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Temporal steering in four dimensions with applications to coupled qubits and magnetoreception
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Einstein–Podolsky–Rosen (EPR) steering allows Alice to remotely prepare a state in some specific bases for
Bob through her choice of measurements. The temporal analog of EPR steering, temporal steering, also reveals
the steerability of a single system between different times. Focusing on a four-dimensional system, here we
investigate the dynamics of the temporal steering measures, the temporal steering robustness, using five mutually
unbiased bases. As an example of an application, we use these measures to examine the temporal correlations in
a radical pair model of magnetoreception. We find that, due to interactions with a static nuclear spin, the radical
pair model exhibits strong non-Markovianity.
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I. INTRODUCTION

Quantum steering [1–4] is an intriguing phenomenon
wherein one party can remotely steer the quantum state
of another party through their choice of measurements.
Remarkably, there exists a hierarchy relation between steering,
Bell nonlocality, and entanglement. That is, states which are
Bell nonlocal are also steerable, and all steerable states are
entangled, but not vice versa [3,5]. Numerous applications
of steering have been considered, such as the connection to
one-side device-independent quantum key distribution [6,7], a
geometrical representation of steering [8], the correspondence
with measurement incompatibility [9–11], steering beyond
quantum theory [12], multipartite steering [13–15], etc. In
addition, there have been many efforts at quantifying steering
[7,16–20]. In addition, many experiments exhibiting the reality
of steering have also been performed [14,21–23].

A range of different types of quantum correlations also
appear when measuring a single system at different times.
For example, the Leggett–Garg (LG) inequality [24,25], a
temporal analog of Bell’s inequality, based on the assumption
of macroscopic realism, relies on combining two-time cor-
relation functions [26,27]. Similarly, other types of temporal
correlations have been proposed and investigated, including
quantum entanglement in time, temporal nonlocality, and
bounding temporal quantum correlations [28–31]. Motivated
by the correspondence between Bell’s nonlocality and the LG
inequality, a temporal analog of steering was proposed by Chen
et al. [32–34]. Focusing on a single system transmitted from
Alice to Bob, temporal steering demonstrates Alice’s influence
on Bob via her choice of measurements. Temporal steering
is related to quantum key distribution [32–35], measurement
incompatibility [36], and quantum non-Markovianity [33]. The
first experiment showing temporal steering has also recently
been reported by Bartkiewicz et al. [37].
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Although some works concerning temporal steering have
been proposed, research on temporal steering in higher
dimensions is still lacking. Here, we introduce a new quantifier,
temporal steering robustness, in analogy with spatial steering
robustness [17]. Then, we move on to considering the temporal
steering robustness of four-dimensional systems. As examples,
we first consider two coupled qubits and construct its temporal
assemblage using five mutually unbiased bases (MUBs) [38].
Second, we consider the radical-pair model, a “toy model”
used to describe the sensitivity of certain chemical reactions
to magnetic fields, and which is one of the candidate models for
the origin of avian magnetoreception. Finally, we investigate
the non-Markovianity of the dynamics of electrons in the
radical pair model, as revealed by nonmonotonic temporal
steering.

II. TEMPORAL STEERING AND HOW TO QUANTIFY IT

A. Formulation of temporal steering

First, let us briefly review the concept of temporal steering.
Alice performs a measurement, which can be described by
a set of positive-operator valued measures (POVMs) {Ea|x},
with measurement choice x on an initial state ρ0 at time
t = 0. After the measurement, she obtains an outcome a and
a postmeasurement state σ̂a|x(t = 0) = Ma|xρ0M

†
a|x/p(a|x),

where p(a|x) = tr(Ma|xρ0M
†
a|x), with M

†
a|xMa|x = Ea|x . After

that Alice sends the state σ̂a|x(t = 0) to Bob through a quantum
channel �, in which a unitary evolution or environment-
induced noise may take place. After the transmission, Bob
receives the assemblage σ̂a|x(t) = �[σ̂a|x(t = 0)] at time t .

To verify whether Alice’s choice of measurement influences
Bob’s received state, Bob checks whether the assemblage
σa|x(t) := p(a|x)σa|x(t) can be written in a hidden-state form:

σa|x(t) = σ
T,US
a|x =

∑
λ

P (λ)P (a|x,λ)σλ. (1)

If it is the case, Bob would think that the probability distri-
bution P (λ) can be reconstructed from Alice’s measurement
setting x and the outcome a. In addition, he would also think
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that the states he receives are predetermined by σλ during
each round of the experiment, and not actually influenced by
Alice’s measurement choice. Thus all Alice has to do is use
her knowledge of the probability distribution λ and P (a|x,λ)
to construct her measurement results. What Bob receives is the
statistical average of the state of Eq. (1). Conversely, if it is not
the case that his assemblage can be written in a hidden-state
form, he convinces himself that the state he receives is actually
influenced by Alice’s choice of measurement.

In Ref. [17], Piani and Watrous introduced a quantifier of
steering—steering robustness, the minimum noise needed to
destroy the steerability of the assemblage. Here, we show that
there also exists a temporal analog of steering robustness—
temporal steering robustness (TSR), that can serve as a
quantifier of temporal steering.

Similar to the steering robustness, the temporal steering
robustness is defined as the minimum noise needed to destroy
the temporal steerability of the temporal assemblage:

TSR := min t � 0

subject to

{
σ T

a|x + tτa|x
1 + t

}
a,x

temporal unsteerable,

{τa|x}a,x : an assemblage. (2)

Following the procedure in Ref. [17], the condition (2) can also
be written as an semidefinite programming (SDP) optimization
problem:

TSR = min tr
∑

λ

σλ − 1

subject to
∑

λ

Dλ(a|x)σλ � σa|x ∀ a,x,

σλ � 0 ∀ λ, (3)

where σλ = (1 + t)σ T,US
a|x and Dλ(a|x) = δa,λ(x) [16,33] is the

deterministic value of the single-party conditional probability
distributions P (a|x,λ). In the following section, we will use the
temporal steering robustness to realize the temporal correlation
in higher-order system for some specific quantum channel.

III. TEMPORAL STEERING IN SYSTEMS
WITH DIMENSION d = 4

A. Two qubits coherently coupled with each other

In this section, we examine the dynamics of the temporal
steerability of a system composed of two qubits coherently
coupled with each other, given by the interaction Hamiltonian
H = g(σ+

1 σ−
2 + σ−

1 σ+
2 ), where g is the coupling strength

between the two qubits, and σ+
i and σ−

i are the raising and
lowering operators of the ith qubit, respectively. In addition,
each qubit is subject to a Markovian decay process. The
evolution of the entire system is expressed by the master
equation with Lindblad form [39]

ρ̇ = 1

i�
[H,ρ] +

2∑
i=1

γ

2
(2σ−

i ρσ+
i − σ+

i σ−
i ρ − ρσ+

i σ−
i ),

(4)
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FIG. 1. The dynamics of temporal steering robustness (two mea-
surement settings) for two coherently coupled qubits with different
decay rates γ . The black-solid, blue-dashed, and red-dotted curves
represent γ = g, 4g, and 9g, respectively. Here, t is in units of γ −1.
The initial state is in the maximally mixed state ρ(0) = 1/4.

where γ is the decay rate. Mathematically, we can treat
the two qubits as a single four-dimensional system, i.e.,
|gg〉 ≡ |1〉, |ge〉 ≡ |2〉, |eg〉 ≡ |3〉, and |ee〉 ≡ |4〉, for which
the maximum number of MUBs measurement is five. The
set of five MUBs is denoted by Ma|x = |φa|x〉〈φa|x | [40], as
detailed in the Appendix.

We assume that the initial state of the two-qubit sys-
tem is the maximally mixed state ρ(0) = 1/4, where 1 is
the identity matrix. The postmeasurement state σa|x(t) =
Ma|xρ(0)Ma|x/p(a|x) can be obtained straightforwardly.
Figure 1 shows the dynamics of the temporal steering ro-
bustness with two measurement settings (n = 2 and choosing
the measurement settings x = 1, 2) with different decay rates
γ . In Fig. 2, we compare the dynamics of temporal steering

t0 1 2 3
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0.8ssentsubor gnireets larop
meT

n  =
n  =

n  =

n  = 2
3
4
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FIG. 2. The dynamics of temporal steering robustness of two
qubits with different numbers of measurement settings n. The decay
rate is set as γ = g, and the initial state is in the maximally
mixed state ρ(0) = 1/4. Here, we compare the results of four
kinds of measurement settings (n = 2 to 5). For example, when
n = 3, {Ma|x} = {Ma|1,Ma|2,Ma|3}. We see that the temporal steering
robustness increases with the number of measurement settings, due
to the intrinsic definition of the measure of (temporal) steerability
[16,17,33].
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FIG. 3. Schematic diagram of the radical-pair model. The radical-
pair mechanism for avian navigation can explain some of the features
of behavioral experiments of European robins [41,43,44]. It is thought
that it may occur within certain cryptochrome proteins residing in the
eye. The simplest radical-pair toy model is composed of two electrons
and a nucleus, coupled to one of the electrons with the hyperfine
interaction. The singlet and triplet states of the two electrons in the
radical pair interconvert due to a combination of the Zeeman splitting
due to the geomagnetic field and an anisotropic nuclear hyperfine
interaction. At later times, the singlet and triplet states decay into
chemical products, dependent on their spin nature, which we track
with the ancilla shelving states S and T , respectively.

robustness for different numbers of measurement settings
(n = 2 to n = 5, and choosing the measurement setting x =
1, . . . ,n for each curve). We can see that the temporal steering
robustness increases when the number of measurement settings
increases, as expected from the original definition of the
temporal steering robustness in Eq. (3).

B. Temporal steering robustness of the radical pair

The mechanism by which birds and other animals navigate
using the geomagnetic field is still unclear. Among various
proposals, the radical-pair model has received considerable
attention due to its ability to predict many of the behavioral
features seen in experiments and its uniquely quantum features
[41]. In addition, radical-pair reactions are known to occur
within the biological photoreceptor cryptochrome [42,43],
perhaps leading to a biologically detectable signal. In the
traditional toy model of this process, a radical pair within
or attached to the cryptochrome is formed when an electron
is excited from a donor to a receptor molecule, which thus
hosts spatially separated electrons in a spin-singlet or -triplet
state. The electron pair then evolves coherently between
these states, under the influence of the geomagnetic field and
the hyperfine interactions with the host nuclei [44,45]. At
a later time, the singlet-triplet conversion leads to different
chemical reaction products that could lead to a biologically
detectable signal. Figure 3 depicts the basic concept of the
radical-pair model. Of course, in reality the chemical-process
may be much more complicated than this toy-model suggests,
but it is helpful to consider such a model because of its
simplicity and intuitive ability to explain some behaviorial

features. Despite this simplicity, here we find that the analysis
of higher-dimensional steering in this model reveals some
surprising and counterintuitive features.

The simplest radical-pair model contains two electrons
and one nuclear spin [41]. The nucleus interacts with only
one of the electrons, while the other is free. The hyperfine
interaction between the nucleus and the electron together
with the Zeeman effect induce the interconversion between
the singlet and triplet states. For the radical-pair model to
be sensitive to the angle of the external geomagnetic field, the
hyperfine coupling tensor must be anisotropic. The anisotropic
hyperfine tensor between the nuclear spin and electron 1 can be
written as A = diag(Ax,Ay,Az). Here, we consider two kinds
of anisotropic hyperfine tensors Ax = Ay = 0, |Az| = 105

and Ax = Ay = Az/2 with |Az| = 105 meV [41,46,47]. The
Zeeman effect is included due to the coupling between the
magnetic field and the electrons. The Hamiltonian of the entire
system is

H =
2∑

i=1

γ B · Si + I · A · S1, (5)

where Si ≡ (σx,i ,σy,i ,σz,i) are the electron-spin operators
(i = 1,2) with Pauli matrices σ , I is the spin operator for
the nucleus, and B is the magnetic field. Here, γ = 1

2μBgs

is the gyromagnetic ratio, with μB being the Bohr magneton
and gs = 2 being the magnetic moment [46]. The magnetic
field for the two electrons and the nucleus can be generally
described by

B = B0(cos φ sin θ, sin φ sin θ, cos θ ), (6)

where B0 = 47 μT is the intensity of the Earth’s magnetic
field. Without loss of generality, an axial symmetry is usually
assumed: φ = 0 and θ ∈ [0,π/2].

To mimic the process that the singlet and triplet states
decay to the chemical compounds, we additionally add two
ancilla-shelving systems (called S and T ) to the Hilbert
space to keep track of the population decay into singlet and
triplet products, respectively. These are not physical systems
but just mathematically convenient to aid in tracking the
change in population. One can also adopt other approaches,
which are typically more numerically conservative, but here
it is convenient because we wish to investigate the temporal
dynamics of the electron-spin systems without loss of pop-
ulation, which we can do by tracing out the ancillas. This
corresponds to postselecting on populations which have not
decayed. Of course, if one cares about the magnitude of a signal
corresponding to the decay processes, one should investigate
these populations directly.

Later, we will use a master equation with the Lindblad
terms to describe the Markovian decay process from the
singlet state, as recorded by the ancilla S, as well as from the
triplet state, as recorded by the ancilla T . The bases of every
element of our system are as follows: First, the bases of the
electron pair are defined as {|s〉,|t0〉,|t−1〉,|t+1〉}, with |s〉 and
{|ti〉}i=−1,0,1 being that singlet and triplet states, respectively.
Second, | ↑〉 and |↓〉 are the bases describing the nuclear-spin
states. Finally, {|Sj 〉} and {|Tj 〉} (where j = 0,1) are states of
the ancilla S and ancilla T , respectively, with j = 0 describing
the subspace where the system has not decayed, and j = 1 the
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subspace where it has. With the above definitions, we can now
define the projection operators as Ps,↑ = |s, ↑ ,S1,T0〉〈s, ↑ ,

S0,T0|, Pt0,↑ = |t0,↑ ,S0,T1〉〈t0, ↑ ,S0,T0|, Pt−1,↑ = |t−1, ↑ ,

S0,T1〉〈t−1, ↑ ,S0,T0|, and Pt+1,↑ = |t+1, ↑ ,S0,T1〉〈t+1, ↑ ,

S0,T0|. The projective operators describe the spin-selective
recombination into the chemical compounds (ancilla S and
ancilla T states). We also consider additional environmental
noise described by the standard Lindblad formalism [41,48].
The dynamics of the density matrix is obtained by solving the
following master equation:

ρ̇ = 1

i�
[H,ρ] + κ

8∑
i

[
PiρP

†
i − 1

2
(P †

i Piρ + ρP
†
i Pi)

]

+


2∑
i=1

[
σz,iρσ

†
z,i − 1

2
(σ †

z,iσz,iρ + ρσ
†
z,iσz,i)

]
, (7)

where σz,i are the Lindblad operators of the two electrons.
Here, we assume that all the singlet and triplet recombination
operators have the same decay rate κ = 104 s−1, and 
 = 103

s−1 is the rate of decoherence of each electron. The value
κ = 104 s−1 is chosen because it is the one thought to explain
certain experimental results in which a small oscillating
magnetic field can disrupt the European Robin’s ability to
navigate [41,49,50]. An implication of these results is that the
decoherence time of the radial-pair model could of the order
of 100 μs or more [41].

Previous works [41,47,51] have looked at the behavior of
the entanglement between the free electron and the electron
coupled with the nucleus. Here, we are primarily interested in
the temporal quantum correlations of the two-electron system
at different times. Also, we assume that the initial state of
the entire system (the two electrons, the nuclear spin, and the
ancillas S and T ) is ρ(t = 0−) = 1

8 × 1 ⊗ |S0〉〈S0| ⊗ |T0〉〈T0|,
where 1

8 × 1 is the maximally mixed state of the two electrons
and nuclear spin [51]. The five MUB measurements are
performed on the two-qubit system at time t = 0, producing
the temporal state assemblage σa|x(t), and the dynamics of the
temporal steering robustness can then be obtained. In Figs. 4
and 5, we plot the dynamics of the temporal steering robustness
with two (n = 2 and choosing the measurement setting x = 1,
2) and three (n = 3 and choosing the measurement setting x =
1, 2, 3) measurement settings, respectively. Here, we can see
that the dynamics of the temporal steering robustness is clearly
dependent on the orientation θ . While it is hard to state a strong
connection between such temporal quantum correlations and
the functionality of the avian compass, in the next section we
will argue that these results imply a counterintuitive appear-
ance of non-Markovianity in this model, easy to miss without
looking at a quantity like the temporal steering robustness.

C. The non-Markovianity of the radical pair

In Ref. [33], it was shown that the temporal steerable
weight is nonincreasing under completely positive and trace-
preserving maps, hence it can be used to define a practical
measure of non-Markovianity. Compare Eq. (3) with the SDP
formulation of temporal steerable weight in Ref. [33]; it is
easy to show that temporal steering robustness can also reveal
non-Markovian dynamics. The wavy curves in Figs. 4 and 5
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FIG. 4. The dynamics of temporal steering robustness (two
measurement settings, Ma|1 and Ma|2) of the radical-pair model.
The red, black, and blue solid curves represent the results of the
angle θ = 0, θ = π/4, and θ = π/2, between the magnetic field and
the radical-pair, respectively. In column (a), we set the anisotropic
tensor: Ax = Ay = 0, Az = |105| meV [41,46,47]. The times when
the signals vanish, for the red, black, and blue solid curves curves are
56, 53, and 50 μs, respectively. In column (b), we set the anisotropic
tensor: Ax = Ay = Az/2 with |Az| = 105 meV. The times when the
signals vanish, for the red, black, and blue solid curves are 45, 41, and
20 μs, respectively. The dynamics of the temporal steering robustness
obviously depends on the angle θ between the magnetic field and the
radical pair in this simplest model.

indicate the appearance of non-Markovianity in the radical-
pair model. At first this may seem counterintuitive, because
the equation of motion is in a Markovian Lindblad form and,
when the hyperfine interaction tensor is A = diag(0,0,Az), the
nuclear-spin polarization remains unchanged during the spin
dynamics [52]. However, because the initial state is assumed
to be maximally mixed, the electrons effectively experience
a mixture of two different evolutions, depending on the
nuclear-spin state, leading to the observed non-Markovianity.

To acquire more insights into this non-Markovianity,
we simplify the model by neglecting the decay rate
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FIG. 5. The dynamics of temporal steering robustness (three
measurement settings, Ma|1, Ma|2, and Ma|3) of the radical-pair model.
The red, black, and blue solid curves show the results for the angles
θ = 0, θ = π/4, and θ = π/2, between the magnetic field and the
radical pair, respectively. The difference between Figs. 4 and 5 is the
number of the measurement settings, nx . In column (a), the times
when the signals vanish, for the red, black, and blue solid curves are
75, 71, and 69 μs, respectively. In column (b), the times when the
signals vanish, for the red, black, and blue solid curves are 62, 57,
and 34 μs, respectively.

(i.e., 
 = κ = 0) and consider the coherent dynamics of the
two electrons and nuclear spin. Assuming that the initial state
is a direct product state between the electron singlet state and
the nuclear-spin state ρnu(0) = a|↑〉〈↑| + (1 − a)|↓〉〈↓|. The
total density matrix at a later time can be expressed as

ρ(t) = aρ1
e1,e2(t) ⊗ |↑〉〈↑| + (1 − a)ρ2

e1,e2(t) ⊗ |↓〉〈↓|,
(8)

where

ρ1
e1,e2(t) = exp

[
iAzσ

1
z t

]|s〉〈s| exp
[−iAzσ

1
z t

]
,

ρ2
e1,e2(t) = exp

[−iAzσ
1
z t

]|s〉〈s| exp
[
iAzσ

1
z t

]
(9)
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FIG. 6. The time evolution of the (a) negativity and (b) temporal
steering robustness for two electrons of our simplified radical-
pair model (i.e., 
 = κ = 0). The initial state is a direct product
state between the electron singlet state and the nuclear spin state
ρnu(0) = a|↑〉〈↑| + (1 − a)|↓〉〈↓|, with the relative weight a = 0
(green-solid), a = 0.25 (blue-dashed), a = 0.4 (red-dotted), a = 0.5
(black-solid), and a = 1 (black-dotted), respectively. When a = 0.25,
0.4, and 0.5, the oscillating curves indicate the non-Markovian nature
of the dynamics. In particular, for a = 0.5, the nuclear spin possesses
the largest Shannon entropy and results in the largest oscillation
magnitudes in both panels. Consequently, the dynamics of the two
electrons shows the strongest non-Markovianity. On the other hand,
because a = 0, 1, the two-electron state evolves unitarily. Hence, the
negativity and temporal steering robustness are constant in time.

describe the dynamic evolutions of the two electrons under the
influence of the magnetic fields locally induced by the nuclear
spinors [52].

To reveal the non-Markovian nature of the dynamics of
the two electrons, we first notice that the state of the two
electrons can be expressed as ρe1,e2 = Trnuρ(t). Inspired by
the Rivas–Huelga–Plenio non-Markovianity measure [53], in
Fig. 6, we show the entanglement of the two electrons
quantified by the negativity [54]. When a = 0 or 1, the nuclear
spin is a pure state in |↑〉 or |↓〉, respectively, and the two-
electron state evolves unitarily. As the nuclear spin becomes a
mixed state (a = 0.25, 0.4, and 0.5), the two-electron state is
in the form of a convex combination of ρ1

e1,e2(t) and ρ2
e1,e2(t).

Consequently, the time evolution of the entanglement between
the two electrons shows oscillations. Therefore, the nuclear
spin plays the role of a non-Markovian environment. However,
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FIG. 7. Schematic illustration revealing the analogy of our
radical-pair model to a controlled-NOT gate. The nuclear spin and
two electrons play a role analogous to the control qubit and target
qubit, respectively. The nuclear-spin state decides the unitary operator
U = exp[iznuAzσ

1
z t] exerting on electron 1, where znu = ±1 is the

eigenvalue of σz. When a gradually approaches 0.5, the nuclear spin
(C qubit) becomes more uncertain and possesses higher Shannon
entropy. Therefore, the non-Markovianity of the two electrons is
stronger.

if we consider the entanglement of the nuclear spin and one of
the electrons alone, by tracing out the other electron, there is,
of course, no entanglement between the nuclear spin and the
electron [55].

It is interesting to notice that the non-Markovianity of
the convex combination of two unitary transformations, as
given by Eq. (8), can be seen as a pair of qubits coupled
with each other via a controlled-NOT (CNOT) gate [56]. As
shown in Fig. 7, the nuclear spin plays a role analogous to
the control qubit (C qubit), which decides the corresponding
mixture of unitary operators being exerted on electron 1. It
was shown in Ref. [56] that, when a gradually approaches 0.5;
namely, the C qubit becomes more uncertain and possesses
higher Shannon entropy, the target qubit exhibits stronger
non-Markovianity. This is exactly in line with our results
that, as a approaches 0.5, the oscillation magnitude in Fig. 6
becomes larger, indicating stronger non-Markovianity in the
dynamics of the two electrons.

IV. CONCLUSION

In summary, we investigate the temporal steering robustness
as a means to quantify temporal steering in high-dimensional
systems. To explore its applications, we investigate the
dynamics of temporal steering robustness in the radical-pair
model. We show that the dynamics of the temporal steering
robustness is clearly dependent on the orientation θ . We also
reveal the non-Markovianity of the radical-pair model induced
by the nuclear spin. The time evolution of the radical pair is
the convex combination of two unitary transformations. The
different proportions of the nuclear state decide the convex
combination of two unitary transformations of the radical pair.
When the nuclear spin state is up or down, the dynamics of the
system is completely positive and trace preserving. However,
when the nuclear spin is a mixed state, the radical pair behaves

in a non-Markovian manner. It is interesting because the
nuclear spins are in thermal equilibrium, a completely mixed
state. It suggests that non-Markovianity not only plays a role
in photosynthesis [45], but may also have some influence in
the avian compass.
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APPENDIX

In this Appendix, we explicitly give the MUBs which
are used as the measurement operators. The MUBs are
two orthonormal bases {|b1〉, . . . ,|bd〉} and {|c1〉, . . . ,|cd〉} of
dimensions d, such that their complex inner-product between
any basis states |bi〉 and |cj 〉 can be expressed as |〈bi |cj 〉|2 =
1/d [38]. The set of five MUBs is denoted by {Ma|x}a|x , with
a = 1, 2, 3, 4, x = 1, 2, 3, 4, 5, and Ma|x = |φa|x〉〈φa|x |,
where

|φ1|1〉 = |1〉, |φ2|1〉 = |2〉,
|φ3|1〉 = |3〉, |φ4|1〉 = |4〉,
|φ1|2〉 = 1

2 (|1〉 + |2〉 + |3〉 + |4〉),
|φ2|2〉 = 1

2 (|1〉 + |2〉 − |3〉 − |4〉),
|φ3|2〉 = 1

2 (|1〉 − |2〉 − |3〉 + |4〉),
|φ4|2〉 = 1

2 (|1〉 − |2〉 + |3〉 − |4〉),
|φ1|3〉 = 1

2 (|1〉 − |2〉 − i|3〉 − i|4〉),
|φ2|3〉 = 1

2 (|1〉 − |2〉 + i|3〉 + i|4〉),
|φ3|3〉 = 1

2 (|1〉 + |2〉 + i|3〉 − i|4〉),
(A1)

|φ4|3〉 = 1
2 (|1〉 + |2〉 − i|3〉 + |4〉),

|φ1|4〉 = 1
2 (|1〉 − i|2〉 − i|3〉 − |4〉),

|φ2|4〉 = 1
2 (|1〉 − i|2〉 + i|3〉 + |4〉),

|φ3|4〉 = 1
2 (|1〉 + i|2〉 + i|3〉 − |4〉),

|φ4|4〉 = 1
2 (|1〉 + i|2〉 − i|3〉 + |4〉),

|φ1|5〉 = 1
2 (|1〉 − i|2〉 − |3〉 − i|4〉),

|φ2|5〉 = 1
2 (|1〉 − i|2〉 + |3〉 + i|4〉),

|φ3|5〉 = 1
2 (|1〉 + i|2〉 − |3〉 + i|4〉),

|φ4|5〉 = 1
2 (|1〉 + i|2〉 + |3〉 − i|4〉).
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