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Optimal probe states for the estimation of Gaussian unitary channels
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We construct a practical method for finding optimal Gaussian probe states for the estimation of parameters
encoded by Gaussian unitary channels. This method can be used for finding all optimal probe states, rather
than focusing on the performance of specific states as shown in previous studies. As an example, we apply this
method to find optimal probes for the channel that combines the phase-change and squeezing channels, and
for generalized two-mode squeezing and mode-mixing channels. The method enables a comprehensive study
of temperature effects in Gaussian parameter estimation. It has been shown that the precision in parameter
estimation using single-mode states can be enhanced by increasing the temperature of the probe. We show that
not only higher temperature, but also larger temperature differences between modes of a Gaussian probe state
can enhance the estimation precision.
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I. INTRODUCTION

In recent years, the interest in quantum technologies has
increased since this research area is in the brink of reaching
the commercialization stage. Important theoretical and exper-
imental efforts are underway to exploit quantum properties,
such as squeezing and entanglement, in the development of a
new generation of sensors that improve on the precision of their
classical counterparts by orders of magnitude [1]. However,
there is still substantial work to be done on improving on the
capability for preparing certain states, on the protection of
states from decoherence, on being able to implement specific
measurements, and on finding optimal probe states to achieve
the highest possible sensitivity. In this paper we develop a
practical method for finding optimal probe Gaussian states,
which are a family of states that are very accessible in
experiments.

In quantum metrology, probe states are quantum states used
to optimally estimate an unknown parameter of a quantum
channel. A quantum channel is a transformation that can be
unitary or correspond to a complete positive map in the case
where the system interacts with the environment. The typical
strategy is simple [2]: The probe state is fed into the channel,
the channel encodes the parameter on the state of the system
and, finally, measurements are performed with the aim of
gaining maximal information about the parameter. Some probe
states are affected more by than others for a given channel,
i.e., they are more sensitive. Channels of interest in this paper
are Gaussian channels, which transform a Gaussian state into
another Gaussian state. Finding the optimal family of probe
states for a given channel is one of the main tasks of quantum
metrology. The aim is to achieve the Heisenberg limit, which
is the optimal rate at which the accuracy of a measurement can
scale with the energy stored in a probe state.

Gaussian states are usually not optimal probe states. When
dephasing is not present non-Gaussian states such as GHZ
states usually perform as better probes. However, previous
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theoretical studies show that Gaussian states can be still
effectively used for the estimation of Gaussian channels
such as phase changing [3–6], squeezing [7–9], two-mode
squeezing, and mode-mixing channels [9]. Previous studies
analyzed specific channels and for each channel only one probe
state achieving the Heisenberg limit was found. In addition,
Gaussian state metrology was often restricted to pure states.
Less attention was given to thermal states, which are of great
relevance in practice. In the laboratory, quantum states can
never be isolated from the environment which thermalizes
the states. In this paper we develop a formalism that can be
effectively used to study any Gaussian probe state for any
one- and two-mode Gaussian unitary channels. Moreover, we
develop methods to find all optimal Gaussian probe states for
these channels. We take advantage of recent developments
in the phase-space formalism of Gaussian states [10–16],
making use of Euler’s decomposition of symplectic matrices,
the Williamson decomposition of the covariance matrix in
the complex form, and expression for the quantum Fisher
information in terms of the Williamson decomposition [15].
These techniques enable us to simplify expressions so that
formulas can be easily used in practical applications. As
an example, we derive interesting optimal states for chan-
nels. These are the channel combining the phase change
and squeezing, and generalized mode-mixing and two-mode
squeezing channels. Interestingly, we find that in the estimation
of two-mode channels, separable states consisting of two
one-mode squeezed states perform as well as their entangled
counterpart, the two-mode squeezed states. This shows that
entanglement between the modes does not enhance precision
in this case.

Our formalism also enables us to further our understanding
of the effects of temperature in probe states. It has been
reported in [4] that higher temperature in squeezed thermal
states can enhance phase estimation, while higher temperature
of displaced thermal states is detrimental. We show that
the effects of thermalized probe states on the estimation
of Gaussian channels are generic, i.e., for all Gaussian
unitary channels, temperature effects are always manifested
in multiplicative factors of four types. Two of the factors
correspond to the ones previously found in [4]. The other
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two factors show that not only temperature of the probe state,
but also temperature difference between different modes of the
probe state helps the estimation.

The paper is organized as follows. We first introduce the
phase-space formalism for Gaussian states, Gaussian unitary
channels, and techniques for the optimal estimation of channel
parameters. We present a general framework to find optimal
probe states for any Gaussian unitary channel and we study
the effects of temperature on the estimation strategy. We
apply our formalism to present concrete examples for one-
and two-mode Gaussian unitary channels and generalize
bounds on the precision of estimation found in [3,4,7–9].
In the concluding section we discuss the Heisenberg and the
shot-noise limits of our results. Three appendixes are included
providing details on the phase-space description of Gaussian
unitary channels (Appendix A), relevant characteristics of the
channels (Appendix B), and general results for the estimation
of two-mode squeezing and mode-mixing channels using a
wide class of two-mode probe states (Appendix C).

II. QUANTUM METROLOGY ON GAUSSIAN STATES

The main aim of quantum metrology is to provide
techniques to estimate as precisely as possible a physical
parameter encoded in a quantum state. In this section we
review techniques that provide lower precision bounds in the
estimation of parameters encoded in Gaussian states. This
is done conveniently using the phase-space description of
Gaussian states and Gaussian unitary operators. We consider
a system consisting of N Bosonic modes. The operators ân and
â
†
n annihilate and create particles, respectively, in each mode.

In the phase-space description of the system the operators
are collected in vector Â := (â1, . . . ,âN ,â

†
1, . . . ,â

†
N )T . The

commutation relations between the operators can also be
written in compact form,

[ Âi , Â†
j ] = Kij id ⇒ K =

[
I 0
0 −I

]
, (1)

where id denotes the identity element of an algebra and I is the
identity matrix. Note that K−1 = K† = K and that K2 = I .
The displacement vector d = (d1, . . . ,dN ,d1, . . . ,dN )T and
the covariance matrix σ , defined as [17]

di = tr[ρ̂ Âi], (2a)

σij = tr[ρ̂ {� Âi ,� Â†
j }], (2b)

correspond to the first and second moments of the field,
respectively. The density operator ρ̂ specifies the state of
the field and {·,·} denotes the anticommutator. The covariance
matrix is a positive-definite matrix given in terms of the vector
� Â := Â − d. We emphasize that, to simplify calculations,
we choose to use definitions in the complex form, while most
authors use the real form. For more details on their equivalence
see Appendix B or [15,18].

Gaussian states are defined as states that are fully char-
acterized by their first and second moments, while more
general states require higher field moments in their description.
Gaussian transformations correspond to unitaries Û that
transform Gaussian states into Gaussian states, ρ̂ ′ = Û ρ̂Û †.

These operators are generated via an exponential map with the
exponent at most quadratic in the field operators [17],

Û = exp

(
i

2
Â†W Â + Â†Kγ

)
, (3)

where W is a Hermitian matrix of the form

W =
[
X Y

Y X

]
, (4)

γ is a complex vector of the form γ = (γ̃ ,γ̃ )T , and K is
the matrix defined in Eq. (1). In the case that W = 0, the
Gaussian operator (3) corresponds to the Weyl displacement
operator D̂(γ̃ ), while for γ = 0 we obtain other Gaussian
transformations such as the phase-changing operator, one-
and two-mode squeezing operators, or mode-mixing operators
depending on the particular structure of W . Under the unitary
channel (3) the first and the second moments transform
according to rule

d ′ = Sd + b, σ ′ = SσS†, (5)

where, as we prove in Appendix A,

S = eiKW , b =
(∫ 1

0
eiKWtdt

)
γ . (6)

The above identities together with transformation relations (5)
are central to this paper. They allow us to transform the
density-matrix description of Gaussian states to the phase-
space formalism, which is mathematically more convenient.

The matrix S from Eq. (6), called the symplectic matrix,
has the same structure as W and satisfies the relation

S =
[
α β

β α

]
, SKS† = K. (7)

These two properties define the complex form of the real
symplectic group Sp(2N,R). For more details see [15,18].

According to the Williamson theorem [19–21], any
positive-definite matrix can be diagonalized by the symplectic
matrices

σ = SDS†, (8)

where S is the symplectic matrix of the form (7), and D is the
diagonal matrix consisting of the so-called symplectic eigen-
values, D = diag(λ1, . . . ,λN,λ1, . . . ,λN ). For the covariance
matrix describing a Gaussian state all symplectic eigenvalues
are larger than or equal to 1, and a Gaussian state is pure if and
only if λ1 = · · · = λN = 1.

The Williamson decomposition can be used, for example, to
fully parametrize Gaussian states of a given number of modes.
Any symplectic matrix (7) can be decomposed using Euler’s
decomposition as [17,18]

S =
[
U1 0
0 U 1

][
cosh Mr − sinh Mr

− sinh Mr cosh Mr

][
U2 0
0 U 2

]
, (9)

where U1 and U2 denote unitary matrices, and Mr =
diag(r1, . . . ,rN ) is the diagonal matrix of the squeezing
parameters. With a full parametrization of unitary matrices U1

and U2, one can use this decomposition to fully parametrize the
covariance matrix via Eq. (8). Moreover, since the displace-
ment vector is fully parametrized by its elements, we have a full
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parametrization of Gaussian states. Note, however, that some
parameters may not add any additional complexity and can be
removed. This is a consequence of the fact that in Eq. (8)
some parts of (the decomposition of) U2 vanish, because
they commute with the diagonal matrix diag(λ1, . . . ,λN ). We
explicitly write the most general one-mode Gaussian state in
Sec. V, and the most general two-mode Gaussian state in
Sec. VI.

One of the main aims of quantum metrology is to find
the ultimate precision limits on the estimation of a physical
parameter ε encoded in a quantum state. This is given by the
quantum Cramér-Rao bound [2,22],

〈(�ε̂)2〉 � 1

MH (ε)
, (10)

which gives a lower bound on the mean squared error of
the locally unbiased estimator ε̂. M denotes the number of
measurements taken on identical copies of the state ρ̂(ε),
and H (ε) is a quantity called quantum Fisher information.
The quantum Fisher information says how precisely we can
estimate an unknown parameter ε in a single-shot experiment.
For the Williamson decomposition (8) of the covariance matrix
of a Gaussian state, the quantum Fisher information reads [15]

H (ε) =
N∑

i,j=1

(λi − λj )2

λiλj − 1
|Rij |2 + (λi + λj )2

λiλj + 1
|Qij |2

+
N∑

i=1

λ̇i
2

λ2
i − 1

+ 2ḋ
†
σ−1 ḋ. (11)

R and Q are submatrices of the matrix P := S−1Ṡ, satisfying
the defining relation of the Lie algebra associated with the
symplectic group

P (ε) =
[
R Q

Q R

]
, PK + KP † = 0, (12)

and dot denotes the derivative with respect to the parameter
we want to estimate. For ε such that λi(ε) = λj (ε) = 1, we

define the problematic terms in Eq. (11) as λ̇i
2

λ2
i −1

(ε) := λ̈i(ε),

and (λi−λj )2

λiλj −1 (ε) := 0.
In the estimation of quantum channels we are sometimes

interested in the scaling of the quantum Fisher information
with the mean number of particles in a probe state. If the
quantum Fisher information scales quadratically with n, we
say the Heisenberg limit is achieved [1], which signifies a
use of quantum resources. In contrast, the linear scaling of
the quantum Fisher information is called the shot-noise limit,
which can usually be achieved by classical methods.

III. GENERAL FRAMEWORK

In this section we provide a framework for studying the
optimal Gaussian probe states for the estimation of Gaussian
unitary channels as illustrated in Fig. 1. Mathematically this is
achieved as follows. First, we take a general parametrization
of a Gaussian probe state and calculate the quantum Fisher
information associated with the channel we estimate. Then we
choose parameters of the probe state such that the quantum
Fisher information is maximized.

ε

Preparation of the probe state

ρ

ρ
0

ε
Encoding operation

Thermal state Squeezed thermal

state

Rotated squeezed 

thermal state

Displaced rotated squeezed 

thermal state

Measurement

x
x
x

 ...

1
2
3 ε(x  , x  , x  ,...)1     2     3

Estimation

FIG. 1. Scheme of the usual metrology setting illustrated on a
one-mode Gaussian probe state. First, we prepare the state by using
various Gaussian operations, then we feed the state into the channel
we want to estimate, perform an appropriate measurement, and an
estimator ε̂ gives us an estimate of the true value of the parameter. In
this paper, we are interested in optimizing over the preparation stage
for a given encoding Gaussian unitary channel Û (ε).

Let us assume we have full control over the preparation
of the initial probe state ρ̂0 ≡ (d0,σ0), with the Williamson
decomposition σ0 = S0D0S

†
0 of the covariance matrix. The di-

agonal matrix D0 represents a thermal state and the symplectic
matrix S0 together with the displacement vector d0 represent
operations we are going to perform on this thermal state. After
the probe state is created, we feed it into the Gaussian channel
that encodes the parameter we want to estimate.

Using Eqs. (5) we find the final state is given by the first
and the second moments

dε = Sε d0 + bε, (13a)

σε = SεS0D0S
†
0S

†
ε . (13b)

As the covariance matrix appears precisely in the form of the
Williamson decomposition, we can use formula (11) directly.
Applying Eqs. (7), (12), and (13), we derive

P = S−1
0 PεS0, (14a)

N∑
k=1

λ̇k
2

λ2
k − 1

= 0, (14b)

2ḋ
†
σ−1 ḋ = 2

(
Pε d0 + S−1

ε ḃε

)†
σ−1

0

(
Pε d0 + S−1

ε ḃε

)
, (14c)

where we have denoted Pε := S−1
ε Ṡε . Due to the unitarity of

the channel the symplectic eigenvalues do not change, and
expression (14b) vanishes. This scheme can be used for any
Gaussian unitary channel. However, in next sections we are
going to study Gaussian unitary channels which form a one-
parameter unitary group,

Ûε = exp

[(
i

2
Â†W Â + Â†Kγ

)
ε

]
, (15)

062313-3
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where W and γ are independent of ε. Because an element of
such group is constructed by a substitution in Eq. (3),

i

2
Â†W Â + Â†Kγ →

(
i

2
Â†W Â + Â†Kγ

)
ε, (16)

we can use Eq. (6) to derive Pε = iKW and ḃε = Sεγ .
Inserting these expressions into Eqs. (14) it becomes clear that
the resulting quantum Fisher information (11) is independent
of ε. Given a constant matrix W and a constant vector
γ representing a Gaussian unitary channel, the problem of
finding optimal probe states then reduces to finding parameters
of the probe state, S0,D0,d0, such that the quantum Fisher
information is maximized. In the next sections we will
study channels with purely quadratic generators which are
characterized by γ = 0 in Eq. (15).

IV. EFFECTS OF TEMPERATURE

It is interesting to note that the symplectic eigenvalues
in Eq. (11) appear only in a form of multiplicative factors,
independent of other parameters and channels we estimate.

This is particularly interesting from a physical point of
view because the symplectic eigenvalues encode temperature.
The symplectic eigenvalue describing a thermal state of the
harmonic oscillator with frequency ωk is given by λk =
coth( ωk�

2kT
), or alternatively, λk = 1 + 2nthk where nthk denotes

the mean number of thermal bosons in each mode.
In Eq. (11) we can identify four types of multiplicative fac-

tors given by symplectic eigenvalues, λ2
k

1+λ2
k

, (λk+λl )2

λkλl+1 , (λk−λl )2

λkλl−1 ,

and 1
λk

.1 First, let us focus on effects of temperature given by
the first three types of factors which multiply matrices R and
Q. These represents sensitivity of squeezing and orientation
of squeezing of the probe state with respect to the channel we

estimate. The first type of factor, λ2
k

1+λ2
k

, is one of the two to

appear for the isothermal (sometimes called isotropic) states
for which all symplectic eigenvalues are equal. This class also
encompasses all pure states. Because 1 � λk � +∞, we have
1
2 � λ2

k

1+λ2
k

� 1, where the lower bound is attained by pure

states and the upper bound by thermal states with infinite
temperature. This means that for isothermal states temperature
helps the estimation with maximal enhancement of a factor of
2, a fact already noted in [4]. Next, for mixed multimode
states we have the second and third type of factors, (λk−λl )2

λkλl−1

and (λk+λl )2

λkλl+1 . These terms become especially important when
there is a large difference between the symplectic eigenvalues.
Considering λl → 1 we have

(λk − λl)2

λkλl − 1
−→ λk − 1 = 2nthk, (17a)

(λk + λl)2

λkλl + 1
−→ λk + 1 = 2(nthl + 1). (17b)

1We do not count 1
λ2
k
−1

because limλk→1
1

λ2
k
−1

= +∞ while

limλk→1
λ̇k

2

λ2
k
−1

= λ̈k . Therefore 1
λ2
k
−1

does not represent a freestanding

factor.

Generally, assuming λk 	 λl yields

(λk − λl)2

λkλl − 1
≈ (λk + λl)2

λkλl + 1
≈ 2nthk

2nthl + 1
. (18)

This shows that the enhancement by temperature difference is
no longer bounded by some fixed value as in the previous case.

If we keep one mode sufficiently cool and the other hot, or if
one mode has a high frequency and the other a low frequency,
we can, in principle, achieve an infinite enhancement in the
estimation of the unknown parameter. In general, states with
a large variance in energy, which in this case is in the form of
thermal fluctuations, have a higher ability to carry information,
and thus can carry more information about the parameter
we want to estimate. We will refer to this phenomenon as
temperature-enhanced estimation.

We have shown that temperature and temperature difference
enhances the first two terms in Eq. (11) due to the first three
types of factors. However, the opposite behavior is observed
in the last term. This last term shows how sensitive the
displacement is to the small changes in the parameter of the
channel. Factors of the fourth type, 1

λk
, are hidden in the inverse

of the initial covariance matrix in this last term as shown in
Eq. (14c). As temperature rises and the symplectic eigenvalues
grow to infinity, this factor goes to zero and the precision in
estimation diminishes.

Let us look at what these factors mean physically for
different probe states. Channels quadratic in the field operators,
which are given by γ = 0, do not affect the displacement of
nondisplaced probe states such as squeezed thermal states.
This means that the precision in estimation of such channels
when using nondisplaced states will be affected only by factors
of the first three types. When using a squeezed thermal state
as a probe, temperature and temperature difference in different
modes of this probe will always help the estimation. In contrast,
when a displaced thermal state is used as a probe, the effect
of quadratic channels on the squeezing of such probes is
very minor. In other words, covariance matrix of displaced
thermal states is almost unchanged by a quadratic channel and
completely unchanged in the case of passive channels which do
not change the mean number of particles in the state. Therefore
the first three types of factors play a minor role. Quadratic
channels will greatly change the displacement of a displaced
thermal state therefore the factor of the last type 1

λk
is of

great relevance. Higher temperature in displaced thermal states
decreases the precision of estimation of quadratic channels.
Physically, it is good to have either a hot squeezed state or
a cold displaced state as a probe. We illustrate this behavior
on the paradigmatic example of phase estimation in Fig. 2
using two one-mode squeezed thermal states and two displaced
thermal states.

It is important to point out that every example in the next
two sections shows that we fix the mean value of the energy
of the probe state; temperature does not account as a resource
anymore, and neither does displacement. Optimal probe states
will always have its entire energy invested into squeezing. This
seems to be a completely general behavior. Nonetheless, we
were not able to prove this is always the case for any Gaussian
unitary channel. Discussion of this matter can be found in
Ref. [23].
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FIG. 2. Estimation of the phase-changing channel R̂(ε) around point ε = 0 using various one-mode Gaussian probe states parametrized by
Eq. (20). (1) squeezed vacuum [r = −0.88,|d| = 0,λ1 = 1,H (ε) ≈ 16], (2) squeezed thermal state [r = −0.88,|d| = 0,λ1 = 2,H (ε) ≈ 25],
(3) displaced vacuum [r = 0,|d| = 1,λ1 = 1,H (ε) = 4], and (4) displaced thermal state [r = 0,|d| = 1,λ1 = 2,H (ε) = 2]. The squeezing
parameter r = −0.88 was chosen in such a way that the squeezed vacuum and the displaced vacuum have the same mean energy n = 1. We
plot covariance matrices in the real form phase-space, before (blue with full line) and after (orange with dashed line) the phase change R̂(0.2)
has been applied. The quantum Fisher information has been calculated from Eq. (26). The relative overlap of covariance matrices of squeezed
states is the same in both cases (1) and (2), however, the covariance matrix being larger in (2) allows for a better precision in estimation given by

the factor
λ2

1
1+λ2

1
. Thermal fluctuations in a squeezed state help the estimation. In contrast, the relative overlap of covariance matrices of displaced

states is considerably larger in (4) as compared to (3). Higher thermal fluctuations in a displaced state is detrimental for the estimation. This
decrease in precision is given by the factor 1

λ1
.

V. ESTIMATION OF ONE-MODE GAUSSIAN CHANNELS

In this section we are going to look at the estimation of
one-mode Gaussian unitary channels with purely quadratic
generators. For one-mode channels the Hermitian matrix W

from Eq. (3) can be naturally parametrized as

W =
[ −θ ireiχ

−ire−iχ −θ

]
. (19)

For r = 0 the symplectic matrix S = eiKW represents a one-
mode phase shift R̂(θ ) = exp(−iθ â†â), and we will write
S = R(θ ). Choosing θ = 0 instead, the matrix S represents
one-mode squeezing at angle χ,Ŝ(r,χ ) = exp[− r

2 (eiχ â†2 −
e−iχ â2)]. Squeezing at angle zero will be denoted as Ŝ(r) and
its symplectic matrix equivalent will be denoted as S(r).

The most general one-mode Gaussian state is the one-
mode squeezed rotated displaced thermal state [17], ρ̂0 =
D̂(γ̃ )R̂(θ )Ŝ(r)ρ̂thŜ

†(r)R̂†(θ )D̂†(γ̃ ), where D̂(γ̃ ) is the Weyl
displacement operator defined below Eq. (3), with the variable
of the form γ̃ = |d|eiφd . The first and second moments of this
state are

d0 = (γ̃ ,γ̃ )T , σ0 = R(θ )S(r)D0(· · · )†, (20)

where D0 = diag(λ1,λ1). For making expressions shorter we
have employed the symbol (· · · ). This symbol represents the
same matrices that multiply the diagonal matrix D0 from the
left, i.e., in this case (· · · ) = R(θ )S(r). We will use this general
one-mode state as our probe state for one-mode channels, i.e.,
in Eq. (13) we set S0 = R(θ )S(r).

A. Estimation of a channel combining
squeezing and phase change

First we are going to study a general one-mode Gaussian
channel which combines both phase change and squeezing
in an arbitrary direction. Results for the phase-changing and
squeezing channel will then be obtained as special cases. We
construct this general channel by substituting θ → ωpε,r →
ωsε to Eq. (19). The resulting symplectic matrix Sε := eiKW

then represents an encoding operator Ŝε = exp{[−iωpâ†â −
ωs

2 (eiχ â†2 − e−iχ â2)]ε}. ωp and ωs are the frequencies with
which the state is rotated and squeezed respectively. We
assume these frequencies and the squeezing angle χ are
known, so ε is the only unknown parameter we are trying
to estimate. Using the general probe state (20) and methods
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from Sec. III we derive the quantum Fisher information,

H (ε) = 4λ2
1

1 + λ2
1

(
ω2

s [cos2(2θ + χ ) + cosh2(2r) sin2(2θ + χ )]

+ω2
p sinh2(2r) − ωsωp sin(2θ + χ ) sinh(4r)

)

+ 4|d|2
λ1

(e2r [ωs cos(θ − φd + χ ) − ωp sin(θ + φd )]2

+ e−2r [ωs sin(θ − φd + χ ) + ωp cos(θ + φd )]2).

(21)

Assuming all ωs,ωp,r are positive, this function clearly
achieves its maximum when sin(2θ + χ ) = −1, sin(θ −
φd + χ ) = 1, and sin(θ + φd ) = −1. For example, these con-
ditions are fulfilled when θ = −χ

2 − π
4 , φd = χ

2 − π
4 , which

leads to

Hmax(ε) = 4λ2
1

1 + λ2
1

[ωs cosh(2r) + ωp sinh(2r)]2

+ 4|d|2
λ1

e2r (ωs + ωp)2. (22)

This shows that both displacement and squeezing, if properly
oriented, enhance the estimation precision. However, to study
what strategy is the best when only a fixed amount of energy
is available we use the relation for the mean total number of
Bosons,

n = nd + nth + (1 + 2nth) sinh2 r, (23)

where nd := |d|2 denotes the mean number of Bosons coming
from the displacement. Together with the relation λ1 = 1 +
2nth we derive

Hmax(ε)=2(ωs(2n−2nd +1)+2ωp

√
n−nd −nth

√
n+1−nd +nth)2

1+2nth(1+nth)
+ 4nd (2n−2nd +1+2

√
n−nd −nth

√
n+1−nd +nth)2

(1+2nth)2
(ωs +ωp)2.

(24)

Keeping n fixed, the maximum is achieved when nth = nd = 0,
i.e., when all available energy is invested into squeezing, which
coincides with some special cases [4,9]. The quantum Fisher
information then reaches the Heisenberg limit,

Hmax(ε) = 2(ωs(2n + 1) + ωp2
√

n
√

1 + n)2. (25)

On the other hand, if we decide to invest only into the
displacement (which corresponds to the coherent probe state),
i.e., n = nd , we obtain the shot-noise limit Hmax(ε) = 2ω2

s +
4n(ωs + ωp)2.

B. Estimation of a phase-changing channel

The quantum Fisher information for the phase-changing
channel R̂(ε) is readily obtained from Eq. (21) by setting ωs =
0, ωp = 1,

H (ε) = 4λ2
1

1 + λ2
1

sinh2(2r) + 4|d|2
λ1

(e2r sin2(θ + φd )

+ e−2r cos2(θ + φd )). (26)

The maximum value is achieved when | sin(θ + φd )| = 1, i.e.,
for example, for θ = π/2 − φd . This demonstrates that the
initial rotation of the squeezed thermal state, or in other
words, the angle of squeezing, is irrelevant as long as the
displacing is applied in the direction where the squeezed state
is stretched. Setting nth = nd = 0, we obtain the Heisenberg
limit Hmax(ε) = 8n(n + 1), which generalizes the precision
bound found in [4] to any one-mode squeezed Gaussian
state, and n = nd gives the shot-noise limit Hmax(ε) = 4n.
To conclude, the optimal state for phase estimation is any
squeezed thermal state which is displaced in the direction in
which it is stretched. The optimal temperature depends on the
ratio of the initial squeezing and on the amount of displacing,

given by the solution of λ3
1

(λ2
1+1)2 = |d|2e2r

2 sinh2(2r)
. When only a finite

amount of energy is available for the probe state, the optimal
state is any squeezed vacuum. The phase estimation using
various probe states is depicted in Fig. 2.

C. Estimation of a one-mode squeezing channel

The quantum Fisher information for the squeezing channel
Ŝ(ε,χ ) is obtained from Eq. (21) by setting ωs = 1,ωp = 0,

H (ε) = 4λ2
1

1 + λ2
1

[cos2(2θ + χ ) + cosh2(2r) sin2(2θ + χ )]

+ 4|d|2
λ1

[e2rcos2(θ−φd +χ ) + e−2rsin2(θ−φd +χ )].

(27)

The maximum is reached when | sin(2θ + χ )| = 1 and
| cos(θ − φd + χ )| = 1, which occurs for example for θ =
π/4 − χ/2, φd = π/4 + χ/2. To achieve the maximal preci-
sion we need to rotate the squeezed thermal state by π/4 from
the direction of the squeezing channel we want to estimate, and
again as in case of the phase-changing channel, to displace it
in the direction in which the squeezed state is stretched. This
result generalizes the bounds derived in [9] and [15], in which
the squeezing channels with χ = π/2 and χ = 0 were studied,
respectively. Setting nth = nd = 0 we obtain the Heisenberg
limit Hmax(ε) = 2(2n + 1)2, while n = nd gives the shot-noise
limit Hmax(ε) = 2(2n + 1). Leading orders of this scaling also
correspond to the results from the papers using the global
estimation theory [7,8]. In conclusion, to optimally estimate
the squeezing channel, we prepare the thermal state, squeeze
it π/4 from the direction in which the channel squeezes, and
displace in the direction in which it is stretched. The optimal

temperature is given by the solution of λ3
1

(λ2
1+1)2 = |d|2e2r

2 cosh2(2r)
.

When only a finite amount of energy is available, the optimal
strategy is to invest it all into squeezing.
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VI. ESTIMATION OF TWO-MODE GAUSSIAN CHANNELS

In this section we are going to study the estimation of
two-mode Gaussian unitary channels with purely quadratic
generators using a wide class of two-mode mixed probe states
and the general two-mode pure state. In the analogy with one-
mode Gaussian channels, we parametrize the Hermitian matrix
W from Eq. (3) for two-mode channels as

W =

⎡
⎢⎢⎣

−θ1 −iθBeiχB ir1e
iχ1 irT eiχT

iθBe−iχB −θ2 irT eiχT ir2e
iχ2

−ir1e
−iχ1 −irT e−iχT −θ1 iθBe−iχB

−irT e−iχT −ir2e
−iχ2 −iθBeiχB −θ2

⎤
⎥⎥⎦.

(28)

Setting all parameters apart from θ1 to zero, the matrix
S = eiKW represents the one-mode phase shift R̂1(θ1) =
exp(−iθ1â

†
1â1), and we write S = R1(θ1). Similarly, for θ2

we have S = R2(θ2). Setting all parameters apart from θB

and χB to zero, we obtain the general mode-mixing channel
B̂(θB,χB) = exp[θB(eiχB â

†
1â2 − e−iχB â

†
2â1)], where χB repre-

sents the angle of mode mixing. For χB = 0 we obtain the usual
beam splitter with transmissivity τ = cos2 θB , denoted B̂(θB).
Following the same logic, parameters r1 and r2 represent
the one-mode squeezing of the first and the second mode as
defined in the previous section, denoted Ŝ1(r1,χ1),Ŝ2(r2,χ2),
and parameter rT represents the two-mode squeezing at angle
χT ,ŜT (rT ,χT ) = exp[−rT (eiχT â

†
1â

†
2 − e−iχT â1â2)].

We parametrize a general 2 × 2 unitary matrix as

U1 =
[
e−iφ1 0

0 1

][
1 0
0 e−iφ2

][
cos θ2 sin θ2

− sin θ2 cos θ2

][
e−iψ2 0

0 eiψ2

]
.

(29)

An equivalent parametrization is

U2 =
[
e−iψ1 0

0 eiψ1

][
cos θ1 sin θ1

− sin θ1 cos θ1

][
e−iφ3 0

0 1

][
1 0
0 e−iφ4

]
.

(30)

We insert these matrices into Eq. (9) to obtain the
parametrization of a general two-mode Gaussian state
in the phase-space formalism. Matrices with phase
parameters e−iφ3 and e−iφ4 in the parametrization of U2

will vanish because they commute with the diagonal matrix
D0 representing the thermal state in the Williamson’s
decomposition, Eqs. (8) and (13). Matrix U1 has its unitary
operator equivalent Û1 = R̂1(φ1)R̂2(φ2)B̂(θ2)R̂as(ψ2) (see
Appendix B), where we define R̂as(ψ) := R̂1(ψ)R̂2(−ψ).
Similarly, Û2 = R̂as(ψ1)B̂(θ1)R̂1(φ3)R̂2(φ4). This gives a
parametrization of a general two-mode Gaussian state in the
density matrix formalism,

ρ̂0 = D̂(γ̃ )R̂1(φ1)R̂2(φ2)B̂(θ2)R̂as(ψ2)Ŝ1(r1)Ŝ2(r2)

× R̂as(ψ1)B̂(θ1)ρ̂th(· · · )†, (31)

where the variable in the Weyl displacement operator D̂(γ̃ ) is
of the form γ̃ = (|d1|eiφd1 ,|d2|eiφd2 ). (· · · ) := D̂(γ̃ ) . . . B̂(θ1)
has the same meaning as in Eq. (20). It is possible to find
a parametrization of a general three-mode Gaussian state
using the same technique [23]. An equivalent parametrization
of a two-mode Gaussian state can be found in [24], but
we decided to use the above because it requires fewer
active transformations (i.e., two squeezing transformations
as compared to three), and it ultimately leads to simpler
results.

Although analysis with the general two-mode state can
be made, the results seem to be too complicated to be used
effectively. Also, as the first three operations applied on
the thermal state only swap and entangle the symplectic
eigenvalues, we do not expect much generality will be lost
when not considering them. Moreover, in the case of the
isothermal states (which also covers all pure states), such
operations do not have any effect. This is why we restrict
ourselves to probe states which we write in the covariance
matrix formalism as

d0 = (γ̃ ,γ̃ )T , (32a)

σ0 = R1(φ1)R2(φ2)B(θ )Ras(ψ)S1(r1)S2(r2)D0(· · · )†, (32b)

where D0 = diag(λ1,λ2,λ1,λ2). Also, since using mixed
states cannot improve the quality of estimation when fix-
ing the energy of the probe state, the optimal states are
always pure. As Eq. (32) encompasses all pure states, it
is enough to use this restricted class of states to find the
optimal.

A. Estimation of two-mode squeezing channels

First we are going to study the optimal states for the
estimation of the two-mode squeezing channel ŜT (ε,χ ),
assuming the direction of squeezing χ is known. Using the
state from Eq. (32) we find only two cases which lead to
significantly different results. In the first case a beam splitter
is not used (θ = 0) in the preparation process, which corre-
sponds to using two simultaneously sent, but nonentangled
single-mode squeezed probe states. In the second case the
balanced beam splitter is used (θ = π/4), which corresponds
to using two-mode squeezed-type probe states. The full
expression for the quantum Fisher information is a mixture
of these two qualitatively different cases and can be found in
Appendix C.

1. Two-mode squeezing channel: Using two nonentangled
single-mode squeezed Gaussian states

Assuming θ = 0 in the probe state (32), without loss of
generality we can also set ψ = 0. The resulting quantum
Fisher information for the estimation of a two-mode squeezing
channel reads

H (ε) = 2(λ1 + λ2)2

λ1λ2 + 1
[cos2 φχ cosh2(r1 − r2) + sin2 φχ cosh2(r1 + r2)] + 2(λ1 − λ2)2

λ1λ2 − 1
[cos2 φχ sinh2(r1 − r2)

+ sin2 φχ sinh2(r1 + r2)] + 4|d2|2
λ1

(e2r1 cos2 φ1χ + e−2r1 sin2 φ1χ ) + 4|d1|2
λ2

(e2r2 cos2 φ2χ + e−2r2 sin2 φ2χ ), (33)
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where we have denoted φχ := φ1 + φ2 + χ,φ1χ := φ1 −
φd2 + χ,φ2χ := φ2 − φd1 + χ . The presence of mixed tem-
perature terms in the expression shows that using nonen-
tangled squeezed Gaussian states yields the possibility of
the temperature-enhanced estimation. Assuming both r1 and
r2 are positive, the maximum is reached for φχ = π

2 and
φ1χ = φ2χ = 0, which leads to

Hmax(ε)=2(λ1+λ2)2

λ1λ2+1
cosh2(r1+r2) + 2(λ1−λ2)2

λ1λ2−1
sinh2(r1+r2)

+ 4|d2|2
λ1

e2r1 + 4|d1|2
λ2

e2r2 . (34)

These conditions are fulfilled, for example, for φ1 = φ2 = π
4 −

χ

2 ,φd1 = φd2 = π
4 + χ

2 , which is in complete analogy with
the optimal states for the one-mode squeezing channel from
Sec. V C. This means that we can effectively probe the two-
mode squeezing channel by two simultaneously sent copies of
the optimal states for the one-mode squeezing channel. Note
the mixed term 4|d2|2

λ1
e2r1 , which combines the squeezing of

one mode and enhances it by the displacement of the other

mode, demonstrating the entangling nature of the two-mode
squeezing channel.

To study the optimal states when only a finite amount of
energy is available, we use the two-mode equivalent of Eq. (23)
for the mean total number of Bosons,

n = nd1 + nth1 + λ1 sinh2 r1 + nd2 + nth2 + λ2 sinh2 r2,

(35)

where ndi
:= |di |2, and λi = 1 + 2nthi ,i = 1,2. Maximizing

the quantum Fisher information while keeping the n fixed
we find that the maximum is achieved when the initial
squeezings are equal, r1 = r2, and all energy is invested into
squeezing, reaching the Heisenberg limit Hmax(ε) = 4(n +
1)2. If we invest only into the displacement, n = nd1 + nd2 ,
independently of the ratio nd1/nd2 we obtain the shot-noise
limit Hmax(ε) = 4(n + 1).

2. Two-mode squeezing channel: Using beam splitter
in the preparation process

Setting θ = π
4 in probe state (32) and using the same

notation as in Eq. (33), we derive the quantum Fisher
information for the estimation of the two-mode squeezing
channel,

H (ε) = 4λ2
1

λ2
1 + 1

[cos2(φχ + 2ψ) + sin2(φχ + 2ψ) cosh(2r1)] + 4λ2
2

λ2
2 + 1

[cos2(φχ − 2ψ) + sin2(φχ − 2ψ) cosh(2r2)]

+ 2

λ1
(e2r1 [|d1| cos(φ2χ + ψ) − |d2| cos(φ1χ + ψ)]2 + e−2r1 [|d1| sin(φ2χ + ψ) − |d2| sin(φ1χ + ψ)]2)

+ 2

λ2
(e2r2 [|d1| cos(φ2χ − ψ) + |d2| cos(φ1χ − ψ)]2 + e−2r2 [|d1| sin(φ2χ − ψ) + |d2| sin(φ1χ − ψ)]2). (36)

Unlike the previous case given by Eq. (33), the lack of
mixed temperature terms in this expression shows that using
a beam splitter in the preparation process prohibits the
temperature-enhanced estimation. Moreover, the maximum
can no longer be identified easily. For example, when both r1,r2

are positive and e2r2

λ2
� e2r1

λ1
, one of the optimal states is given by

φχ = π
2 ,ψ = φ1χ = φ2χ = 0 and leads to the quantum Fisher

information,

Hmax(ε) = 4λ2
1

λ2
1 + 1

cosh2(2r1) + 4λ2
2

λ2
2 + 1

cosh2(2r2)

+ 2

λ1
(|d1| − |d2|)2e2r1 + 2

λ2
(|d1| + |d2|)2e2r2 . (37)

For λ1 = λ2 = 1 and r1 = r2 such optimal state reduces to the
two single-mode squeezed states. In contrast, for r1 � 0,r2 �
0, and e2r2

λ2
� e−2r1

λ1
, the optimal state is given by φχ = 0,ψ =

φ1χ = φ2χ = π
4 and leads to

Hmax(ε) = 4λ2
1

λ2
1 + 1

cosh2(2r1) + 4λ2
2

λ2
2 + 1

cosh2(2r2)

+ 2

λ1
(|d1| − |d2|)2e−2r1 + 2

λ2
(|d1| + |d2|)2e2r2 .

(38)

For λ1 = λ2 = 1 and r1 = r2 such an optimal state reduces to
the two-mode squeezed probe state.

The difference between formulas (37) and (38) is only in
the use of the displacement. Nondisplaced probe states reach
the same precision independently of the sign of the squeezing
parameters. Maximizing the quantum Fisher information for
a fixed amount of energy in the probe state we arrive at the
very same conclusions as in the case of nonentangled states,
i.e., the optimal state is obtained when all energy is invested
into squeezing and squeezing parameters are equal, giving
the same Heisenberg limit. Here, however, the last part of
the expression, (|d1| + |d2|)2e2r2 , combines the displacements
by the mixed term 2|d1||d2| which is not present when using
nonentangled probe states. This may be useful if, for some
reason, we want to squeeze only one of the two modes (for
example when the apparatus for creating squeezed states is
expensive or difficult to build). Sending a coherent state in
the other mode then enhances the estimation in a nonlinear
way.

Now, let us see whether it is more effective to use an
entangled state or two one-mode squeezed states as a probe for
the estimation of the two-mode squeezing channel. To do that
we compare the precision of estimation where beam splitter
has and has not been used in the preparation process. Assuming
both modes are pure, λ1 = λ2 = 1, and subtracting Eq. (34)
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from Eq. (37), we obtain

HmaxBS(ε) − Hmax��BS(ε) = 4 cosh[2(r1+r2)] sinh2(r2−r1)

+ 4(|d2|2 + 2|d1||d2|
− |d1|2)er1+r2 sinh(r2 − r1). (39)

This shows that unless the displacement of the first mode |d1|
is very large, using a beam splitter exploits the difference
in squeezing parameters more effectively. The advantage
however vanishes when the optimal strategy (r1 = r2) is used.

3. Two-mode squeezing channel: Using one-mode Gaussian states

In the previous sections we considered two-mode Gaussian
probe states for the estimation of two-mode channels. But
is probing them with the two-mode states really necessary?
What precision could be achieved by using only the one-mode
state as a probe? Mathematically, we represent such one-mode
Gaussian probes by a two-mode Gaussian state where the
first mode is the most general single-mode state and the sec-
ond mode is vacuum, ρ̂0 = D̂(|d1|eiφd1 )R̂(φ1)Ŝ(r1)ρ̂th(· · · )† ⊗
|0〉〈0|. The quantum Fisher information is easily obtained from
Eq. (33) by setting r2 = d2 = 0,λ2 = 1,

H (ε) = 2λ1 cosh(2r1) + 4|d1|2 + 2, (40)

which gives the shot-noise limit H (ε) = 4(n + 1) indepen-
dently of how energy is distributed among squeezing, dis-
placement, and temperature. Although it is possible to use
one-mode states to estimate the two-mode squeezing channel,
it is not effective.

B. Estimation of mode-mixing channels

In this section we study optimal states for the estimation
of the mode-mixing channel B̂(ε,χ ), assuming the “direction”
of mixing χ is known, again with the probe state given by
Eq. (32). Similarly to the previous section, we show the
case when a beam splitter has been used in the preparation
process, and when nonentangled states have been used instead.
In contrast to the two-mode squeezing channel, where the
optimal probe state always depended on the squeezing angle
χ , here we identify a universal probe state which achieves
the optimal scaling for any mode-mixing angle χ . The full
expression for the quantum Fisher information for the estima-
tion of mode-mixing channels can be found in Appendix C.

1. Mode-mixing channel: Using two nonentangled single-mode
squeezed Gaussian states

Assuming θ = 0 in Eq. (32), and without loss of generality
also ψ = 0, we derive the quantum Fisher information for the
estimation of the mode-mixing channel,

H (ε)= 2(λ1 + λ2)2

λ1λ2 + 1
[cos2φχ sinh2(r1−r2)

+ sin2φχ sinh2(r1+r2)] + 2(λ1 − λ2)2

λ1λ2 − 1

× [cos2φχ cosh2(r1−r2) + sin2φχ cosh2(r1+r2)]

+ 4|d2|2
λ1

(e2r1 cos2φ1χ + e−2r1 sin2φ1χ )

+ 4|d1|2
λ2

(e2r2 cos2φ2χ + e−2r2 sin2φ2χ ), (41)

where we have denoted φχ := φ1 − φ2 + χ,φ1χ := φ1 +
φd2 + χ,φ2χ := φ2 + φd1 − χ . Note that the difference be-
tween this formula and Eq. (33) lies only in the different
definitions of φχ,φ1χ ,φ2χ , and swapping cosh ↔ sinh. Again,
temperature-enhanced estimation is possible. For positive r1

and r2 the maximum is reached when φχ = π
2 and φ1χ =

φ2χ = 0,

Hmax(ε)= 2(λ1+λ2)2

λ1λ2+1
sinh2(r1+r2) + 2(λ1−λ2)2

λ1λ2−1
cosh2(r1+r2)

+ 4|d2|2
λ1

e2r1 + 4|d1|2
λ2

e2r2 . (42)

These conditions are fulfilled for φ1 = π
4 − χ

2 , φd1 = π
4 +

χ

2 , φ2 = −π
4 + χ

2 , φd2 = −π
4 − χ

2 . Using Eq. (35) we show
that the energy-optimal probe state is obtained, again as in the
estimation of the two-mode squeezing channel, when the entire
energy is uniformly distributed among squeezing parameters,
reaching the Heisenberg limit Hmax(ε) = 4n(n + 2). Investing
only in the displacement, n = nd1 + nd2 , we obtain the shot-
noise limit Hmax(ε) = 4n.

2. Mode-mixing channel: Using beam splitter
in the preparation process

Setting θ = π
4 in Eq. (32) we derive the quantum Fisher

information

H (ε) = 4 sin2 φχ

(
λ2

1

λ2
1 + 1

sinh2(2r1) + λ2
2

λ2
2 + 1

sinh2(2r2)

)
+ 2 cos2 φχ

(
(λ1 + λ2)2

λ1λ2 + 1
[cos2(2ψ) sinh2(r1 − r2)

+ sin2(2ψ) sinh2(r1 + r2)] + (λ1 − λ2)2

λ1λ2 − 1
[cos2(2ψ) cosh2(r1 − r2) + sin2(2ψ) cosh2(r1 + r2)]

)

+ 2

λ1
(e2r1 [|d1| cos(φ2χ + ψ) + |d2| cos(φ1χ + ψ)]2 + e−2r1 [|d1| sin(φ2χ + ψ) + |d2| sin(φ1χ + ψ)]2)

+ 2

λ2
(e2r2 [|d1| cos(φ2χ − ψ) − |d2| cos(φ1χ − ψ)]2 + e−2r2 [|d1| sin(φ2χ − ψ) − |d2| sin(φ1χ − ψ)]2), (43)

where we use the same notation as in Eq. (41). In contrast to the estimation of the two-mode squeezing channel, in the
estimating of mode-mixing channels, the use of a beam splitter in the preparation process does not prevent us from exploiting
the temperature-enhanced estimation, which can be done by choosing φχ = 0. Choosing φχ = π

2 leads to the case where the
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temperature difference cannot be used, but in the analogy of
Eq. (39) the difference r2 − r1 is used more effectively. For
both these strategies optimizing for the fixed amount of energy
of the initial state leads to the same conclusions and the same
scaling with the total number of particles as in the case of the
two nonentangled probe states.

3. Mode-mixing channel: Pure states and the universal state

For mode-mixing channels we find a unique phenomenon
which does not occur with the squeezing channels, and which
can be exploited only when using a beam splitter in the
preparation process. Setting λ1 = λ2 = 1, r1 = r2 = r, ψ =
π
4 , and φ1 + φ2 + φd1 + φd2 = −π

2 in Eq. (43), we derive

H (ε) = 4 sinh2(2r) + 4[(|d1|2 + |d2|2) cosh(2r)

+ 2|d1||d2| sinh(2r)]. (44)

Any free parameter has, at this point, not been set to be
dependent on the “direction” of the mode-mixing χ . Also,
the leading order here is identical to the energy-optimal probe
states. In other words, we have found an optimal and universal
probe state for the mode-mixing channels B̂(ε,χ ). If we set
the initial displacement d0 to zero, according to Eq. (32) this
probe state becomes the two-mode squeezed vacuum in the
direction of χT = π

2 ,ρ̂0 = ŜT (r, π
2 )|0〉|0〉〈0|〈0|Ŝ†

T (r, π
2 ).

4. Mode-mixing channel: Using one-mode Gaussian states

The quantum Fisher information for the estimation of
the mode-mixing channel using the most general single-
mode state ρ̂0 = D̂(|d1|eiφd1 )R̂(φ1)Ŝ(r1)ρ̂th(· · · )† ⊗ |0〉〈0| is
obtained by setting r2 = d2 = 0,λ2 = 1 in Eq. (41),

H (ε) = 2λ1 cosh(2r1) + 4|d1|2 − 2, (45)

which always leads to the shot-noise limit H (ε) = 4n. For an
illustration of how a one-mode state compares to the optimal
state, see Fig. 3.

VII. ROLE OF ENTANGLEMENT
AND THE HEISENBERG LIMIT

In this section we first show why it is usually thought that
entanglement in the probe state is necessary to achieve the
Heisenberg limit, and why this reasoning is not applicable
in the continuous variable states known as Gaussian states.
There are numerous possible definitions of the Heisenberg
limit in quantum metrology [25]. In the presence of an
infinite-dimensional system, the definition of Heisenberg limit
is somehow difficult as one needs to resort to the mean energy
of the probe state, instead of using the definition based on the
number of qubits employed. However, using such a definition
is reasonable for Gaussian states. As we have shown in the
previous section, a higher mean value of energy usually leads
to a higher precision in estimation and thus can be counted as
a resource. For example, in the advanced gravitational wave
detector LIGO [26] the laser light is recycled which greatly
boosts the power of the beam and consequently leads to a
higher resolution of the detector.

Sequence of states ρ̂m with ever-increasing mean value of
energy limm→∞〈Ê〉ρ̂m

= ∞ is said to reach the Heisenberg

FIG. 3. Estimation of the beam splitter B̂(ε) around point
ε = 0 using one of the optimal states, ρ̂ = Ŝ(r)|0〉〈0|Ŝ†(r) ⊗
Ŝ(−r)|0〉〈0|Ŝ†(−r) representing two one-mode squeezed states that
are squeezed in orthogonal directions, and the one-mode squeezed
state ρ̂ = Ŝ(r1)|0〉〈0|Ŝ†(r1) ⊗ |0〉〈0|, both with the same mean energy
n = 2. We plot the real form marginal covariance matrices showing
correlations between positions in the first and the second mode x1

and x2, and momenta p1 and p2 in the real form phase space, before
(blue with full line) and after (orange with dashed line) beam splitter
B̂(0.1) has been applied. There are no correlations between position
and momentum. Clearly, the optimal state is more sensitive to the
channel allowing for a better estimation of the parameter ε.

limit if and only if there exists a number c > 0 such that

lim
m→∞

H (ρ̂m)

(〈Ê〉ρ̂m
)2

= c. (46)

In the case of a Bosonic system the operator Ê which measures
the energy of the probe state is up to a scaling constant identical
to the total number operator, Ê ≡ N̂ .

We first consider a Hilbert space H such that for every state
ρ̂ ∈ H the quantum Fisher information is bounded by the same
value BH , i.e.,

∃BH > 0, ∀ρ̂ ∈ H, H (ρ̂) � BH . (47)

It is not possible to create a sequence of states from
such Hilbert space to achieve the Heisenberg limit, because
by definition limm→∞ H (ρ̂m)

(〈Ê〉ρ̂m )2 � limm→∞ BH

〈Ê〉ρ̂m

= 0. However,

we can increase the quantum Fisher information by adding
more particles, which corresponds to expanding the Hilbert
space. We consider a (fully) separable state

ρ̂m =
∑

i

pi ρ̂
(1)
i ⊗ ρ̂

(2)
i ⊗ · · · ⊗ ρ̂

(m)
i ∈ H⊗m, (48)

where
∑

i pi = 1. Assuming that energy of each added state
does not go below a certain value, i.e.,

∃BE > 0, ∀i, ∀k, 〈Ê〉
ρ̂

(k)
i

� BE, (49)
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and using convexity of the quantum Fisher information and
additivity under tensoring [27], we derive

lim
m→∞

H (ρ̂m)

(〈Ê〉ρ̂m
)2

� lim
m→∞

∑
i,k piH

(
ρ̂

(k)
i

)
( ∑

i,k pi〈Ê〉
ρ̂

(k)
i

)2

� lim
m→∞

mBH

m2BE

= 0. (50)

This illustrates that under conditions (47) and (49), the
construction (48) using separable states cannot lead to the
Heisenberg limit and entangled states are necessary. This
follows the proofs from [27–29] showing that existence of
entanglement in an m-qubit state is a necessary condition for
the scaling of the quantum Fisher information larger than the
shot-noise limit.

Although one-qubit Hilbert space, from which the m-qubit
Hilbert space is created, satisfies Eq. (47), such a condition is
no longer satisfied by the Fock space representing a Bosonic
system. There are states in the Fock space, such as squeezed
states and coherent states, which can lead to an arbitrarily
large precision in the estimation. Therefore proof (50) does not
apply anymore and entanglement is not necessary. As shown
in previous sections, separable states such as squeezed states
can also achieve the Heisenberg limit.

In comparison to m-qubit systems, which use entangle-
ment as a resource, the resources in Bosonic systems are
rather highly superposed states spanning across all infinite-
dimensional Hilbert space, while entanglement does not play
a significant role anymore.

VIII. CONCLUDING REMARKS AND DISCUSSION

In this paper we have exploited recent developments in the
theory of metrology and translated the problem of optimal esti-
mation into the more convenient phase-space formalism. This
allowed us to systematically study wide classes of Gaussian
states for the estimation of Gaussian unitary channels. Using
this approach we managed to find optimal states for the most
common channels.

We found that for every channel we studied the optimal
states are either squeezed or two-mode squeezed states.
Further, the entanglement of the probe state does not play any
significant role, which corresponds to the findings of [9,30].
This is not in contradiction with some previous studies showing
that entanglement is necessary to achieve the Heisenberg
limit [28,29], because assumptions taken there do not apply
anymore to the Fock space describing a Bosonic system.

In estimating parameters of phase-changing, one-mode
squeezing, mode-mixing, and two-mode squeezing channels
(R̂,Ŝ,B̂,ŜT respectively), the quantum Fisher information
reaches the Heisenberg limits

HR(ε) = 2 sinh2(2r) = 8n(n + 1), (51a)

HS(ε) = 2 cosh2(2r) = 2(2n + 1)2, (51b)

HB(ε) = 4 sinh2(2r) = 4n(n + 2), (51c)

HST
(ε) = 4 cosh2(2r) = 4(n + 1)2, (51d)

where r denotes the squeezing of one of the modes in the
probe state, and n is the mean total number of particles of
the probe state. These results generalize the precision bounds
found in [3,4,7–9].

Alternatively, if we choose coherent states as probe states,
we obtain the shot-noise limits

HR(ε) = 4n, (52a)

HS(ε) = 2(2n + 1), (52b)

HB(ε) = 4n, (52c)

HST
(ε) = 4(n + 1). (52d)

These are the same limits we find when using any one-mode
state to probe two-mode Gaussian channels.

Authors of [4] showed that temperature of the probe
state may enhance the estimation precision by a factor of
2, and authors of [9] explored how temperature acts in the
estimation of mode-mixing channels. We demonstrated that
effects of temperature are generic. Independent of which
Gaussian unitary channel is probed, the effects of temperature
always come in multiplicative factors of four types. The first
three appear when the channel changes the squeezing or the
orientation of squeezing of the probe state. The first one
accounts for the absolute number of thermal Bosons in each
mode and corresponds to the one found in [4]. Two of them
take into account differences between thermal Bosons in each
mode. Larger differences then lead to higher precision in the
estimation, while the enhancement factor scales with the ratio
of the number of thermal Bosons nthi

nthj
, for nthi 	 nthj 	 0.

The last factor is of the form (2nthi + 1)−1 and it appears when
the Gaussian channel changes the displacement of the probe
state.

The main goal of this paper was to show how different
aspects of the probe states affect the estimation, and to provide
a framework that can be effectively used to study optimal
probe states for the construction of new-era quantum detectors.
In addition to applications for existing gravitational wave
detectors [31,32], our results may be useful for designing new
gravimeters [33–35], climate probes [36], or for the estimation
of space-time parameters [37–39].
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APPENDIX A: DERIVATION OF THE
TRANSFORMATIONS IN THE PHASE-SPACE

FORMALISM

Let us assume the most general Gaussian unitary from
Eq. (3). Such Gaussian unitary transforms the vector of
creation and annihilation operators from Eq. (1) as

Â′
i = Û † ÂiU. (A1)

Because Û is the Gaussian unitary, the transformation can be
written as

Â′ = S Â + b, (A2)

where S is the symplectic matrix satisfying Eqs. (7). One
can show that the first and the second moments transform
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according to the rule

d ′
i := tr[ρ̂ Â′

i] = (Sd + b)i , (A3a)

σ ′
ij := tr[ρ̂ {� Â′

i ,� Â′†
j }] = (SσS†)ij . (A3b)

The only question which remains to be answered is how
the transformation depends on W and γ from Eq. (3). In the
following, we generalize the proof from [40] which has been
done so far only for γ = 0. We are going to use the identity

eX̂ Âie
−X̂ =

∞∑
n=0

1

n!
[X̂, Âi]n, (A4)

where [X̂, Âi]n = [X̂,[X̂, Âi]n−1], [X̂, Âi]0 = Âi . Denoting
X̂ = − i

2 Â†W Â − Â†Kγ , and using commutation relations

[X̂, Âi] = (KW Â)i + γ i , (A5)

we derive by induction

[X̂, Âi]n = [(iKW )n Â + (iKW )n−1γ ]i . (A6)

Combining Eqs. (A4), (A6), (A1), and (A2) yields

S = eiKW , (A7a)

b =
∞∑

n=0

(iKW )n

(n + 1)!
γ =

(∫ 1

0
eiKWtdt

)
γ . (A7b)

For invertible W we can also write

b = (iKW )−1(eiKW − I )γ . (A8)

APPENDIX B: LIST OF THE SYMPLECTIC MATRICES
IN THE COMPLEX AND THE REAL FORM FORMALISM

To reduce the amount of confusion caused by different
authors using different notations, we write what the symplectic
matrices look like in the notation introduced by Eq. (2), and
in one type of the so-called real form of the covariance
matrix. Defining vectors of position and momenta oper-
ators Q̂ := (x̂1, . . . ,x̂N ,p̂1, . . . ,p̂N )T , where x̂i := 1√

2
(â†

i +
âi),p̂i := i√

2
(â†

i − âi), the real form displacement and the real
form covariance matrix are defined as

dRei = tr[ρ̂ Q̂i], (B1a)

σReij = tr[ρ̂ {� Q̂i ,� Q̂j }], (B1b)

where � Q̂ := Q̂ − dRe. The real form covariance matrix then
transforms under the real form symplectic transformation as
σ ′

Re = SReσReS
T
Re. Symplectic matrices in most other com-

monly used notations are simply obtained by rearranging some
rows and columns of either the complex (2) or the real form
matrices (B1). One-mode operations which leave the other
modes invariant are easily lifted into two-mode operations by
adding identities onto suitable places. For more information
about the transformation between the real and the complex
form see for example [15,18].
Phase change R̂(θ )=exp(−iθ â†â),R̂1(θ )=exp(−iθ â

†
1â1),

R =
[
e−iθ 0

0 eiθ

]
, RRe =

[
cos θ sin θ

− sin θ cos θ

]
, −→

R1 =

⎡
⎢⎣

e−iθ 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 1

⎤
⎥⎦, R1Re =

⎡
⎢⎣

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

⎤
⎥⎦.

(B2)

One-mode squeezing Ŝ(r,χ ) = exp[− r
2 (eiχ â†2 − e−iχ â2)],

S =
[

cosh r −eiχ sinh r

−e−iχ sinh r cosh r

]
,

SRe =
[

cosh r − cos χ sinh r − sin χ sinh r

− sin χ sinh r cosh r + cos χ sinh r

]
. (B3)

Mode mixing B̂(θ,χ ) = exp[θ (eiχ â
†
1â2 − e−iχ â

†
2â1)],

B =

⎡
⎢⎢⎢⎣

cos θ eiχ sin θ 0 0

−e−iχ sin θ cos θ 0 0

0 0 cos θ e−iχ sin θ

0 0 −eiχ sin θ cos θ

⎤
⎥⎥⎥⎦,

BRe =

⎡
⎢⎢⎢⎣

cos θ cos χ sin θ 0 − sin χ sin θ

− cos χ sin θ cos θ − sin χ sin θ 0

0 sin χ sin θ cos θ cos χ sin θ

sin χ sin θ 0 − cos χ sin θ cos θ

⎤
⎥⎥⎥⎦.

(B4)

Two-mode squeezing ŜT (r,χ ) = exp[−r(eiχ â
†
1â

†
2 −

e−iχ â1â2)],

ST =

⎡
⎢⎢⎣

cosh r 0 0 −eiχ sinh r

0 cosh r −eiχ sinh r 0
0 −e−iχ sinh r cosh r 0

−e−iχ sinh r 0 0 cosh r

⎤
⎥⎥⎦,

ST Re =

⎡
⎢⎢⎣

cosh r − cos χ sinh r 0 − sin χ sinh r

− cos χ sinh r cosh r − sin χ sinh r 0
0 − sin χ sinh r cosh r cos χ sinh r

− sin χ sinh r 0 cos χ sinh r cosh r

⎤
⎥⎥⎦. (B5)
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APPENDIX C: FULL EXPRESSIONS FOR TWO-MODE SQUEEZING AND MODE-MIXING CHANNELS

Using the probe state from Eq. (32), and defining φχ := φ1 + φ2 + χ,φ1χ := φ1 − φd2 + χ,φ2χ := φ2 − φd1 + χ , the
quantum Fisher information for the estimation of a two-mode squeezing channel ŜT (ε,χ ) reads

H (ε) = 2 cos2(2θ )

(
(λ1 + λ2)2

λ1λ2 + 1
[cos2 φχ cosh2(r1 − r2) + sin2 φχ cosh2(r1 + r2)] + (λ1 − λ2)2

λ1λ2 − 1
[cos2 φχ sinh2(r1 − r2)

+ sin2 φχ sinh2(r1 + r2)]

)
+ 4 sin2(2θ )

(
λ2

1

λ2
1 + 1

[cos2(φχ + 2ψ) + sin2(φχ + 2ψ) cosh(2r1)]

+ λ2
2

λ2
2 + 1

[cos2(φχ − 2ψ) + sin2(φχ − 2ψ) cosh(2r2)]

)
+ 4

λ1
(e2r1 [|d1| sin θ cos(φ2χ + ψ) − |d2| cos θ cos(φ1χ + ψ)]2

+ e−2r1 [|d1| sin θ sin(φ2χ + ψ) − |d2| cos θ sin(φ1χ + ψ)]2) + 4

λ2
(e2r2 [|d1| sin θ cos(φ2χ − ψ)

+ |d2| cos θ cos(φ1χ − ψ)]2 + e−2r2 [|d1| sin θ sin(φ2χ − ψ) + |d2| cos θ sin(φ1χ − ψ)]2). (C1)

Using the probe state from Eq. (32), and defining φχ := φ1 − φ2 + χ,φ1χ := φ1 + φd2 + χ,φ2χ := φ2 + φd1 − χ , the quantum
Fisher information for the estimation of a mode-mixing channel B̂(ε,χ ) reads

H (ε) = 4 sin2(2θ ) sin2 φχ

(
λ2

1

λ2
1 + 1

sinh2(2r1) + λ2
2

λ2
2 + 1

sinh2(2r2)

)
+ 2(λ1 + λ2)2

λ1λ2 + 1
([cos(2θ ) sin φχ sin(2ψ)

− cos φχ cos(2ψ)]2 sinh2(r1 − r2) + [cos(2θ ) sin φχ cos(2ψ) + cos φχ sin(2ψ)]2 sinh2(r1 + r2))

+ 2(λ1 − λ2)2

λ1λ2 − 1
([cos(2θ ) sin φχ sin(2ψ) + cos φχ cos(2ψ)]2 cosh2(r1 − r2) + [cos(2θ ) sin φχ cos(2ψ)

+ cos φχ sin(2ψ)]2 sinh2(r1 + r2) + 1

2
cos(2θ ) sin(2φχ ) sin(4ψ) sinh(2r1) sinh(2r2)) + 4

λ1
(e2r1 [|d1| sin θ cos(φ2χ + ψ)

+ |d2| cos θ cos(φ1χ + ψ)]2 + e−2r1 [|d1| sin θ sin(φ2χ + ψ) + |d2| cos θ sin(φ1χ + ψ)]2)

+ 4

λ2
(e2r2 [|d1| cos θ cos(φ2χ − ψ) − |d2| sin θ cos(φ1χ − ψ)]2 + e−2r2 [|d1| cos θ sin(φ2χ − ψ)

− |d2| sin θ sin(φ1χ − ψ)]2). (C2)
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