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Quantum state transfer through time reversal of an optical channel
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Rare-earth ions have exceptionally long coherence times, making them an excellent candidate for quantum
information processing. A key part of this processing is quantum state transfer. We show that perfect state transfer
can be achieved by time reversing the intermediate quantum channel, and suggest using a gradient echo memory
(GEM) to perform this time reversal. We propose an experiment with rare-earth ions to verify these predictions,
where an emitter and receiver crystal are connected with an optical channel passed through a GEM. We investigate
the effect experimental imperfections and collective dynamics have on the state transfer process. We demonstrate
that super-radiant effects can enhance coupling into the optical channel and improve the transfer fidelity. We
lastly discuss how our results apply to state transfer of entangled states.
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I. INTRODUCTION

High fidelity quantum state transfer will play an important
role in quantum information processing [1,2]. State transfer
using a quantum optical channel, in particular, allows high-
speed transfer over long distances with little loss [3,4]. The
challenge is to determine a method to coherently transfer the
quantum state of an “emitter” system to a “receiver” system. It
has been recognized that perfect state transfer can be achieved
between two qubits when the equation of motion of the
receiver qubit is a time-reversed version of the emitter [5]. This
principle underpinned the earliest proposal for transferring the
state between two qubits with an optical channel, where the
coupling between the systems and the channel was engineered
such that the carrier photon had a time symmetric wave packet
[5]. However, the time symmetric approach does not obviously
scale when transferring the state between multilevel systems or
ensembles of qubits. We consider a different approach, which
in principle will scale, where we perform time reversal of
the quantum channel using a gradient echo memory (GEM)
[6–9] to achieve perfect transfer between two ensembles of
qubits. Furthermore, we investigate the collective nature of the
ensembles of qubits’ coupling to the cavity and the possible
advantages this may provide with regard to transfer fidelity.

We propose an implementation of our protocol with rare-
earth ion crystals. Rare-earth ion crystals have exceptionally
long coherence times: among hyperfine transitions, T2 coher-
ence times can be as long as hours [10]. Furthermore, work
with stoichiometric crystals has shown that it is possible to get
very strong interactions between nearby ions [11], making
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rare-earth ions ideal for quantum information processing.
Previous quantum state transfer proposals with rare-earth
ions have targeted individual ions [12]. However, addressing
individual rare-earth ions is challenging, with few demon-
strations [13,14]; typical experiments involve ensembles of
ions [10], and most quantum information processing proposals
have targeted ensembles [15–18]. Here we show that working
with ensembles rather then individual sites may present an
advantage when transferring states where all the ions are in
an identical quantum state. The collective phenomenon of
super-radiance can be used improve the efficiency of coupling
into the optical channel. This has previously been exploited in
experiments to enter the cavity QED regime with an ensemble
of rare-earth ions and an optical resonator [19]. The key to
achieving strong coupling between a cavity and an ensemble
is having a small inhomogeneous linewidth that is below
the linewidth of the cavity [20]; inhomogeneous linewidths
smaller than the hyperfine level spacing have recently been
achieved in stoichiometric crystals [21].

After the pioneering work of Cirac et al. [5], there has been
further experimental [22–24] and theoretical work [25–27] on
state transfer between individual qubits mediated by an optical
channel. Furthermore, there has been analysis of state transfer
between quantum oscillators [28–30]. However, there has been
little work on state transfer between ensembles of qubits, and
previous analysis has only looked at the perturbative regime
where the ensemble can be treated as an oscillator [31–33].
We consider state transfer between two ensembles of qubits,
where the initial state is nonperturbative; our aim is to take
an ensemble of separable, identical (up to a rotation in phase)
qubits in an arbitrary quantum state and transfer this state onto
another ensemble.

The paper is structured as follows: in Sec. II, we demon-
strate that the principle of time reversal can be used to transfer
the state between two identical quantum systems, up to a sign
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change in the Hamiltonian, as long as they have unique dark
states. In Sec. III, we demonstrate that a GEM can be used
to physically realize time reversal of a coherent pulse in an
optical quantum channel. In Sec. IV, we present a proposal
for quantum state transfer between two ensembles of rare-
earth ions, examine the possible advantages of super-radiant
coupling, and discuss what affects the fidelity of the transfer.
In Sec. V, we discuss a few ways of extending our approach
to transferring entangled states, and where further engineering
may be required. Finally, in Sec. VI we discuss implementation
considerations for our transfer scheme and its impact in the
context of quantum control.

II. GENERIC QUANTUM STATE TRANSFER THROUGH
TIME REVERSAL

Here we demonstrate that the time reversal of a quantum
channel can be used to perform perfect state transfer between
two quantum systems with a unique dark steady state and
identical Hamiltonians, up to a sign change. We consider
two systems: an emitter and a receiver. The emitter has a
Hamiltonian Hem = H and coupling operator Lem = L. We
assume the emitter has a dark pure state, meaning L|ψss〉 = 0
and H |ψss〉 = h|ψss〉, which is the unique steady state of the
system [34]. We can write down the Langevin equation for an
arbitrary Hermitian operator of the emitter system:

dXem(t)

dt
=−iXemHem − [Xem,L†

em][Lem/2 + bem,in(t)] + a.t.

(1)

where a.t. refers to adjoint transpose of all terms to the left. The
output of this system will be bem,out(t) = Lem(t) + bem,in(t).
We set the initial state of the system and bath to be |�em(t =
0)〉 = |0〉 ⊗ |ψ0〉 ⊗ |0〉 where we partition the bath at a time t

into an input before the system and an output after the system,
and both are initially in a vacuum state |0〉. The system has a
unique dark state, so we can be certain it will asymptotically
approach a separable state |�em(t = T )〉 = |0〉 ⊗ |ψss〉 ⊗ |φ〉,
where |φ〉 is some multiphoton output state, for any pure state
initial condition. We assume that the system gets very close
to this steady state in a time T . We can approximate that
bem,out(t) ≈ bem,in(t) for t � T , meaning the output will no
longer be correlated with the system. Thus, we can trace out
the emitter system without losing purity of the output state.
Next we consider some receiver system which obeys its own
Langevin equation, but we use a different time index τ :

dXre(τ )

dτ
=−iXreHre − [Xre,L

†
re][Lre/2 + bre,in(τ )] + a.t.

(2)

Our aim is to engineer this system such that its evolution
is a time reversal of the emitter. Specifically, we want the
expectation of the error operator E(X,τ ) = Xre(τ ) − Xem(t =
T − τ ), for an arbitrary X, to be zero for 0 � τ � T . We
first set the input of the system to be a sign-changed time
reversal of the emitter output: bre,in(τ ) = −bem,out(t = T −
τ ) = −Lem(t = T − τ ) − bem,in(t = T − τ ). We can write

down the equation of motion of E(X,τ ) as follows:

dE(X,τ )

dτ
=dXre(τ )

dτ
+ dXem(t)

dt

= − iXre(τ )Hre(τ ) − iXem(t)Hem(t)

− [Xre(τ ),L†
re(τ )][Lre(τ ) − Lem(t)]/2

+ {[Xre(τ ),L†
re(τ )] − [Xem(t),L†

em(t)]}
× [Lem(t)/2 + bem,in(t)] + a.t. (3)

where t = T − τ . In order to ensure E(X,τ = 0) = 0 we set
the initial condition for the receiver to be the final state of
the emitter, in terms of the whole state: |�re(τ = 0)〉 = |φ′〉 ⊗
|ψss〉 ⊗ |0〉 where |φ′〉 is the time-reversed quantum channel
and |ψss〉 is the steady state of both the emitter and receiver.
Note this initial state was only possible to prepare because the
emitter had a unique dark state. Next to ensure Ė(X,τ = 0) =
0 we set Hre = −H and Lre = L. It can then be shown that the
solution E(X,τ ) = 0 for 0 � τ � T satisfies Eq. (3), as this
implies Xre(τ ) = Xem(t = T − τ ). The receiver will evolve in
a time-reversed manner with respect to the emitter, such that
final state of the receiver will be the initial state of the emitter:
|�re(T )〉 = |0〉 ⊗ |ψ0〉 ⊗ |0〉. Hence we can perform perfect
state transfer between two identical quantum systems, up to
a sign change in the Hamiltonian, with unique dark states by
simply time reversing the output of the bath and setting the
initial condition of the receiver to be the final condition of the
emitter.

III. TIME REVERSAL OF AN OPTICAL
CHANNEL USING A GEM

The next challenge is to determine a physical system that
will time reverse a quantum channel. We will use a GEM
to achieve this goal. A GEM is described by the following
Hamiltonian and coupling operator [9]:

HGEM = s(t)
∫ �

−�

dξ ξa†(ξ )a(ξ )

+ ζ

2i

∫ �

−�

dξ

∫ ξ

−�

dξ ′[a†(ξ )a(ξ ′) − a†(ξ ′)a(ξ )],

LGEM =
√

ζ

∫ �

−�

dξa(ξ ). (4)

Here � is the bandwidth of the memory, ζ is the optical depth,
and s(t) is the sign of the gradient which can be changed
between ±1.

We can write down the following Heisenberg equations of
motion for the atomic excitation operator a(ξ,t) in terms of
the input operator bGEM,in(t) and the equation for the output
operator bGEM,out(t):

ȧ(ξ,t) = − is(t)ξa(ξ,t) + ζ

∫ ξ

−�

dξ ′a(ξ ′,t) + bGEM,in(t),

(5)

bGEM,out(t) =
√

ζ

∫ �

−�

dξ ′a(ξ,t) + bGEM,in(t). (6)

The GEM is operated in two stages. First, a write stage
between t = 0 to T , where s(t) = +1. Here the atomic field,
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FIG. 1. An ensemble of rare-earth ions termed the “emitter” is coupled, with strength g, to a ring cavity, which in turn is coupled, with
strength κ , to a quantum channel. The quantum channel is passed through a GEM, with a controllable gradient s(t) and optical depth ζ , and
phase correction plate SPP(t). The resultant time-reversed signal from the emitter is sent to an identical “receiver” crystal, up to a sign change
in the Hamiltonian, where it is perfectly absorbed, thus transferring the state. Both the emitter and receiver have a spontaneous emission loss
rate of γ . The laser and detector are used for initial-state preparation and measurement of the transfer performance.

initially in a vacuum, stores a light pulse injected into the
memory through bin(t). This is followed by the read stage
between t = T and 2T , where s(t) = −1. Here what was
stored in the atomic field is read out through bout. In the
broadband limit, meaning � is much larger than the spectral
width of the input pulse, Eq. (6) can be analytically solved as
follows [9]:

a(ξ,T ) = χ (ζ )
∫ T

0
dte−iξ t−iζ ln(T −t)�bGEM,in(t), (7)

bGEM,out(T + t) = χ (ζ )
∫ ∞

−∞
dξe−ixit−iζ ln t�a(ξ,T ), (8)

where χ (ζ ) = √
ζe−πζ/2/�(1 − iζ ), which has the property

|χ (ζ )|2 = (1 − e−2πζ )/2π . Strictly speaking Eqs. (7) and (8)
describe the wave packets of the state, rather than the operators,
which we consider a and b to mean from this point on
(see [9] for details). We can see that what is stored in the
memory is almost the Fourier transform of the input pulse, up
to a time-dependent phase distortion which is independent
of the input pulse. If we pass the output of the GEM
through a time-dependent phase plate, i.e., b′

GEM,out(T + t) =
SPP (T + t)bGEM,out(T + t) where SPP (T + t) = 1 for t < 0
and eiζ ln(t(T −t)�2)−2i arg(χ(ζ )) for t � 0, then the final output of
the memory can be related to the input as

b′
GEM,out(T + t) = (1 − e−2πζ )bGEM,in(T − t). (9)

Hence the output of the GEM is a time-reversed, attenuated
version of the input. The attenuation can be made arbitrarily
small by increasing the optical depth ζ . This makes the GEM
the ideal candidate to reverse a quantum channel.

IV. STATE TRANSFER BETWEEN TWO ENSEMBLES
OF RARE-EARTH IONS

We propose a specific implementation of the generic state
transfer using rare-earth ion crystals as shown in Fig. 1.
An emitter crystal is coupled to an optical quantum channel
through a mediating ring cavity. The output of the emitter is fed
into a GEM and stored. The gradient of the GEM is flipped and
the stored light is sent to the receiver crystal. The GEM acts
as a perfect impedance matcher for the receiver ensemble by
time reversing the light it received from the emitter ensemble.

A. The rare-earth ion emitter and receiver ensembles

We assume that two spectrally identical ensembles of ions
in the emitter and receiver crystals have been prepared in the
same hyperfine state, which we label |g〉, using laser pumping
techniques. To begin, we neglect the inhomogeneous linewidth
of the ensemble. This assumption is not necessary, which
we show at the end of this section; however, we make it to
ensure we can compare the dynamics of a single ion versus an
ensemble on equal footing (the inhomogeneous linewidth is
inherently a property of an ensemble). We assume an electric
field can be applied to bring an optical transition between the
ground state |g〉 and some excited state |e〉 into resonance
with the cavity and driving laser. We also employ so-called
cycling transitions [35] by applying appropriate magnetic
fields to minimize spontaneous emission events into other
unwanted hyperfine levels. For example, Pr3+:Y2SiO5 could
be used, where the 3H4 level is used for |g〉 and 1D2 is used
for |e〉 [35].

The emitter and receiver ions are described by the following
Hamiltonian and coupling operator to the quantum channel:

Hl = − islg(Jlc
†
l − J

†
l cl), (10)

Ll = √
κcl. (11)

Here the cavity has been brought into resonance with the
optical transition between |e〉 → |g〉 and we have moved into
a rotating frame. The ensemble label l represents the emitter
l = em or receiver l = re, g is the coupling strength between
an individual ion and the cavity, cl is the cavity annihilation
operator, κ is the coupling rate between the cavity and the
optical channel, and sl is the sign of the Hamiltonian: through
phase matching the cavity to the ensemble we set sem = 1 and
sre = −1. Jl is the collective coupling operator between the
ions and the cavity. We assume the cavity mode is a plane
wave with wave vector k0, such that the coupling operator
is Jl = ∑Nl

j=1 e−ixl,j ·k0σl,j . Here σl,j = |g〉〈e|l,j , and Nl is the
number of ions in the emitter and receiver. Except in the last
figure, we set the number of ions to be the same and simply
refer to the number of both as N = Nem = Nre; xl,j is the
position of the j th ion in the emitter or receiver. The position
of the ions will be fixed, so we can make a transformation
of each two level system such that e−ixl,j ·k0σl,j → σl,j . The
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collective coupling operator becomes

Jl =
N∑

j=1

σl,j . (12)

Even if the positions of the ions are different in the emitter and
receiver, after making the transformation, the Hamiltonians
will now be identical up to a sign change. We assume each
individual ion also undergoes spontaneous emission loss at a
rate γ , i.e., Lloss

l,j = √
γ σl,j .

The emitter and receiver ensembles satisfy some of our
requirements for perfect state transfer. They have identical
coupling operators and their Hamiltonians are of opposite sign
Hem = −Hre. However, the Hamiltonian and loss operators
do not necessarily have a unique dark state when N > 2. This
breaks the unique dark state condition required for perfect state
transfer as shown in Sec. II. We discuss how to circumvent this
issue by restricting ourselves to only initial states where the
ions are identical in the following section.

B. The state initial conditions

We consider transferring the state of an ensemble of
identical ions. Specifically we restrict the initial condition of
the emitter ions and the cavity to be of the form |ψθ0,φ0〉 =
|0〉 ⊗N

j=1 (sin(θ0/2)|g〉 + cos(θ0/2)eiφ0 |e〉)em,j where |0〉 is the
vacuum state for the cavity. We are effectively encoding one
quantum bit onto an ensemble of ions. There are three reasons
for this choice. First, states of this kind are easy to prepare
physically using optical laser pulses [16]. Second, we can now
make a fair comparison between the transfer fidelity of an
individual ion or an ensemble of ions, as there is a one-to-one
mapping between initial conditions. Lastly, if we start with the
state |ψθ0,φ0〉 the system will converge to a unique dark state,
as shown below, satisfying the final requirement for perfect
state transfer.

The Hamiltonian Hl and coupling operator Ll are invariant
under permutations of the ions, which means there is a
symmetry in our system that is preserved during the evolution.
Consider the symmetric states of the ions, e.g., for N = 3
there are four states that form a basis for the symmet-
ric subspace: {|ggg〉, (|egg〉 + |geg〉 + |gge〉)/√3, (|gee〉 +
|ege〉 + |eeg〉)/√3, |eee〉}. We label the basis states for the
symmetric subspace as |n,N〉, where N is the total number
of ions and n is between zero and N and refers to the
number of excitations e in the state. Consider the subspace
spanned by the symmetric ion states and the basis states
for the cavity Hsym,N = span[{|m〉 ⊗ |n,N〉 |m ∈ [0,∞) and
n ∈ [0,N ]}]. One can show H |ψ1〉 = |φ2〉 and L|ψ3〉 = |ψ4〉,
where |ψ1〉, |ψ2〉, |ψ3〉, and |ψ4〉 are in Hsym,N, such that if the
ion-cavity system’s initial condition is in Hsym,N, it will stay
in Hsym,N as the system evolves.

Our initial condition for the system |ψθ0,φ0〉 is a member
of the symmetric subspace Hsym,N. Furthermore, one can
show there is a unique dark state in Hsym,N, specifically
|ψss〉 = |0〉 ⊗ |0,N〉, as L|ψss〉 = 0 and H |ψss〉 = 0. Hence,
for our restricted set of initial conditions, we can guarantee
that our system will converge to the unique dark state. This
is very important, as it means our system now satisfies all

the conditions required for perfect state transfer (as shown in
Sec. II).

C. The total system

We have shown that the emitter and receiver, when restricted
to an initial condition of |ψθ0,φ0〉, satisfy the requirements for
perfect state transfer. The last step is to connect the emitter
optical output and receiver optical input via a GEM, which
will perform the required time reversal of the optical channel.
The total Hamiltonian Htotal and coupling operator Ltotal for
the entire emitter-GEM-receiver system can be derived using
input-output theory [36,37]:

Htotal = Hem + (L†
GEMLem + LGEML†

em)/(2i) + HGEM

+ (L†
reL

′
GEM + LreL

′
GEM

†)/(2i) + Hrm, (13)

Ltotal = L′
GEM + Lre, (14)

where L′
GEM = SPP (t)(Lem + LGEM).

The timing of the transfer proceeds as follows: at t = 0 the
emitter crystal is prepared in some state |ψem(0)〉 = |ψθ0,φ0〉.
The output of the emitter is written on to the GEM over a
time period T , which is sufficient time for the emitter to enter
the dark state |ψem(T )〉 ≈ |ψss〉. The gradient of the GEM is
flipped at time T and the output is passed through the phase
plate to the receiver ensemble. The receiver has been initialized
in the dark state: |ψre(T )〉 = |ψss〉. The time flipped output of
the emitter is then absorbed by the receiver. In the ideal case,
we expect the final state of the receiver to be the initial state
of the emitter |ψre(2T )〉 ≈ |ψθ0,φ0〉.

In what follows we perform a set of numerical simulations
to verify the performance of the GEM in ideal conditions and
investigate how loss affects the transfer performance.

D. Coupling to the optical channel

Before we consider the entire transfer process, we consider
the possible advantages of using an ensemble rather than
individual rare-earth ions when coupling to an optical channel.

Our first challenge is to engineer the emitter such that the
majority of excitation is transferred into the optical channel
instead of other loss mechanisms. We have assumed that each
individual ion undergoes spontaneous emission, with rate γ ,
which is not captured by our optical channel. We thus want to
couple the light from the cavity into the optical channel as fast
as possible. By linearizing the ensemble it can be shown that
the critical damping rate for the cavity is κ = 2g

√
N , which

we use for the remainder of the paper.
Next we look at the parameters of the ions. There are

N ions which are collectively coupled to the cavity with
a strength g. This results in a super-radiant enhancement
of the effective coupling strength to the optical channel.
We do not use this approximation in our simulations, but
for the purpose of analysis, we can adiabatically eliminate
the cavity, which gives an effective coupling operator
L′

em = 2gJem/
√

κ between the ensemble and the optical
channel. In this limit, we can see that the coupling between
the ions and the channel is collective. This results in N3/2

scaling of the spontaneous emission rate into the optical
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FIG. 2. The efficiency η of coupling to the optical channel vs
particle number N . Direct simulations are plotted as points, with
initial conditions θ0 = π/4 (red squares), π/2 (green triangles), and
3π/4 (blue squares). Mean-field simulations are plotted as lines,
with initial conditions θ0 = π/4 (dotted red line), π/2 (dashed green
line), and 3π/4 (solid blue line). Here γ /g = 0.1, κ = 2g

√
N , and

T = 20/κ .

channel, namely, Pcol = 〈ψθ0,φ0 |L′†
emL′

em|ψθ0,φ0〉 =
2N3/2g cos2 θ0, where we have replaced κ with its critical
damping value.

In contrast, the probability of an independent sponta-
neous emission event into one of the loss channels scales
as N , namely, Ploss = ∑N

j=1〈ψθ0,φ0 |(Lloss
em,j )†Lloss

em,j |ψθ0,φ0〉 =
Nγ cos2 θ0.

We are interested in the relative rate of spontaneous
emission into the optical channel compared to other modes,
specifically R = Pcol/Ploss = 2

√
Ng/γ .

Our aim is to make R as large as possible, to maximize the
light spontaneously emitted into the optical channel compared
to other loss channels. Increasing g/γ is possible by using
cavities with small mode volumes [12], but achieving this in
practice with rare-earth ions has been challenging [25]. In
contrast, achieving extremely large N in rare-earth ions is
straightforward. A large R is the key advantage ensembles
have over individual rare-earth ions.

We demonstrate the advantage of large N for the coupling
efficiency η = Iout/N cos2(θ0/2) numerically in Fig. 2. The
coupling efficiency is defined as the total light emitted into the
optical channel Iout = ∫ T

0 〈b†out(t)bout(t)〉 compared to the total
excitation in the initial ensemble of atoms N cos2(θ0/2). We
perform the simulation with a direct method for N = 1 to 7 and
a mean-field method for larger particle numbers (see Appendix
A for details). Furthermore, we consider three initial states of
θ0: π/4,π/2, and 3π/4. In all cases the quantum efficiency
eventually improves with particle number, although there is a
small dip in the direct simulations after N = 1.

In terms of the convergence between the mean-field method
and direct method, we see that the solutions asymptotically
approach one another in the limit of large N . However, the
rate of convergence is slower for states close to θ0 = 0. The
convergence is so slow in the θ0 = π/4 case that we cannot
confirm, quantitatively, that the methods converge with the
maximum number of particles we could simulate with the
direct method: N = 7. The reason for this slow convergence
is that the mean-field description of the coupling has a

nonphysical, unstable fixed point for an initial condition of
θ0 = 0 (see Appendix A). This means the mean-field simula-
tions tend to significantly underestimate the true efficiency for
initial states close to the excited state. Fortunately, as we can
see in Fig. 2, the mean field is always strictly below the direct
solution. Hence it can be thought of as a lower bound for the
efficiency that gets tighter as the particle number N increases.

The nonphysical unstable fixed point present in the mean-
field equations of motion means we cannot look at the θ0 = 0
case directly. In what follows we investigate scaling as the
state gets close to θ0 = 0. Strictly speaking, this limitation
means the collective effects we see in the state transfer will
not include all stages of a super-radiant process. Our analysis
only considers the second stage in a super-radiant process
where a small perturbation from a fully inverted population
is rapidly damped to the ground state. We do not model the
initial spontaneous emission event that perturbs the ensemble
from the fully inverted stage [38,39]. It would be interesting
to probe this regime in an experiment.

E. Complete quantum state transfer

We perform a numerical simulation of the quantum state
transfer protocol in a system with small loss, γ /g = 0.1, and a
high quality GEM with optical depth ζ = 2. Direct simulations
of a GEM become rapidly computationally expensive as the
number of photons increases. Fortunately, as we have demon-
strated in Fig. 2, mean-field simulations make reliable quanti-
tative predictions for ensembles with N � 7 and initial states
θ0 � π/2, and give a good lower bound on fidelity for initial
states θ0 < π/2 that tightens as N increases. Hence, we use two
simulation methods: a direct method for the N = 1 case and a
mean-field method for N � 1 (see Appendix B for details).

In Fig. 3 we plot the dynamical flow of excitation from the
emitter to the GEM, then finally to the receiver. We define the
excitation for the ions as Eσ,l(t) = ∑N

j=1〈σ †
l,j σl,j 〉, cavities as

Ec,l(t) = 〈c†l cl〉, and the memory as Ea(ξ,t) = 〈a(ξ )†a(ξ )〉. In
the N = 1 case, we can see that the evolution of the emitter
and receiver is close to symmetric about T , and the receiver
almost reaches the initial state of the emitter. The finite amount
of loss γ /a results in some loss of excitation and an imperfect
transfer. However, this loss can be overcome through super-
radiant coupling. This is shown in the N = 106 case. Here
we see that the evolution of the emitter and receiver is now
perfectly symmetric and the receiver finishes almost exactly
in the initial state of the emitter. Furthermore, comparing the
ensemble to individual ion transfer, we can see that the shape
of the cavity output does depend on N , and the time it takes
to perform the transfer is much shorter in the N = 106 case
compared to the N = 1 case.

F. Effect of loss

To get a more detailed understanding of how imperfection
affects the system, we now look at the transfer fidelity as a
function of initial state, number, loss, and optical depth in
Fig. 4. We define the fidelity F of the transfer with regard to
the average state of the ion. Specifically, we define the average
ion state to be ρ̄l = ∑N

j=1 Trl,j [ρ]/N where Trl,j is defined as
tracing over all systems except the j th ion of the emitter l = em
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FIG. 3. Dynamical flow of excitation between emitter → GEM → receiver vs time t with γ /g = 0.1, ζ = 2, θ0 = π/2, φ0 = 0, κ/g = 2
√

N ,
and T = 20/κ . Direct simulations are presented in (a)–(c) with N = 1 and mean-field results are presented in (d)–(f) with N = 106. In subfigures
(a), (c), (d), and (f) the solid line is the excitation of the ions Eσ,l(t) while the dotted line is the excitation of the cavity Ec,l(t). Subfigures (b)
and (e) are plots of the excitation in the memory Ea(ξ,t), plotted also against frequency ξ . The arrows indicate the movement of excitation.
The final fidelity of transfer for the N = 1 simulation was F = 95.35% while the N = 106 simulation was F = 99.98%.

or receiver l = re and the fidelity is F = ||√ρ̄em(0)
√

ρ̄re(2T )||
where || · || is the trace norm.

In Fig. 4(a) we consider how the initial state affects the
transfer process. For a fixed γ and ζ , we plot the fidelity of

state transfer as a function of the initial state. The state transfer
fidelity only depends on the excited-state population, and is
independent of φ0. The transfer fidelity clearly depends on θ0

and is worst when the state is initialized in |ψem(0)〉 = |e〉. This
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FIG. 4. Fidelity F of the transfer compared to different system parameters. The direct method is used for (a) and (c) with N = 1 while the
mean-field method is used for (b) and (d) with N � 1. Fidelity is plotted against the initial state θ0 in (a) with N = 1 (solid black line), and
in (b) with N = 10 (dotted red line), N = 103 (dashed green line), and N = 104 (solid blue line); in both plots γ /g = 0.1 and ζ = 2. Fidelity
is plotted against the optical depth ζ and loss γ in (c) and (d) with θ0 = π/2, N = 1 in (c) and N = 106 in (d). All simulations have φ0 = 0,
κ = 2g

√
N , and T = 50/κ .

is because our protocol transfers the amplitude of the excited
state, but the receiver is already initialized in the ground state.
Consequently, we will always achieve a perfect transfer fidelity
when |ψem(0)〉 = |g〉, independent of any imperfections in the
system.

Furthermore, we see that the lower bound provided by the
mean-field prediction is overly conservative when the states
are close to θ0 = 0. As we increase the number of particles
N , the lower bound on fidelity improves. However, the fixed
point at θ0 = 0 makes the mean-field simulation technique
uninformative for the θ0 = 0 case, and we have to analyze the
situation physically.

When θ0 = 0, there exists no relative phase relationship
between the ions in the ensemble as they are all in the excited
state. In this case, the probability of the first emission into
the cavity mode compared to other modes will be independent
of the particle number. Instead it will only be a function of
the geometry, or more specifically the mode volume of the
ensemble. In this case the ensemble will not necessarily have
an advantage over an individual ion. But this is only true when
θ0 = 0; when θ0 = ε is small, a phase relationship will develop
between the ions, meaning emission into the cavity versus
other modes will start to scale with N . More specifically, we
expect an ensemble to start having a distinct advantage over an
individual ion (for the same mode volume) when ε > 1/

√
N .

Thus the volume of initial states where an ensemble has a clear
advantage over an individual ion also increases with particle

number. Lastly, working with an ensemble provides more
flexibility with geometry, which may provide an advantage
over an individual ion even in the case of θ0 = 0, but we leave
this as an open question for future work.

In Figs. 4(b)–4(d) we consider the deleterious effects of
loss and lower optical depths. We perform a scan over loss γ

and optical depth ζ versus fidelity, with a fixed g and initial
state. We can see that the fidelity monotonically decreases as
the loss increases, or when the optical depth gets smaller.
In most applications there will be some finite fidelity for
transfer required before error correction can be employed to
compensate. Fortunately, given some initial state and target
fidelity, we can overcome a finite loss rate γ by simply using
a larger N , as shown in Fig. 4. Similarly, the performance of a
GEM can be improved by using a larger optical depth ζ , which
can be achieved by increasing the rare-earth ion density. In
both cases, stoichiometric rare-earth ion crystals with narrow
inhomogeneous linewidths could be used to achieve very large
N and ζ as required for highly efficient state transfer.

G. Effect of number imbalance

When working with ensembles, another issue that can occur
is an imbalance in the number of ions between the emitter
and receiver. We can only numerically investigate this issue
with the mean-field method. In Fig. 5 we plot the fidelity of
transfer as a function of the ratio Nre/Nem. We can see the
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FIG. 5. Fidelity F of the transfer compared to the ratio between
the number of ions in the receiver compared to emitter Nre/Nem

with Nem = 106, θ0 = π/2, φ0 = 0, ζ = 2, γ = 0, κ = 2g
√

Nem, and
T = 50/κ .

transfer fidelity is perfect when Nem = Nre, but reduces as the
ratio of ions in the emitter and receiver becomes unbalanced.
Fortunately, this problem is solved by simply using a larger
ensemble. Assuming that the numbers of ions in the ensembles
are randomly chosen from a Poisson distribution with the
same mean N , which is reasonable given they are typically
prepared optically with lasers that also obey Poisson statistics,
the standard deviation in the distribution of the ions will scale

as
√

N . Given this distribution, the mean fraction will be
Nre/Nem = 1, and the standard deviation in the fraction will
be 1/

√
N . Consequently, using a larger ensemble results in a

fraction close to one, and a higher fidelity.

H. Effect of inhomogeneous broadening

In practice, the Hamiltonians for the emitter and receiver
ensemble will include an additional term to account for the
inhomogeneous broadening of the ensemble:

Hl =
N∑

j=1

�l,jσ
z
l,j − islg(Jlc

†
l − J

†
l cl). (15)

Each �l,j is a random variable sampled from the in-
homogeneous broadening density function �l(�), with∫ ∞
−∞ d��l(�) = N . We assume that the inhomogeneous

broadening distribution is the same for the emitter and receiver
�(�) = �em(�) = �re(�) and it is an even function such that
�(�) = �(−�). In the limit of very large N , Hem ≈ −Hre.
There still exists a unique dark state where all the ions are
in the ground state. Consequently, even with the addition of
inhomogeneous broadening, efficient state transfer is possible.

We numerically investigate state transfer with an inhomoge-
neous linewidth in Fig. 6, where we plot the flow of excitation
during the transfer process, with the same parameters as
Fig. 3, but we now include significant broadening. The
equations of motion we used for the simulations, which were
derived by applying a mean-field approximation and going
to the continuum limit, are presented in Appendix C. We set

FIG. 6. Dynamics of excitation during state transfer with inhomogeneous broadening. In subfigures (a) and (d) the excitation spectral
density Eσ,l(�,t) of the ions is plotted against the detuning � and time t in the emitter and receiver ensemble, respectively. In subfigures (b)
and (c) the excitation in the cavity is plotted against time with a dashed line in the emitter and receiver, respectively. The excitation in the
GEM is not shown. The parameters are the same as the mean-field simulations presented in Fig. 3 with N = 106, γ /g = 0.1, ζ = 2, θ0 = π/2,
φ0 = 0, κ/g = 2

√
N = 103, and T = 50/κ , except we now include inhomogeneous broadening with width σ�/g = 10. The final fidelity of

transfer is F = 99.95%.
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FIG. 7. FidelityF of the transfer compared to the inhomogeneous
broadening σ� with N = 106, θ0 = π/2, φ0 = 0, ζ = 2, γ /g = 0.1,
κ/g = 2

√
N = 103, and T = 50/κ . Note that the fidelity does not

significantly drop until σ� becomes comparable to κ .

�l(�) = Ne−�2/2σ 2
�/σ�

√
2π with σ�/g = 10; this linewidth

is much larger than both the coupling strength g and the
homogeneous linewidth γ /g = 0.1, but it is still much smaller
than the cavity damping κ/g = 2

√
N = 2000. The transfer

fidelity is 99.95%, which is slightly less than the case without
broadening, because the super-radiant amplification of the
emission is slightly reduced by dephasing caused by the
inhomogeneous linewidth. Nevertheless, this transfer fidelity
is still high and can be further improved by increasing N .

In Fig. 7 we present a plot of the transfer fidelity F as a
function of σ�. Here we can see the fidelity is only significantly
affected by the linewidth σ� when it becomes large enough that
it is comparable to κ . When σ� is similar to κ the ions will begin
to dephase before the excitation has had time to escape through
the cavity. This leaves some excitation effectively trapped in
the ions, which is not transferred. This issue can be solved in
two ways. First, a larger spectral density N can be used, which
will make κ larger and ensure the excitation leaves the system
before significant dephasing has occurred. Second, a sequence
of pi pulses could be used to stop the ions from dephasing
and ensure that all the excitation is released from the system.
In either case a large inhomogeneous linewidth σ�, which is
bigger than g and γ , is not a fundamental issue for efficient
state transfer.

V. TRANSFERRING ENTANGLED STATES

Our discussion of state transfer has so far only considered
sending an individual qubit of information that is separable
from its environment. However, in quantum information
processing it is important to transfer a qubit which may be
entangled with some auxiliary system. It is straightforward to
consider the case of a single ion entangled to an ancilla, which
is discussed below, but generalizing to the ensemble case
is complicated by the many types of possible entanglement
between ensembles. It is beyond the scope of this paper to
perform simulations of entangled ensemble state transfer; we
discuss where we expect our results to apply and where further
engineering is required.

First we emphasize that our demonstration that generic state
transfer can be performed through time reversal of an optical
channel, in Sec. II, was linear with regard to the quantum state.
Hence, according to the superposition principle, as long as each
of the separable states, that add up to form the entangled state,
satisfies the conditions in Sec. II the state transfer will work
perfectly. For example, given some entangled state (|ψ1〉 ⊗
|φ1〉 + |ψ2〉 ⊗ |φ2〉)/

√
2, if one can show the transfer will

work perfectly for |φ1〉 and |φ2〉 it is guaranteed to work for
the entangled state.

Our method of state transfer will work with entangled states
for the individual ion case N = 1. For example, consider an
entangled state (|ee〉 + |gg〉)/√2 between two ions in two
separate crystals and cavities. If we wish to transfer the state
of the first ion, the transfer protocol works for both |g〉 and
|e〉; hence, by the superposition principle, we can be confident
it will work for (|ee〉 + |gg〉)/√2. The fidelity is a nonlinear
function, so the transfer fidelity for an entangled state will not
be a simple function of the fidelities of the separable states.
Nevertheless, we can be confident the transfer fidelity will
approach one as the system approaches the ideal case.

Our method of state transfer will also work with ensembles,
as long as the entanglement is between states in the symmetric
subspace. As we discussed in Sec. IV B, our method works
for ensembles because the initial condition is a symmetric
state, the dynamics preserve this symmetry, and there is a
unique dark state in the symmetric subspace. For example,
if we had two ensembles of ions in separate cavities that
were in the entangled state (|ψ0,π/2〉 ⊗ |ψπ,π/2〉 + |ψπ,π/2〉 ⊗
|ψ0,π/2〉)/

√
2, both |ψπ,π/2〉 and |ψ0,π/2〉 are in the symmetric

subspace, hence perfect state transfer will be possible in an
ideal system. However, some entangled states may be very
sensitive to loss; for example, consider the state (|ψ0,π 〉 ⊗
|ψ0,0〉 + |ψ0,0〉 ⊗ |ψ0,π 〉)/√2, which is equivalent to a NOON
state (|N,0〉 + |0,N〉)/√2 that will collapse to a separable state
after the loss of a single photon. This suggests that the state
transfer fidelity may drop rapidly as the system becomes less
than ideal. An analysis of which entangled states are more
or less sensitive to loss during the state transfer could be
considered in future work.

There are other entangled states where our approach
needs further engineering and consideration. For example,
consider an ensemble of entangled pairs of ions (labeled
a and b) in a single crystal: ⊗N

j=1(|g〉a|g〉b + |e〉a|e〉b)j ,
where there are 2N ions in total. If we attempt to transfer
the state of just one ion in each pair, we find, in many
cases, that the states in the superposition are not in the
symmetric subspace. For example, consider two entangled
pairs ((|g〉a|g〉b + |e〉a|e〉b)1 ⊗ (|g〉a|g〉b + |e〉a|e〉b)2)/2. We
can rearrange this state as (|gg〉a ⊗ |gg〉b + (|ge〉 + |eg〉)a ⊗
(|ge〉 + |eg〉)b/2 + (|ge〉 − |eg〉)a ⊗ (|ge〉 − |eg〉)b/2 + |ee〉a
⊗ |ee〉b)/2. Note that three terms in this superposition
are in the symmetric subspace for two ions spanned by
{|gg〉, (|ge〉 + |eg〉)/√2, |ee〉} and will be transferred.
However, (|ge〉 − |eg〉)/√2 is an antisymmetric state, which
is a dark state with respect to Hl and Ll , and will not be
transferred. Thus, even in the ideal case, there are limitations
to our protocol for ensembles of entangled pairs. One way
of circumventing this issue is to include the inhomogeneous
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broadening in the Hamiltonian. In this case the antisymmetric
state (|ge〉 − |eg〉)/√2 will no longer be dark and should be
transferred. However, we have shown that inhomogeneous
broadening can suppress super-radiant effects, and possibly
reduce the advantages of an ensemble. Understanding this
tradeoff, or engineering other solutions, could be examined in
future work.

From the brief discussion above we can see that state
transfer of entangled ensembles will depend on the nature of
the entanglement. There exist some entangled ensembles that
are not entirely in the symmetric state subspace, and hence
break the unique dark state condition required for the perfect
state transfer. The focus of this paper has been investigating
state transfer when the emitter and receiver have a unique dark
state. Examining how to approach state transfer when this is
not the case is a matter for future work.

VI. DISCUSSION

We have described a method for transferring a quantum state
from one system to another by way of a GEM and described its
implementation using rare-earth ions. The implementation we
presented includes an optical coupling link between crystals
to allow for transport over long distances. However, this is
not vital, and initial experimental demonstrations could even
be made with a single crystal performing the role of emitter,
memory, and receiver by using controllable electrodes to create
three distinguishable regions along the direction of light. Like-
wise, the cavity is not the only way to enhance the super-radiant
coupling along the light direction. Another option is to change
the geometry of the ensemble to make a long, skinny cylinder
[40]. This ensures super-radiant amplification mostly occurs
along the cylinder axis. With these modifications, implement-
ing this protocol in a rare-earth crystal is straightforward,
particularly as GEMs have previously been demonstrated in
rare-earth crystals [6]. The only additional component required
in our implementation is the time-dependent phase shift at the
output, which can be achieved using a time-dependent applied
electric field to change the detuning of the rare-earth ions at
the end of the GEM.

In the broader context of quantum control, this work is
an example of using a coherent noncausal filter to achieve a
control goal. As we have performed a time reversal on the
optical channel, the input field to the receiver is both non-
Markov and noncausal [36]. There has been extensive work
on solving causal filtering problems with coherent quantum
components [41–45], but very little on coherent noncausal
filters. This is primarily because it has been unclear how to
coherently implement a noncausal filter. Here we see GEMs are
an excellent candidate to perform coherent noncausal filtering
of a signal. More complex noncausal filters could be produced
by reading out different parts of the memory at different times
depending on the control goal.

In summary, we have shown generic state transfer is
possible by time reversal of a quantum optical channel.
We have given an implementation of this protocol using
rare-earth ion crystals and a GEM. Furthermore, we have
demonstrated that state transfer of rare-earth ion ensembles
is possible, and that the transfer fidelity of ensembles can
benefit from collective phenomena, namely, super-radiance.

Lastly, we discussed where we expect our approach will
work with entangled states, and where further engineering
and understanding is required.
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APPENDIX A: SIMULATIONS FOR COUPLING
TO THE CHANNEL

Here we describe the simulation methods and approxima-
tions used to provide insight into the coupling between the
emitter and optical channel. We only need to model the emitter
in this case. The master equation for the emitter is

dρem(t)

dt
= − i[Hem,ρem] + D[Lem](ρ) +

N∑
j=1

D
[
Lloss

em,j

]
(ρ),

(A1)

where D[L](ρ) = LρL† − (L†Lρ + ρL†L)/2. We perform
direct numerical simulations of this master equation using the
python package QUTIP [46,47] for small N , which is presented
in Fig. 2. However, the dimension of the Hilbert space scales
exponentially with N , thus we need an approximate method
for large N ; we apply the mean-field approximation.

The mean-field approximation is applied by finding the
equation of motion of the following expectation values: νem =
〈cem〉 and ςk

em,j = 〈σ k
em,j 〉, where k = x,y,z, which correspond

to the appropriate Pauli matrices, then assuming all higher-
order expectation values can be factorized, e.g., 〈cemσ x

em,j 〉 =
νemςx

em,j . Applying this approximation we get the following
equations of motion:

ς̇x
em,j (t) = 2gς z

em,j Re(νem) − γ ςx
em,j

/
2, (A2)

ς̇
y
em,j (t) = 2gς z

em,j Im(νem) − γ ς
y
em,j

/
2, (A3)

ς̇ z
em,j (t) = −2g

[
ςx

em,j Re(νem) + ς
y
em,j Im(νem)

]
− γ

(
1 + ς z

em,j

)
, (A4)

ν̇em(t) =
N∑

j=1

g
(
ςx

em,j + iς
y
em,j

)
νem/2 − κνem/2. (A5)

The equations of motion have an important symmetry: assum-
ing the ions start in the same state, they will remain in the same
state. Furthermore we are primarily interested in the average
state of the ions, specifically, ς̄ k

em = ∑N
j=1 ςk

em,j /N . Assuming
that the initial state of the emitter is |ψθ0,φ0〉, we can simplify
the equations of motion to

˙̄ςx
em(t) = 2gς̄ z

emRe(νem) − γ ς̄x
em

/
2, (A6)

˙̄ςy
em(t) = 2gς̄ z

emIm(νem) − γ ς̄y
em

/
2, (A7)
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˙̄ς z
em(t) = −2g

[
ς̄x

emRe(νem) + ς̄y
emIm(νem)

] − γ
(
1 + ς̄ z

em

)
,

(A8)

ν̇em(t) = Ng
(
ς̄x

em + iς̄y
em

)
νem/2 − κνem/2. (A9)

We note that the mean field makes a nonphysical prediction,
with regard to the coupling between the cavity and the ions,
that an unstable fixed point exists. In particular, if we set
γ = 0 and have an initial condition of |ψθ0,φ0〉 with θ0 = 0,
which corresponds to ς̄x

em = ς̄
y
em = νem = 0 and ς̄ z

em = −1,
the mean field predicts ν̇em = ˙̄ςk

em = 0. This is nonphysical;
if the ions start in an excited state the excitation will enter
the cavity and be emitted. Physically, this process involves
correlations forming between the ions and cavity, which the
mean field has neglected. This results in the mean field being
overly conservative in its prediction of efficiency and fidelity,
making it best thought of as a lower bound. The numerical
solutions to Eqs. (A6)–(A9) presented in Fig. 2 were completed
with the python package SCIPY [48].

APPENDIX B: SIMULATIONS FOR FIDELITY
OF TRANSFER

We use two methods to simulate the full state transfer and
determine the fidelity: a direct truncation method and a mean-
field method.

To perform a direct simulation for N = 1, we simulate
the non-Hermitian un-normalized wave equation of the total
system [36]:

d|ψ̃(t)〉
dt

= (−iHtotal − L
†
totalLtotal/2)|ψ̃〉. (B1)

We are considering the N = 1 case where all parts of the
system are initially prepared in their respective ground states
except the emitter. Consequently, there will be at most one
excitation in the system at any given time. This allows us to
truncate the wave function to the following form:

|ψ̃(t)〉 =
(

ψ0 +
∫ �

−�

dξψa(ξ )a†(ξ )

+
∑

l=em,re

(ψσ,lσ
†
l + ψc,lc

†
l )

)
|0〉, (B2)

where ψ0(t),ψa(ξ,t),ψσ,l(t),ψc,l(t) are wave-function coeffi-
cients and |0〉 refers to a state where the ions are in the ground
state with the GEM and cavities in their vacuum state. The
linear dynamical equations for these coefficients are

ψ̇σ,em(t) = gψc,em − γψσ,em/2, (B3)

ψ̇c,em(t) = − gψσ,em − κψc,em/2, (B4)

ψ̇a(ξ,t) = − is(t)ξψa(ξ ) − ζ

∫ ξ

−�

dξ ′ψa(ξ ′) + i
√

ζκψc,em,

(B5)

ψ̇c,re(t) = gψσ,re − κψc,re/2 +
√

ζκψ ′
a, (B6)

ψ̇σ,re(t) = − gψc,re(t) − γψσ,re/2, (B7)

ψ̇0(t) = 0, (B8)

where ψ ′
a(t) = SPP (t)

∫ �

−�
dξψa(ξ ).

Normally the non-Hermitian wave equation must be
stochastically simulated many times and averaged to get the
density matrix of the system [36]. However after a jump occurs
the wave equation enters the state |0〉, which is a dark steady
state for the non-Hermitian Hamiltonian. In this special case,
we only have to simulate Eq. (B1) once, then the density
matrix for the total system is ρtotal(t) = Pjump|0〉〈0| + |ψ̃〉〈ψ̃ |
where Pjump = 1 − 〈ψ̃ |ψ̃〉. We can use this density matrix to
calculate the transfer fidelities.

For large N we use a mean-field approximation to estimate
the fidelity of the transfer. We start with the master equation
for the total system:

dρtotal(t)

dt
= − i[Htotal,ρtotal] + D[Ltotal](ρ)

+
∑

l=em,re

N∑
j=1

D
[
Lloss

l,j

]
(ρ). (B9)

Using the same notation and technique as Eqs. (A6)–(A9) we
get the following equations of motion:

˙̄ςx
em(t) = 2gς̄ z

emRe(νem) − γ ς̄x
em

/
2, (B10)

˙̄ςy
em(t) = 2gς̄ z

emIm(νem) − γ ς̄y
em

/
2, (B11)

˙̄ς z
em(t) = − 2g

[
ς̄x

emRe(νem) + ς̄y
emIm(νem)

] − γ
(
1 + ς̄ z

em

)
,

(B12)

ν̇em(t) = Ng
(
ς̄x

em + iς̄y
em

)
νem/2 − κνem/2, (B13)

α̇(ξ,t) = − is(t)ξα(ξ,t) − ζ

∫ ξ

−�

dξ ′α(ξ ′,t) +
√

ζκνem,

(B14)

ν̇re(t) = Ng
(
ς̄x

re + iς̄y
re

)
νre/2 − κνre/2 +

√
ζκα′, (B15)

˙̄ςx
re(t) = − 2gς̄ z

reRe(νre) − γ ς̄x
re/2, (B16)

˙̄ςy
re(t) = − 2gς̄ z

reIm(νre) − γ ς̄y
re/2, (B17)

˙̄ς z
re(t) = 2g

[
ς̄x

reRe(νre) + ς̄y
reIm(νre)

] − γ
(
1 + ς̄ z

re

)
, (B18)

where α′ = SPP (t)
∫ �

�
dξα(ξ,t) and α(ξ,t) = 〈a(ξ )〉.

We can calculate the transfer fidelity from the mean-field
expectations by taking advantage of the Pauli operator density-
matrix factorization: ρ̄ = (σxς̄x + σyς̄y + σ zς̄ z + I )/2. The
initial state will be pure, hence we can factorize it as ρ̄em(0) =
|ψ̄em〉〈ψ̄em|, which we can use to simplify the fidelity to F =
〈ψ̄em(0)|ρ̄re(2T )|ψ̄em(0)〉. Replacing the Pauli expansion for
the emitter density matrix gives us the expression

F = [
ς̄ x

em(0)ς̄ x
re(2T ) + ς̄ y

em(0)ς̄ y
re(2T )

+ ς̄ z
em(0)ς̄ z

re(2T ) + 1
]/

2. (B19)
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Simulations presented of Eqs. (B3)–(B8) and (B10)–(B18)
in Fig. 3 were performed with the differential equation package
XMDS2 [49]. In order to improve numerical efficiency for the
fidelity scans, simulations of Eqs. (B3)–(B8) and (B10)–(B18)
presented in Fig. 4 were performed using the broadband
solution of the GEM Eq. (9) instead of numerically solving
Eqs. (B5) and (B14), and were performed using the python
package SCIPY [48].

APPENDIX C: SIMULATIONS OF STATE TRANSFER
WITH INHOMOGENEOUS BROADENING

To simulate the state transfer with inhomogeneous broaden-
ing, we again make a mean-field approximation on the master
equation (B9), except we use the modified Hamiltonian (15).
This results in the following equations of motion:

ς̇x
em,j (t) = − 2�em,j ς

y
em,j + 2gς z

em,j Re(νem) − γ ςx
em,j

/
2,

(C1)

ς̇y
em(t) = 2�em,j ς

x
em,j + 2gς z

em,j Im(νem) − γ ς
y
em,j

/
2, (C2)

ς̇ z
em,j (t) = − 2g

[
ςx

em,j Re(νem) + ς
y
em,j Im(νem)

]
− γ

(
1 + ς z

em,j

)
, (C3)

ν̇em(t) =
N∑

j=1

g
(
ςx

em,j + iς
y
em,j

)
νem/2 − κνem/2, (C4)

α̇(ξ,t) = − is(t)ξα(ξ,t) − ζ

∫ ξ

−�

dξ ′α(ξ ′,t) +
√

ζκνem,

(C5)

ν̇re(t) =
N∑

j=1

g
(
ςx

re,j + iς
y
re,j

)
νre/2 − κνre/2 +

√
ζκα′,

(C6)

ς̇x
re,j (t) = − 2�re,j ς

y
em,j − 2gς z

re,j Re(νre) − γ ςx
re,j

/
2,

(C7)

ς̇
y
re,j (t) = 2�re,j ς

x
em,j − 2gς z

reIm(νre) − γ ς
y
re,j

/
2, (C8)

ς̇ z
re,j (t) = 2g

[
ςx

re,j Re(νre) + ς
y
re,j Im(νre)

] − γ
(
1 + ς z

re,j

)
,

(C9)

where �l,j are random variables sampled from the spectral
density function ρl(�). In the limit of large N we can take the

continuum limit and change the equations to

ς̇x
em(�,t) = − 2�ςy

em(�) + 2gς z
em(�)Re(νem) − γ ςx

em(�)/2,

(C10)
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em(�,t) = 2�ςx

em(�) + 2gς z
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, (C12)
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α̇(ξ,t) = − is(t)ξα(ξ,t) − ζ
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ζκνem,

(C14)
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ς̇x
re(�,t) = −2�ςy

re(�) − 2gς z
re(�)Re(νre) − γ ςx
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ς̇y
re(�,t) = 2�ςx

re,j − 2gς z
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(C17)
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, (C18)

where �l(�) is normalized to
∫ ∞
−∞ d� �l(�) = N and the

ion variables ςk
l (�,t) are now a function of � and t . In the

continuum limit, the excitation spectral density is Eσ,l(�,t) =
�l(�)(ς z

l (�,t) + 1)/2 and the average operators are

ς̄ k
l (t) = 1

N

∫ ∞

−∞
d� �l(�)ςk

l (�,t). (C19)

Fidelities can then be calculated with Eq. (B19). Simulations
of Eqs. (C10)–(C18) were performed with the python package
SCIPY [48] using the broadband solution of GEM Eq. (9)
to improve numerical efficiency; the results are presented in
Figs. 6 and 7.
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