum entangled resource, it is crucial to know to what
extent one can accomplish the QT. This is usually assessed in terms of output fidelity, which can also be regarded
as an operational measure of entanglement. In the case of multipartite communication when each communicator
possesses a part of an N -partite entangled state, not all pairs of communicators can achieve a high fidelity due
to the monogamy property of quantum entanglement. We here investigate how such a monogamy relation arises
in multipartite continuous-variable (CV) teleportation, particularly when using a Gaussian entangled state. We
show a strict monogamy relation, i.e., a sender cannot achieve a fidelity higher than optimal cloning limit with
more than one receiver. While this seems rather natural owing to the no-cloning theorem, a strict monogamy
relation still holds even if the sender is allowed to individually manipulate the reduced state in collaboration with
each receiver to improve fidelity. The local operations are further extended to non-Gaussian operations such as
photon subtraction and addition, and we demonstrate that the Gaussian cloning bound cannot be beaten by more
than one pair of communicators. Furthermore, we investigate a quantitative form of monogamy relation in terms
of teleportation capability, for which we show that a faithful monogamy inequality does not exist.
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I. INTRODUCTION

Quantum teleportation [1,2] is a fundamental communi-
cation protocol to transfer quantum information from one
location to another. It can represent a distinguishing feature of
quantum mechanics and also find many practical applications
such as universal quantum computation [3], entanglement
swapping [4], and quantum repeaters [5,6]. To assess the faith-
fulness of quantum teleportation, one usually employs output
fidelity as a figure of merit, for which two important bench-
marks exist, i.e., classical bound and no-cloning bound. Classi-
cal bound Fcl is determined by the maximum fidelity achieved
under classical measure-and-prepare protocols [7–10].
If a fidelity beyond classical bound is obtained, one can
be convinced that the teleportation makes use of genuine
quantum entanglement. On the other hand, the no-cloning
bound Fnc is a stricter benchmark arising from the no-cloning
theorem [11–14]. If one achieves an output fidelity beyond
the no-cloning bound, it guarantees that there does not exist
another party who possesses a copy at the same level of fidelity
or higher. For CV teleportation [2,15,16], where the input state
is prepared as a coherent state with unknown displacement
uniformly distributed in phase space, the classical bound is
given by Fcl = 1

2 [9]. On the other hand, the no-cloning bound
is given by FG

nc = 2
3 when the resources and the operations

are restricted to the Gaussian regime [13], and Fnc ≈ 0.6826
when no restriction is made to also include non-Gaussian
operations [14]. A successful teleportation beyond the no-
cloning limit was experimentally demonstrated [16].

In a variety of studies such as entanglement distillation
[17–23] and robustness of entanglement [24,25], teleportation
fidelity has been employed as an operational measure of
entanglement to test if an entangled state at hand is a useful
resource. For multipartite communications, it is important to
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know how useful a given multipartite entangled state is in
view of performance achieved individually by each pair of
users and performance achieved collectively by all users. In
this paper, we investigate the CV teleportation to examine the
monogamy property of useful multipartite CV entanglement.
Entanglement monogamy was first developed in terms of the
Coffman–Kundu–Wooters (CKW) inequality [26] stating that
the sum of entanglement shared by several parties is restricted
by the total amount of entanglement. A strict monogamy
relation was later found such that if one party has quantum
correlation with a certain number parties, (s)he cannot be
correlated with the other parties. Such a relation is proved to
be true in quantum nonlocality [27] and quantum steering [28],
particularly for Gaussian states under Gaussian measurement
[29]. However, extended to non-Gaussian measurements, such
a strict monogamy may break down even for Gaussian
states [30]. On the other hand, it was also found that the
quantum dense coding protocol gives a strict monogamy
relation [31,32], i.e., a sender cannot have quantum advantage
with more than one receiver simultaneously.

It is possible for Alice to achieve a quantum advantage
to some extent beyond classical fidelity with any number of
communicators. However, the no-cloning theorem naturally
implies a strict monogamy in QT, because the latter belongs to
a subset of all possible state manipulations to make quantum
copies considered in the no-cloning theorem. Let us assume
a quantum state ρ shared by three parties, Alice, Bob, and
Charlie. When Alice tries to teleport an input state to Bob
and Charlie simultaneously, both of the output fidelities FA:B

and FA:C cannot beat the no-cloning bound. While an optimal
cloning scheme saturates the no-cloning bound; that is, FA:B =
FA:C = Fnc, it is not immediately obvious how one can come
up with a QT scheme to accomplish the optimal cloning. We
identify the CV teleportation protocol to achieve the optimal
cloning both in the Gaussian and non-Gaussian regimes. On
the other hand, one might wonder if the no-cloning bound
can be beaten when we generalize conditions on possible
strategies for teleportation protocol. We may attempt to beat
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the Gaussian cloning limit in two different ways. The first
one is to relax the constraint of simultaneous teleportation.
Alice shares two different copies of the same quantum state ρ

and each copy is used for teleportation with Bob and Charlie,
respectively. They are allowed to improve teleportation fidelity
by individually manipulating the reduced state with Gaussian
unitary operations. We show that it is still not possible that
both of the teleportation fidelities beat the Gaussian cloning
bound. Another scenario is to apply non-Gaussian operations
on a Gaussian state. Since the genuine no-cloning bound Fnc

is slightly higher than the Gaussian one FG
nc , we are interested

to know if FG
nc can be achieved by manipulating a Gaussian

entangled state with non-Gaussian operations. We demonstrate
that the non-Gaussian operations such as photon subtraction
and photon addition do not lead to beating the Gaussian-
cloning bound. These results strongly support the statement
that CV teleportation monogamy is a quite strict relation.

Furthermore, we make a quantitative analysis of the
monogamy inequality in a form

Eα
A:B + Eα

A:C � Eα
A:BC, (1)

where EA:B (EA:C) is an entanglement measure between A

and B (C), while EA:BC is between A and BC. In the
case of α = 2, the inequality recovers the original CKW
inequality [26], which proves that concurrence satisfies the
inequality for three qubits, later generalized to N qubits [33]. It
was also shown that squashed entanglement [34] and Gaussian
tangle [35] satisfy the inequality with α = 1. For discrete-
variable teleportation, monogamy inequality was investigated
in terms of teleportation capability C [36], which quantifies
the quantum advantage in teleportation fidelity beyond the
classical limit. It was shown that monogamy inequality with
α = 1 is satisfied for any N -qubit states and for three-qutrit
pure states, but neither for general N -qutrit states nor in higher
dimensions. We investigate the monogamy inequality for CV
teleportation and show that the inequality is violated for any
finite α. We further demonstrate that teleportation capability
does not obey any nontrivial monogamy inequality.

This paper is organized as follows: In Sec. II, we briefly
review the no-cloning theorem and its application to the
monogamy relation of quantum teleportation. We then show
that CV teleportation can achieve optimal cloning. In Sec. III,
we investigate CV teleportation with one sender and two
receivers. We find that a strict monogamy still holds even if
Gaussian operations or non-Gaussian operations are allowed
individually for each pair of communicators to improve
teleportation fidelity. In Sec. IV, we make a quantitative
analysis of monogamy inequality in terms of teleportation
capability. We show that such an inequality does not hold
in CV teleportation. In Sec. V, we summarize our results with
concluding remarks.

II. TELEPORTATION AND OPTIMAL CLONING

A. No-cloning theorem and simultaneous teleportation

Here we address the implication of the no-cloning the-
orem on the monogamy relation of QT. Let us consider a
protocol where Alice teleports an input state to Bob and
Charlie simultaneously, as described in Fig. 1. In a standard
teleportation protocol, Alice takes a joint measurement on

inψ

out,Bρ

out,Cρ
ABCρ U

U

M

FIG. 1. Schematic for simultaneous teleportation. M and U

represent measurement and unitary transformation, respectively.

her state combined with the input state and then sends her
measurement outcome to Bob. Bob then obtains the output
state by performing a local operation on his system according
to the measurement outcome. In our simultaneous teleportation
protocol, Alice sends her measurement outcome to both Bob
and Charlie who perform local operations accordingly. It is
not possible that both Bob and Charlie achieve output fidelity
greater than the no-cloning bound, due to the no-cloning
theorem. It is also straightforward to generalize this argument
to the case of more than two receivers, which gives a strict
monogamy relation. Among N receivers, only one can obtain
the output state beating the no-cloning bound.

In the protocol above, sender and receivers use the dis-
tributed state without any operations before the QT protocol.
We show that, even if any local trace-preserving operations are
allowed to improve teleportation fidelity, a strict monogamy
relation still holds for symmetric states. Let a (N + 1)-partite
state ρAB1B2···BN

be distributed to Alice and N Bobs, which
is symmetric under permutation among different Bobs. We
denote asSi and Ti the trace-preserving operators applied on A

and Bi that give an optimized fidelity F
opt
A:Bi

between A and Bi ,
respectively. Due to symmetry, the optimization is identical for
different Bi , i.e., S1 = S2 = · · · = SN ≡ S, T1 = T2 = · · · =
TN ≡ T . Then we suppose that all parties apply their own
operations simultaneously such that the state is transformed
into ρ ′

AB1B2···BN
= (S

⊗
T

⊗
T

⊗ · · · ⊗ T )ρAB1B2···BN
. Now

ρ ′
AB1B2···BN

is another quantum state which yields the optimized

teleportation fidelity F
opt
A:Bi

for each Bi and all F
opt
A:Bi

are the
same due to symmetry. Therefore, owing to the no-cloning
theorem, we must have F

opt
A:B1

= F
opt
A:B2

= · · · = F
opt
A:BN

� Fnc.

B. Optimal 1 → N cloning

Although it is rather obvious that a simultaneous teleporta-
tion cannot achieve the fidelity beyond the no-cloning limit, it
is not straightforward to see whether there exists a QT scheme
to achieve the optimal cloning, for QT is only a subset of
all possible state manipulations. We here come up with a CV
teleportation protocol achieving the optimal cloning fidelity
with an appropriate entangled state, both in the Gaussian
and non-Gaussian regimes. The optimal 1 → N cloning of
coherent states was initially investigated within the Gaussian
regime [13] to give the so-called Gaussian cloning bound. It
was later shown in Ref. [14] that a non-Gaussian resource can
slightly improve the fidelity to give the ultimate cloning bound.
Reference [14] also explicitly showed a method to achieve the
optimal cloning, which we briefly review. We then propose a
teleportation protocol that leads to the same output states.

Given a 1 → N cloning transformation T , the fidelity
between the input state and the j th output state can be written
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as

Fj = Tr[T (ρin)(1 ⊗ · · · ⊗ 1 ⊗ ρin ⊗ 1 ⊗ · · · ⊗ 1)], (2)

where 1 is the identity operator. With the covariant property
of the optimal cloning, the transformation T is described by

χout(ξ1,ξ2, . . . ,ξN ) = t(ξ1,ξ2, . . . ,ξN )χin

(∑
i

ξi

)
, (3)

where χout(ξ1,ξ2, . . . ,ξN ) = Tr[ρoutWξ1,ξ2,...,ξN
] and χin(ξ ) =

Tr[ρinWξ ] are characteristic functions of output and input
states, respectively, with Wξ being the Weyl operator in a rele-
vant Hilbert space. The multiplicative function t(ξ1,ξ2, . . . ,ξN )
is given by the characteristic function of a state ρT under
a suitable linear transformation �, i.e., t(ξ1,ξ2, . . . ,ξN ) =
Tr[ρT W�(ξ1,ξ2,...,ξN )]. We here consider symmetric cloning so
that we maximize the fidelity 1

N

∑
j Fj . The problem then

reduces to optimizing over a certain quantum state ρT to
maximize the fidelity,

1

N

N∑
j=1

Fj = 1

N
Tr

⎡
⎣ρT

N∑
j=1

exp

(
− P̂ 2

j + ( ∑
k �=j Q̂k

)2

2

)⎤
⎦,

(4)

where {P̂j ,Q̂j }(j = 1,2, . . . ,N ) is a set of legitimate field
operators in the N -mode Hilbert space. Although an analytical
optimization is not straightforward, the solution can be nu-
merically obtained. For example, Fnc ≈ 0.6826 was obtained
for 1 → 2 cloning, which demonstrates the optimality of
non-Gaussian cloning beyond the Gaussian cloning limit
F G

nc = 2
3 .

Now we show that the scheme of Fig. 2 achieves the optimal
cloning with the fidelity in Eq. (4). We first start with the
state ρT and the corresponding field operators b̂j ≡ 1√

2
(Q̂j +

iP̂j ) (j = 1,2, . . . ,N ). The transformation from ρT to |�N 〉 is
described in the Heisenberg picture as

â1 = 1√
N

N∑
k=1

(
N

2
√

N − 1
b̂k + N − 2

2
√

N − 1
b̂
†
k

)

âj =
√

N − j + 1

N − j + 2
b̂j−1 −

√
1

(N − j + 1)(N − j + 2)

N∑
k=j

b̂k

for j = 2,3, . . . ,N. (5)

FIG. 2. A scheme for 1 → N cloning. DPA and NDPA represent
a degenerate and nondegenerate parametric amplifier, respectively.
BS(T ) is a beam splitter with transmittance T .

The input state |ψin〉 is then amplified via a nondegenerate
parametric amplifier (NDPA) mixed with the first mode of
|�N 〉. One output of NDPA is discarded and the other output
is mixed with the rest of the modes of |�N 〉. Finally, the output
states are described by the Heisenberg picture operators

âj,out = âin +
√

N − 1

N
â
†
1 −

√
N − j

N − j + 1
âj+1

+
j∑

k=2

√
1

(N − k + 2)(N − k + 1)
âk

= âin − 1√
2
P̂j + i√

2

∑
k �=j

Q̂k. (6)

To evaluate the output fidelity, it suffices to consider a vacuum
state as input under a covariant scheme, which gives the same
fidelity regardless of the amplitude of the input state. Thus the
fidelity of the j th output is given by
Fj = Tr[|0〉〈0|j ρout]

= Tr
[
: exp

(
−â

†
j âj

)
: ρout

]
= 〈: exp(−â

†
j,outâj,out) :〉

= Tr

[
: exp(−â†

inâin) exp

(
− P̂ 2

j + ( ∑
k �=j Q̂k

)2

2

)
: ρT

]

= Tr

[
exp

(
− P̂ 2

j + (∑
k �=j Q̂k

)2

2

)
ρT

]
, (7)

where : Â : represents the normal ordering of Â. We now see
that the fidelities in Eqs. (7) and (4) are identical, so achieving
an optimal cloning fidelity corresponds to an appropriate
choice of the state ρT , with or without restriction to Gaussian
states.

C. Optimal cloning by continuous-variable teleportation

Here we demonstrate that there exists a QT scheme to
produce N quantum copies with optimal cloning fidelity.
To achieve 1 → N teleportation, we need an (N + 1)-mode
state where the first mode belongs to a sender and the
other modes to N receivers. We prepare the resource state
|	N+1〉 as shown in Fig. 3(a). The Heisenberg field operators
ĉj (j = 0,1, . . . ,N ) of the resource state |	N+1〉 can be
related to âj (j = 1,2, . . . ,N) of the state |�N 〉 and an ancilla
mode â0 of state |ψ0〉 for j = 0 as

ĉ0 =
√

1

N − 1
â
†
0 −

√
N

N − 1
â1,

ĉj =
√

1

N − 1
â0 −

√
1

N (N − 1)
â
†
1 −

√
N − j

N − j + 1
âj+1

+
j∑

k=2

√
1

(N − k + 2)(N − k + 1)
âk

for j = 1,2, . . . ,N. (8)

Now we show that the teleportation scheme employing the
resource state |	N+1〉 in Fig. 3(b) gives the same output states
as the cloning scheme with the resource state |�N 〉 in Fig. 2.
In the teleportation protocol, Alice possesses a mode ĉ0 and N
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0ψ

NΨ

)BS( N1-N

)BS( 1-N
2-N

)BS(21

NDPA

1+ΦN

〉Φ +1| N

inψ

U out,1ρ

U out,2ρ

U out,Nρ

(b)

(a)

1â
0â

2â

3â

Nâ

0ĉ

1̂c

2ĉ

1ˆ −Nc

Nĉ

FIG. 3. (a) Preparation of an (N + 1)-mode state for teleporta-
tion. NDPA represents a nondegenerate parametric amplifier with
gain N

N−1 . BS(T ) represents a beam splitter with transmittance T .
(b) 1 → N teleportation scheme.

Bobs possess the other N modes. Alice combines an unknown
input state with her mode and measures two quadratures

1√
2
(x̂in − x̂c0 ) and 1√

2
(p̂in + p̂c0 ). The measurement outcomes

are sent to receivers simultaneously. Each Bob displaces
his mode according to the measurement outcomes, then the
output state is described by

ĉj,out = ĉj + 1√
2

(
x̂in − x̂c0

) + i√
2

(
p̂in + p̂c0

)
= ĉj + âin − ĉ

†
0

= âin +
√

N − 1

N
â
†
1 −

√
N − j

N − j + 1
âj+1

+
j∑

k=2

√
1

(N − k + 2)(N − k + 1)
âk. (9)

We see that the output states produced by teleportation are
equivalent to those obtained by the cloner, as described in
Eq. (6).

As a remark, we note that the state |ψ0〉 of the ancilla
mode â0 in Eq. (9) does not affect the output state. Even
though it is a highly mixed state, we obtain the same output. A

crucial element when constructing the resource state |	N+1〉
is the gain g = N

N−1 of NDPA in Fig. 3(a), which is fully
determined by N . It explains why we need an infinitely
squeezed state for 1 → 1 perfect teleportation. On the other
hand, for N � 2 outputs, we achieve the optimal 1 → N

teleportation with a finitely entangled state. In the case of
N = 2, the optimal Gaussian cloning is achieved with |�G

2 〉 =
|0〉 ⊗ |0〉. The choice of |ψ0〉 is not restricted and a different
pure Gaussian state results in a different |	G

3 〉, but all these are
equivalent under local unitary operations. On the other hand,
the ultimate no-cloning bound Fnc ≈ 0.6826 is achieved by a
non-Gaussian state |�2〉, which can be obtained numerically
by optimizing Eq. (4). Accordingly the optimal resource |	3〉
for teleportation is also non-Gaussian.

III. STRICT MONOGAMY RELATION IN
CONTINUOUS-VARIABLE TELEPORTATION

In the previous section, we showed that a strict monogamy
relation naturally emerges due to the no-cloning theorem. On
the other hand, it is possible to improve individual teleportation
fidelity for each pair if a sender and a receiver apply local
operations before carrying out teleportation. For example, in
the Gaussian regime, a local Gaussian completely positive
map that leads to optimized fidelity was investigated [37]. It
was also shown that non-Gaussian operations such as photon
subtraction on a two-mode squeezed vacuum state (TMSV)
can improve teleportation fidelity beyond the no-cloning limit
even though the initial state cannot beat the no-cloning
limit [19]. We here employ a three-mode Gaussian state
as an initial resource state and investigate whether we can
beat Gaussian no-cloning limit F G

nc by applying some local
operations. We show that a strict monogamy relation still holds
in the following cases.

A. Improving fidelity via local Gaussian unitaries

1. Teleportation fidelity

We first consider local Gaussian unitaries to improve output
fidelity. An N -mode Gaussian state is fully described by
its first and second moments of their quadrature operators
R̂ = (x̂1,p̂1,x̂2,p̂2, . . . ,x̂N ,p̂N ). The first-order moments rep-
resent the average amplitudes of field operators that can
be adjusted by local displacement operations. A covariance
matrix (CM) representing the second-order moments has
the matrix elements given by σij ≡ 1

2 〈�R̂i�R̂j + �R̂j�R̂i〉
where �R̂i = R̂i − 〈R̂i〉. From now on, we assume the first
moments to be zero, 〈R̂i〉 = 0, which does not affect the
fidelity of covariant teleportation scheme. Let us consider
a coherent-state teleportation when Alice and Bob share a
two-mode Gaussian state with CM in a block form,

σ =
(

A C

CT B

)
, (10)

where A, B, and C are 2 × 2 real matrices. In this case, the
teleportation fidelity is given by [38–40]

F = 1√
det �

,

� ≡ 2σ in + Z AZ + B − ZC − CT ZT , (11)
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where σ in ≡ 1
2 diag(1,1) is the CM of input coherent state and

Z ≡ diag(1,−1). We can rewrite the fidelity in terms of the
second moments of correlated quadratures x− ≡ 1√

2
(x1 − x2)

and p+ ≡ 1√
2
(p1 + p2) as

F = 1√
1 + 2(〈x2−〉 + 〈p2+〉) + 4(〈x2−〉〈p2+〉 − 〈x−p+〉2)

. (12)

Here the quantities 〈x2
−〉, 〈p2

+〉, and 〈x−p+〉 are not invariant
under local unitary operations so the fidelity can be modified
via those operations.

Let us first assume that the cross term 〈x−p+〉 is zero and
later this assumption will be justified in several cases. We then
have

F = 1√
1 + 2(〈x2−〉 + 〈p2+〉) + 4〈x2−〉〈p2+〉

� 1√
1 + 4

√
〈x2−〉〈p2+〉 + 4〈x2−〉〈p2+〉

= 1

1 + 2
√

〈x2−〉〈p2+〉
. (13)

Given a certain fidelity bound f to overcome, the necessary
condition for F > f turns out to be

〈x2
−〉〈p2

+〉 <

(
1 − f

2f

)2

. (14)

For the case of the classical bound f ≡ Fcl = 1
2 , the inequality

becomes the entanglement-detection criterion [41]. Since one
party is able to share entanglement with many different parties
while the amount of each bipartite entanglement is restricted,
there is no restriction on the number of parties which can
obtain teleportation fidelity beyond the classical bound. For
example, for an (N + 1)-mode Gaussian state, which was
investigated for teleportation network [42], Alice is entangled
with N different Bobs, respectively, and achieves teleportation
fidelity beyond the classical bound individually with each Bob
(see Sec. IV).

For the Gaussian no-cloning bound f ≡ FG
nc = 2

3 , we have
a stricter condition

〈x2
−〉〈p2

+〉 < 1
16 . (15)

A similar inequality was obtained for the quantum dense
coding in Ref. [32], which corresponds to beating the single-
mode squeezed-state communication scheme.

2. Three-mode pure state

As a quantum resource for CV QT, let us consider a three-
mode pure Gaussian state described by a CM in the standard
form as [43]

σ
(s)
ABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 e+
12 0 e+

13 0

0 a1 0 e−
12 0 e−

13

e+
12 0 a2 0 e+

23 0

0 e−
12 0 a2 0 e−

23

e+
13 0 e+

23 0 a3 0

0 e−
13 0 e−

23 0 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where off-diagonal elements e±
ij are fully determined by the

parameters ai . The three parameters ai must satisfy a triangular
inequality due to the uncertainty principle as

|c2 − c3| � 1 � c2 + c3, where cj = aj − 1
2

a1 − 1
2

for j = 2,3.

(17)

In the standard form, there are two squeezed quadratures
xAB

− ≡ 1√
2
(x1 − x2) and pAB

+ ≡ 1√
2
(p1 + p2) shared between

Alice and Bob, with the cross term 〈xAB

− pAB

+ 〉 = 0. Similarly
we find xAC

− and pAC

+ shared between Alice and Charlie.
While operators x̂− and p̂+ commute for each pair, we find
noncommuting operators [x̂AB

− ,p̂AC

+ ] = 1
2 [x̂1,p̂1] = i

2 , and sim-
ilarly [x̂AC

− ,p̂AB

+ ] = i
2 . By means of Heisenberg’s uncertainty

principle, the correlated quadratures must then satisfy the
inequality

〈(x̂AB

− )2〉〈(p̂AB

+ )2〉〈(x̂AC

− )2〉〈(p̂AC

+ )2〉
�

(
1
4

)2|〈[x̂AB

− ,p̂AC

+ ]〉|2 × |〈[p̂AB

+ ,x̂AC

− ]〉|2 = (
1

16

)2
. (18)

The inequality implies that the criterion (15) cannot be satisfied
for both pairs {A,B} and {A,C} simultaneously, which is
another proof of the strict monogamy relation.

On the other hand, the standard form (16) might not be
an optimal form which individually maximizes teleportation
fidelity between Alice and Bob (Charlie). Fidelity can be
improved via a local Gaussian unitary operation on each mode.
For now, we do not consider simultaneous teleportation. Alice
shares two-mode states ρAB with Bob and ρAC with Charlie,
which are reduced states of ρABC , respectively. She carries out
teleportation with Bob and Charlie independently by taking
different optimization operations for two different reduced
states. As a consequence, the two optimized states ρ̃AB and
ρ̃AC may not be the reduced states of a single three-mode state.
In this sense, this individual optimization is more generalized
than the usual multipartite setting of monogamy study.

When we take local Gaussian unitaries to improve fidelity, it
is reasonable to consider a local squeezing operation along the
x or p direction only. This is because CV teleportation makes
use of two squeezed quadratures x− and p+, and particularly
in the standard form, we do not need any phase rotation or
local squeezing along other axes. The squeezing parameter
can be chosen independently for each party. Specifically,
Alice may choose a different degree of squeezing when she
carries out teleportation with Bob and Charlie, respectively.
In Ref. [44], it was investigated how teleportation fidelity
can be improved via local squeezing. We show, in Fig. 4,
the region where teleportation beats the Gaussian no-cloning
bound F G

nc, for which we have numerically found the optimized
fidelity by changing squeezing parameters. We see that the
parameter region where the teleportation beats the no-cloning
bound becomes broadened with optimization. Nonetheless, we
reconfirm the monogamy relation because there is no overlap
between two different regions corresponding to different re-
ceivers. A tight bound is achieved; that is, FAB = FAC = F G

nc,
only when a1 = 3

2 and c2 = c3 = 1
2 . The state corresponding to

these parameters is exactly the same as |	G
3 〉, which achieves

the optimal cloning as discussed in the previous section.
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FIG. 4. Plot illustrating the region where teleportation beats the
no-cloning bound. The region colored in red (blue) is for FAB (FAC) >

F G
nc, where FAB (FAC) denotes the teleportation fidelity between Alice

and Bob (Charlie). The dashed curves represent the boundary within
which FAB (FAC) = F G

nc is achieved without any local operations.
Thick lines show the boundary for physical states [Eq. (17)]. We
fix a1 = 3

2 , and a2 and a3 are determined by c2 and c3 where ci =
(ai − 1/2)/(a1 − 1/2).

To show the strict monogamy rigorously, we recall the
inequality (18). This relation still holds even though local
squeezing operations are made on each pair of ρAB and ρAC

independently (see also the appendix of Ref. [32] for a similar
proof). It means that a strict monogamy relation is satisfied
even though the simultaneous teleportation is abandoned and
optimization is made independently.

3. Mixed state

When the resource state is pure, we can always eliminate
every x-p cross-correlation term in its standard form (16).
On the other hand, it cannot be done for a general mixed
state [43]. In this case, the assumption 〈x−p+〉 = 0 is no longer
valid. However, in several important cases, we can remove the
cross term with local Gaussian unitaries. For example, when a
three-mode pure Gaussian state prepared in the standard form
is distributed to each party under phase-insensitive Gaussian
channel, the x-p correlation term is zero. That is because the
x-p correlation term is already eliminated by preparing it in
the standard form and the phase-insensitive channel does not
create such a correlation.

Even a nonzero 〈x−p+〉 can be removed by proper phase
rotation for an arbitrary two-mode state. Consider a phase
rotation described by

x̂ ′
i = x̂i cos θi + p̂i sin θi,

p̂′
i = p̂i cos θi − x̂i sin θi for i = 1,2, (19)

with θ1 = θ and θ2 = −θ . It transforms the second moments
as

〈(x ′
−)2〉 = 〈x2

−〉 cos2 θ + 〈p2
+〉 sin2 θ + sin 2θ〈x−p+〉,

〈(p′
+)2〉 = 〈p2

+〉 cos2 θ + 〈x2
−〉 sin2 θ − sin 2θ〈x−p+〉, (20)

〈x ′
−p′

+〉 = 〈x−p+〉 cos 2θ + 1
2 (〈p2

+〉 − 〈x2
−〉) sin 2θ.

It is readily seen that the two quantities 〈x2
−〉 + 〈p2

+〉 and
〈x2

−〉〈p2
+〉 − 〈x−p+〉2 are invariant under the transforma-

tion (20), and thus fidelity (12) is also invariant. We can always
find an angle θc which leads to 〈�x ′

−�p′
+〉 = 0, where the

angle is given by

tan 2θc = 2〈x−p+〉
〈p2+〉 − 〈x2−〉 . (21)

In the case when the angle θc is the same for both pairs {A,B}
and {A,C}, the cross term can be eliminated simultaneously.
We also showed that, in this case, the inequality (18) still
holds (see the appendix of Ref. [32] for proof); that is, a strict
monogamy relation is satisfied.

B. Non-Gaussian manipulation

Many studies have shown that teleportation fidelity can
be improved by non-Gaussian manipulation on Gaussian
entangled states [18–23]. In particular, it was shown that a two-
mode Gaussian state which does not beat the no-cloning limit
can overcome it by applying non-Gaussian operations [19].
Here we study whether non-Gaussian operations such as
photon subtraction and addition on a three-mode Gaussian
state can be used to beat the Gaussian cloning limit F G

nc, while
it is obvious that the ultimate no-cloning bound Fnc cannot be
beaten.

A TMSV with squeezing parameter r is prepared and its
first mode is then distributed to Alice and the other modes to
Bob and Charlie after dividing the second mode at a 50 : 50
beam splitter. The choice of r = 1

2 cosh−1 3 corresponds to
|	G

3 〉 achieving the optimal Gaussian cloning, but here we
leave it as a free parameter. Now each party chooses one
of their manipulations from photon subtraction, addition, or
nothing. Since we investigate whether the no-cloning limit can
be beaten for both Bob and Charlie simultaneously, we assume
that Bob and Charlie choose the same operation thus the same
fidelity as well. In Fig. 5, we plot the fidelity after non-Gaussian
operations. Unfortunately, none of the considered cases beat
the Gaussian cloning limit. Moreover, the fidelity does not
improve compared with the original Gaussian one. The only
case which leads to at least the same fidelity is observed when
subtraction is made on mode A with squeezing parameter
r = 1

2 cosh−1 3. Although photon subtraction and addition are
a subset of non-Gaussian operations, they are fundamental
resources in quantum information and feasible in laboratory.
This result indicates that a strict monogamy with Gaussian
resources is not readily violated with simple non-Gaussian
manipulations.

IV. MONOGAMY INEQUALITY FOR
CONTINUOUS-VARIABLE

TELEPORTATION CAPABILITY

In this section, we study whether a monogamy inequality
such as inequality (1) exists for coherent-state teleportation. In
general, when an entanglement measure E is monotonically
decreasing under discarding systems, there always exists a
positive number α with which the inequality (1) is satis-
fied [45]. The proof is simple. For given variables x, y, and
z satisfying x > y > 0 and x > z > 0, we can always find a
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FIG. 5. Plot illustrating teleportation fidelity after non-Gaussian
operations. The shaded region represents the fidelity below the
Gaussian cloning limit 2

3 . The gray dot-dashed curve represents the
fidelity achieved with the initial Gaussian state. (a) Photon subtraction
operation on A (solid), on B, C (dashed), and on A, B, C (dotted).
(b) Photon addition operation on A (solid), on B, C (dashed), and on
A, B, C (dotted). (c) Subtraction on A, addition on B, C (dashed),
and addition on A, subtraction on B, C (dotted).

positive number α giving(
y

x

)α

+
(

z

x

)α

< 1. (22)

However, if α tends to infinity, inequality (1) becomes

max {EA:B,EA:C} � EA:BC, (23)

which is a trivial condition for entanglement monotone. In this
case, it is not possible to find any faithful function f which
describes the monogamy relation [46]

f (EA:B,EA:C) � EA:BC, (24)

except for the trivial condition (23).
We employ a quantity called the teleportation capabil-

ity [36], which is defined as

C = max{0,2F opt − 1}, (25)

and which manifests the quantum advantage beyond the
classical limit. We test whether the teleportation capability
C satisfies the monogamy inequality (1) and find that it does
not hold for any finite order of α. Below we explicitly construct
an example which violates the monogamy inequality.

A. Teleportation network

First we need to define the teleportation fidelity F
opt
A:B1B2···BN

achievable when a sender has a single mode A and a receiver
has N modes B1B2 · · ·BN altogether. In this case, we may
consider two different scenarios. One is a teleportation network
scheme where a teleportation is accomplished between two
parties with the assistance of the others by local measurement
and classical communication [42]. The other scenario is to
concentrate entanglement onto two modes by global operations
among N modes [47] and to make use of concentrated two-
mode entanglement for teleportation. It was shown that, for
(N + 1)-mode symmetric states, both scenarios yield the same
optimal result [48]. Here we briefly summarize the assisted
teleportation scheme and its optimization.

We begin with one momentum-squeezed state and N

position-squeezed states, described by the quadrature oper-
ators in the Heisenberg picture:

x̂0 = er1 x̂
(n1)
0 , p̂0 = e−r1 p̂

(n1)
0 ,

x̂j = e−r2 x̂
(n2)
j , p̂j = er2 p̂

(n2)
j , (j = 1,2, . . . ,N ), (26)

where the superscript (na) refers to a thermal state with
〈(x(ni ))2〉 = 〈(p(ni ))2〉 = ni

2 for i = 1,2. Then we generate
(N + 1)-mode symmetric entangled states by combining the
modes with beam-splitter interactions

B̂N−1,N

(
cos−1 1√

2

)
B̂N−2,N−1

(
cos−1 1√

3

)

× · · · × B̂0,1

(
cos−1 1√

N + 1

)
. (27)

The mode 0 belongs to Alice and the other N modes belong to
each of the N Bobs. Note that the entanglement is constant for
fixed n1, n2, and r̄ = 1

2 (r1 + r2). Therefore, two different states
with the same n1, n2, and r̄ ≡ 1

2 (r1 + r2) but with different d ≡
1
2 (r2 − r1) are equivalent under local operations and they can
be transformed into each other by local squeezing operations.
Similar to the standard two-mode protocol, Alice performs
joint measurement of x̂u and p̂v and sends the outcomes to one
of the receivers; namely, B1. On the other hand, N − 1 other
Bobs measure the momentum p of their modes, respectively,
and also send it to B1. Then a displacement of B1’s mode by

x̂1 → x̂out = x̂1 +
√

2x̂u,

p̂1 → p̂out = p̂1 −
√

2p̂v + g

N∑
j=2

p̂j (28)

accomplishes the teleportation, where g is an adjustable gain.
The original proposal [42] assumed a pure state with

n1 = n2 = 1 and the same squeezing parameters r1 = r2 = r̄ ,
with the argument that the scheme might be not optimal. The
scheme was later optimized in Ref. [48] with the squeezing
parameters r1 and r2 adjusted for general cases with arbitrary
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n1 and n2. For optimal teleportation, fidelity is given by

F
opt
A:B1B2···BN

= 1

1 + 2νN

,

where νN ≡ 1

2

√
(N + 1)n1n2

2e4r̄ + (N − 1) n1
n2

. (29)

The quantity νN is exactly equivalent to the least symplectic
eigenvalue of partially transposed CM under the bipartition A :
B1B2 · · · BN and the optimal fidelity thus has a direct relation
to entanglement. On the other hand, if we employ the standard
two-mode teleportation between two modes A and Bi , we find
the optimal fidelity given by

F
opt
A:Bi

= 1

1 + 2ν1
,

where ν1 ≡ 1

2

√
n2

N + 1
[2n1e−4r̄ + (N − 1)n2]. (30)

The quantity ν1 here represents the least symplectic eigenvalue
of partially transposed CM of two modes.

B. Monogamy inequality for teleportation capability

Let us consider an N -mode pure symmetric state with n1 =
n2 = 1 for a fixed r̄ . In this case, teleportation capabilities are
given by

CA:B1B2···BN
= 2

1 +
√

N+1
2e4r̄+(N−1)

− 1,

CA:Bi
= 2

1 +
√

2e−4r̄+(N−1)
N+1

− 1. (31)

Note that CA:Bi
> 0 regardless of the number of receivers N ,

i.e., a sender can have quantum advantage beyond the classical
bound with many different receivers. We plot CA:B1B2···BN

−∑N
i=1 CA:Bi

for different values of N in Fig. 6(a), which shows
a negative value for a small r̄ . In other words, the teleportation
capability does not satisfy the monogamy inequality with order
α = 1.

We can also show that the monogamy inequality is violated
for any finite orders of α. For small r̄ � 1, teleportation
capabilities asymptotically behave as

CA:B1B2···BN
≈ 2r̄

N + 1
+ 4(N − 1)

(N + 1)2
r̄2 + O(r̄3),

CA:Bi
≈ 2r̄

N + 1
− 4(N − 1)

(N + 1)2
r̄2 + O(r̄3). (32)

We thus see that

Cα
A:B1B2···BN

−
N∑

i=1

Cα
A:Bi

≈ (N − 1)2α

(N + 1)α
r̄α(−1 + 2αr̄) (33)

becomes negative when r̄ � 1
2α

. In particular, in the small-
squeezing limit, the ratio of teleportation capabilities becomes
limr→0 CA:Bi

/CA:B1B2···BN
= 1, as shown in Fig. 6(b). It means

that every individual fidelity achieved between each pair is
very close to the fidelity achievable collectively between
Alice and all Bobs. In this case, a monotonic function f

which satisfies f ({CA:Bi
}) � CA:B1B2···BN

is only given by
f ({CA:Bi

}) = max{CA:Bi
}, which is a trivial condition satisfied
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0.8
1.0
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FIG. 6. Plot illustrating (a) CA:B1B2···BN
− ∑N

i=1 CA:Bi
and (b)

CA:Bi
/CA:B1B2···BN

with respect to r̄ . Each curve corresponds to a
different N : N = 2 (blue solid), N = 5 (green dashed), N = 10 (red
dotted). The shaded region represents the violation of monogamy
inequality.

by entanglement monotone. Therefore, there does not exist
any nontrivial monogamy inequality for CV teleportation
capability in general.

V. CONCLUSION

In summary, we investigated CV teleportation by using a
multimode state to study the monogamy property of useful
entanglement. We showed that a strict monogamy relation
holds for CV teleportation, i.e., a sender cannot beat the
no-cloning limit with more than one receiver, while it is
possible to achieve the quantum advantage beyond classical
fidelity with any number of communicators. Starting with
Gaussian entangled resources, one may attempt to improve
teleportation fidelity individually by using local Gaussian
operations in collaboration with other parties, but it was shown
to be not possible to beat the Gaussian no-cloning bound
FG

nc = 2
3 . Even though the Gaussian no-cloning bound FG

nc is
slightly lower than the ultimate no-cloning bound, it is not even
possible to overcome it readily by non-Gaussian operations
acting on the Gaussian resource states. This provides a strong
support to the strict monogamy relation in the CV QT. On
the other hand, we also showed that CV teleportation can
achieve the optimal cloning, both Gaussian and non-Gaussian
bound, by properly preparing the resource states, even if
the QT generally constitutes a subset of all possible state
manipulations considered in the no-cloning theorem.

While one naturally expects a monogamy property of
quantum entanglement qualitatively, it is a study of importance
to identify a quantitative form of monogamy in order to
look into the nature of quantum entanglement more deeply.
We further investigated the monogamy relation by using
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an inequality form in terms of teleportation capability. We
demonstrated that the monogamy inequality does not hold
by constructing explicit examples. Nevertheless, a further
study may be necessary to see if monogamy relation for
QT can be described in a form of inequality accompanying
an additional constraint. For example, it was shown that
entanglement of formation or relative entropy of entanglement
is not monogamous in general, but monogamy is recovered
with dimension-dependent inequality [46]. Since monogamy

inequality for teleportation capability is violated in the regime
of small r , one may recover the monogamy relation by
taking an additional constraint, e.g., an energy constraint, into
consideration.

ACKNOWLEDGMENTS

We acknowledge the support by the NPRP grant 8-352-1-
074 from the Qatar National Research Fund.

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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[18] T. Opatrný, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61,
032302 (2000).

[19] P. T. Cochrane, T. C. Ralph, and G. J. Milburn, Phys. Rev. A 65,
062306 (2002).

[20] S. Olivares, M. G. A. Paris, and R. Bonifacio, Phys. Rev. A 67,
032314 (2003).

[21] S.-Y. Lee, S.-W. Ji, H.-J. Kim, and H. Nha, Phys. Rev. A 84,
012302 (2011); J. Park, S.-Y. Lee, H.-W. Lee, and H. Nha, J.
Opt. Soc. Am. B 29, 906 (2012).

[22] J. Lee and H. Nha, Phys. Rev. A 87, 032307 (2013).
[23] H.-J. Kim, J. Kim, and H. Nha, Phys. Rev. A 88, 032109 (2013).
[24] F. G. S. L. Brandão, Phys. Rev. A 76, 030301(R) (2007).

[25] R. Chaves and L. Davidovich, Phys. Rev. A 82, 052308 (2010).
[26] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 (2000).
[27] Ll. Masanes, A. Acin, and N. Gisin, Phys. Rev. A 73, 012112
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