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Analytic sources of inequivalence of the velocity gauge and length gauge
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It has been known for many years now that the descriptions of electromagnetic couplings in velocity gauge
and length gauge can yield different results for atoms and molecules in strong fields. We point out that it is
mathematically consistent to mix velocity gauge for some components of a material with length gauge for other
components, although this should not be possible for a bona fide gauge transformation. For many-particle systems
in a Hartree approximation, it is even possible to mix velocity gauge and length gauge for different particles
of the same kind. Four main sources of analytic differences between velocity gauge and length gauge are then
identified, and it is pointed out that these sources imply differences between velocity gauge and length gauge
in particular for subfemtosecond spectroscopy, for experiments involving strong fields, and for chiral materials.
Finally, it is emphasized that the transformation from velocity gauge to length gauge is just a particular example
of a picture-changing unitary transformation. However, all these transformations lead to nonunitary shifts of the
Hamiltonian, irrespective of whether the transformation can be described as a gauge transformation. Therefore,
all these descriptions of quantum optics in dipole approximation are formally equivalent if agreement is achieved
which particular formulation of the time-dependent interaction terms perturbs the “true” energy eigenstates of
a system. However, this is where the actual discrepancies between velocity gauge, length gauge, and also other
formulations such as acceleration gauge originate. This implies a generalization of the results of Galstyan et al.
[Phys. Rev. A 93, 023422 (2016)] from two different classes of theoretical formulations to many different classes
of theoretical formulations.

DOI: 10.1103/PhysRevA.94.062118

I. INTRODUCTION

It has been known for many decades [1,2] that describing
matter-photon couplings in the dipole approximation yields
different results for observables if a “velocity-gauge” interac-
tion Hamiltonian

HIv =
∫

d3x
∑

i

{
iqi�

2mi

A(t) · [ψ+
i (x,t)

↔∇ ψi(x,t)]

+ q2
i

2mi

ψ+
i (x,t)A2(t)ψi(x,t)

}
(1)

is used instead of a “length-gauge” interaction Hamiltonian

HIl = −
∫

d3x
∑

i

qiψ
+
i (x,t)x · E(t)ψi(x,t). (2)

Indeed, a well-know textbook example is provided by the dif-
ferential electron-photon-scattering cross section for scattering
of photons with initial momentum �k and polarization ε(k)
off electronic states |n〉. The velocity-gauge Hamiltonian (1)
yields (see, e.g., Refs. [3,4])

dσ

d�
= α2

S

c2

k′

k

∣∣∣∣ �

me

δn′nε
′(k′) · ε(k) +

∑
n′′

ωn′,n′′ωn′′,n

×
( 〈n′|ε′(k′) · x|n′′〉〈n′′|ε(k) · x|n〉

ωn′′,n − ck − iε

+ 〈n′|ε(k) · x|n′′〉〈n′′|ε′(k′) · x|n〉
ωn′′,n + ck′ − iε

)∣∣∣∣
2

, (3)

*rainer.dick@usask.ca

where k′ = k − (ωn′,n/c) and the sum over virtual states |n′′〉
includes integration over continuous quantum numbers.

On the other hand, the length-gauge Hamiltonian (2) yields
the original Kramers–Heisenberg formula [5]

dσ

d�
= α2

Sc
2kk′3

∣∣∣∣∣
∑
n′′

( 〈n′|ε′(k′) · x|n′′〉〈n′′|ε(k) · x|n〉
ωn′′,n − ck − iε

+ 〈n′|ε(k) · x|n′′〉〈n′′|ε′(k′) · x|n〉
ωn′′,n + ck′ − iε

)∣∣∣∣
2

. (4)

The two expressions are practically equivalent if near-
resonance conditions can be satisfied in the sense that there
are nonvanishing transition matrix elements 〈n′|ε′(k′) · x|n′′〉
and 〈n′′|ε(k) · x|n〉 with the properties ωn′′,n � ck and ωn′,n′′ �
−ck′, or if there are nonvanishing matrix elements 〈n′|ε(k) ·
x|n′′〉 and 〈n′′|ε′(k′) · x|n〉 with the properties ωn′′,n � −ck′
and ωn′,n′′ � ck. Indeed, there will be observational bias
towards observation of scattered photons where these near
resonance conditions are met, while at the same time electronic
energy-level systems are generically dense enough to meet
these requirements. This implies equivalence of Eqs. (3)
and (4) for all practical purposes. However, discrepancies
between the predictions from velocity- and length-gauge
Hamiltonians have become observationally relevant in strong-
field systems. Indeed, it is known that the two Hamiltonians (1)
and (2) can yield very different and occasionally contradictory
results in strong electromagnetic fields [6–14]. In particular,
for electron detachment in strong fields, authors have argued
for velocity gauge on the basis of analytic advantages [15,16]
and momentum conservation [17], whereas Schlicher et al.
[2] and also Cohen–Tannoudji et al. [18] have emphasized
the advantage of the formulation of length gauge in terms
of kinetic momentum mv and electric field E(t), and many
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studies in recent years report that length gauge yields results in
better agreement with observations [6,7,14,19–24]. Yet again,
for high-order harmonic generation in diatomic molecules at
large internuclear separation, Chirilă and Lein found good
agreement with the semiclassical three-step mechanism only
in velocity gauge [25].

For another example, Zhang and Nakajima report dis-
crepancies between velocity- and length-gauge predictions
for the photoelectron angular distribution in hydrogen, in
particular for elliptical polarization [8], while Majety et al.
[26] report advantages in using length gauge at short distances
and velocity gauge at longer distances for the calculation of
photoelectron spectra from single-electron systems, helium,
and hydrogen molecules.

Furthermore, Dong et al. find unphysical oscillations in
the photoinduced carrier densities in graphene if they use
length gauge, whereas velocity gauge does not exhibit that
problem [11]. On the other hand, theoretical investigations
both in velocity gauge [27–31] and in length gauge [32]
show the possibility of strong third-harmonic generation
in graphene, but Ishikawa [31] reports a reduction of the
nonlinear response due to the interplay of interband and
intraband dynamics in velocity gauge, whereas Al-Naib et al.
find an increase in length gauge [32]. These observations shed
light on another important difference between length gauge
and velocity gauge in systems with energy bands: velocity
gauge is diagonal in quasimomentum and therefore prima facie
less sensitive to intraband effects, whereas length gauge is less
sensitive to interband interactions. The choice of length gauge
[33–35] versus velocity gauge [36,37] for the study of optical
transitions and higher-harmonic generation in solids therefore
also depends on a judicious estimate of relative importance of
intraband and interband interactions.

The choice of interaction term naturally affects numerical
implementations and calculational efficiencies for integrations
of the time-dependent Schrödinger equation [9,10,38], but it
is also important to recognize physical differences between
the interaction Hamiltonians (1) and (2). Close inspection
of the transformation which maps (1) into (2) demonstrates
that the transformation can also be understood as a redefinition
of the Schrödinger field without any transformation of the
gauge fields. As a consequence, we will also find that the
transformation can be selectively applied to different particle
species, i.e., we could perform the transformation, e.g., only
for electrons, but not for protons in a many-particle system,
without violating any mathematical consistency conditions.
Indeed, the transition from velocity gauge to length gauge
is only a subset of picture-changing operations which also
include, e.g., the transformation into “acceleration gauge”
[18,39,40], and understanding the transition from velocity
gauge to length gauge in this wider framework also helps to
understand sources of differences between velocity gauge and
length gauge. The advantage of an improved understanding of
analytic sources of differences between those different pictures
of time evolution illuminates the question why one picture can
be better or worse than another picture in describing specific
physical systems or effects.

The transformation between velocity and length gauges
for a nonrelativistic many-particle system is reexamined in
Sec. II from a first-principles perspective, which emphasizes

the separation of internal short-wavelength components and
external long-wavelength components in the dipole approxi-
mation. Selective application to different particle species will
be discussed in Sec. III. The appearance of analytic differences
between velocity gauge and length gauge in physical systems
is first discussed in the single electron approximation in
Sec. IV. Section V revisits the question of analytic differences
between velocity gauge and length gauge in the wider scope of
picture-changing operations, which also includes the transition
to acceleration gauge. Section VI summarizes our conclusions.

II. DIPOLE APPROXIMATION AND THE TRANSITION
TO LENGTH GAUGE

Quantum optics with photons in the sub-keV energy
range is conveniently analyzed in dipole approximation for
the radiation fields Eγ (x,t) � Eγ (t), Bγ (x,t) � Bγ (t), since
wavelengths in excess of 10 nm do not resolve atomic or
molecular length scales. Furthermore, the preferred gauge for
the electromagnetic potentials in quantum optics of atomic or
molecular systems is Coulomb gauge,

∇ · A(x,t) = 0, 
(x,t) = 1

4πε0

∫
d3x′ �(x′,t)

|x − x′| , (5)(
1

c2

∂2

∂t2
− �

)
A(x,t) = μ0 J(x,t), (6)

where the current J includes the contributions from the
longitudinal components of the electric field, which cancel
the longitudinal components from j ,

J(x,t) = j (x,t) − ε0
∂

∂t
∇
(x,t), ∇ · J(x,t) = 0; (7)

see, e.g., Ref. [41]. The vector potential is then

A(x,t) = AJ (x,t) + Aγ (t), (8)

where the contribution from the local charges is

AJ (x,t) =
∫

d3x′ μ0

4π |x − x′| J
(

x′,t − |x − x′|
c

)
, (9)

and the freely evolving part Aγ (t) accounts for the external
radiation fields

Eγ (t) = −d Aγ (t)/dt (10)

and

Bγ (t) = ∇ × Aγ (x,t)|k·x→0. (11)

The advantage of the Coulomb gauge is therefore twofold:
First, the Coulomb gauge explicitly accounts for atomic or
molecular potentials and currents without the potential pitfall
of double counting of electromagnetic interactions through
longitudinal photon operators. Furthermore, the Coulomb
gauge separates the long-wavelength radiation contribution
Aγ (t) on the one hand from the local contributions 
(x,t) and
AJ (x,t) due to the charges in the atoms or molecules on the
other hand.

We also note that the contributions from AJ (x,t) to
Hamilton operators can usually be neglected: Atomic orbitals
scale with electron charge at least like e3, which implies that
terms eAJ (x,t) from local vector potentials scale at least
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like e8. Therefore we omit the index γ for the radiation
contributions from now on, Aγ (t) ≡ A(t).

The semiclassical Hamiltonian in the Coulomb gauge and
in the dipole approximation then takes the form

Hv =
∫

d3x
∑

i

(
1

2mi

{
�

2∇ψ+
i (x,t) · ∇ψi(x,t)

+ iqi�A(t) · [ψ+
i (x,t)

↔∇ ψi(x,t)]

+ q2
i ψ

+
i (x,t)A2(t)ψi(x,t)

} + ψ+
i (x,t)Vi(x,t)ψi(x,t)

)

+ 1

2

∑
ij

∫
d3x

∫
d3x′ψ+

i (x,t)ψ+
j (x′,t)

×Vij (x − x′,t)ψj (x′,t)ψi(x,t). (12)

This is the second-quantized Hamiltonian with respect to the
matter fields ψi(x,t) in the Heisenberg picture,

[ψi(x,t),ψ+
j (x′,t)]± = δij δ(x − x′), (13)

while the radiation fields are treated classically, e.g., as
expectation values of photon operators with long-wavelength
coherent photon states. Spin labels are suppressed, since the
subleading Pauli terms are (as usual) not included in Eq. (12).

The single-particle potentials Vi(x,t) include the contribu-
tions to the scalar potential 
(x,t) (5) due to fixed charges
(e.g., massive ion cores),

Vi(x,t) ⊇
∑

I

qiQI

4πε0|x − XI | , (14)

while the two-particle interaction potentials contain the con-
tributions to 
(x,t) from the dynamical charged particles,

Vij (x − x′,t) ⊇ qiqj

4πε0|x − x′| , (15)

see, e.g., Ref. [42] for extensive discussions of the roles
of Coulomb potentials and asymptotic conditions in atomic
collision theory and electron exchange processes.

The quantum optics Hamiltonian (12) with vector potentials
A(x,t) would yield equations of motion

i�
∂

∂t
ψi(x,t) = [ψi(x,t),H ],

which are form invariant under gauge transformations

ψ ′
i (x,t) = exp [iqiϕ(x,t)/�]ψi(x,t),

A′(x,t) = A(x,t) + ∇ϕ(x,t),

V ′
i (x,t) = Vi(x,t) − qi

∂

∂t
ϕ(x,t),

V ′
ij (x − x′,t) = Vij (x − x′,t).

However, as a consequence of the dipole approximation, the
Schrödinger equations

i�
∂

∂t
ψi(x,t) = [ψi(x,t),Hv]

= − [�∇ − iqi A(t)]2

2mi

ψi(x,t) + Vi(x,t)ψi(x,t)

+
∑

j

∫
d3x′ψ+

j (x′,t)Vij (x − x′,t)

×ψj (x′,t)ψi(x,t), (16)

following from the Hamiltonian (12), are manifestly form
invariant only under restricted gauge transformations where
the gauge function ϕ(x,t) is constrained to be at most linear
in spatial coordinates,

ϕ(x,t) = a(t) · x + b(t) ⇒ A′(t) = A(t) + a(t). (17)

These gauge transformations also trivially preserve Coulomb
gauge.

The minimal coupling terms in the effective dipole
Hamiltonian can therefore be absorbed into the Schrödinger
fields through the particular transformation with gauge func-
tion ϕ(x,t) = −x · A(t),

ψi(x,t) ⇒ ψ
(l)
i (x,t) = exp

[
− i

�
qi x · A(t)

]
ψi(x,t), (18)

A(t) ⇒ A′(t) = A(t) − ∇[x · A(t)] = 0, (19)

Vi(x,t) ⇒ V ′
i (x,t) = Vi(x,t) + qi

∂

∂t
x · A(t)

= Vi(x,t) − qi x · E(t). (20)

The transformation (18) preserves the canonical (anti-)
commutation relations (13).

The resulting Hamiltonian in terms of the new Schrödinger
fields and the old gauge fields and potentials is [after dropping
the label (l) for the Schrödinger fields in length gauge]

Hl =
∫

d3x
∑

i

(
�

2

2mi

∇ψ+
i (x,t) · ∇ψi(x,t)

+ψ+
i (x,t)Vi(x,t)ψi(x,t)

− qiψ
+
i (x,t)x · E(t)ψi(x,t)

)

+ 1

2

∑
ij

∫
d3x

∫
d3x′ψ+

i (x,t)ψ+
j (x′,t)

×Vij (x − x′,t)ψj (x′,t)ψi(x,t). (21)

Equation (21) is the second-quantized Hamiltonian in
length gauge, whereas Eq. (12) is the Hamiltonian in velocity
gauge.

In spite of our previous observation that the velocity-gauge
Hamiltonian (12) preserves form invariance of the equations
of motion (16) under the restricted gauge transformations (17),
the equations of motion resulting from Eq. (21),

i�
∂

∂t
ψi(x,t) = [ψi(x,t),Hl]

= − �
2

2mi

�ψi(x,t) + Vi(x,t)ψi(x,t)

− qi x · E(t)ψi(x,t)

+
∑

j

∫
d3x′ψ+

j (x′,t)Vij (x − x′,t)

×ψj (x′,t)ψi(x,t), (22)
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do not have the same form as the equations resulting from
Eq. (12) because we explicitly substituted A′(t) = 0 and
V ′

i (x,t) = Vi(x,t) − qi x · E(t).
There are different ways to understand the discrepancy

between Eqs. (16) and (22). In a geometric analogy, we can
think of the general formulation of equations of motion of a
gauge theory as the form-invariant formulation of the theory,
akin to the tensor formulation of the Einstein equation in
General Relativity. However, formulating the equations of
motion in a particular gauge is akin to choosing a particular
coordinate system, and manifest form invariance is lost once
the equations are formulated in that system.

Alternatively, we can think of the transformation that led to
Eq. (22) as an incomplete gauge transformation which mixes
the transformed Schrödinger fields with the original potentials
through Vi(x,t) and

−qi x · E(t) = qi x · d A(t)/dt.

In a geometric analog, this is like using mixed coordinates x ′ =
x cos φ + y sin φ and y, but not the transformed coordinate
y ′ = y cos φ − x sin φ after a rotation in two dimensions. In
that picture, the transformation that led from Eq. (16) to
Eq. (22) is rather the analog of an affine transformation in field
space instead of a full gauge transformation: the transition
from Eq. (12) to Eq. (21) only involved the field redefinition
(18), which we can think of as a basic dressing operation,
but not a complete gauge transformation. We also note that,
contrary to the original Hamiltonian (12), the length-gauge
Hamiltonian (21) yields equations of motion (22) which are
manifestly form invariant only under even more restricted
gauge transformations ϕ(x,t) = b(t). This point of view sheds
new light on the gauge problem from a different angle. In
particular, we will see explicitly in Sec. III that, contrary
to an ordinary full gauge transformation, the transition to
length gauge can be selectively applied only to particular
Schrödinger field operators, thus implying the possibility of
selective transformations only for particular particle species.

The loss of manifest form invariance cannot affect the
underlying physics, and ultimately the Hamiltonians (12)
and (21) should yield the same physical results [18,40,43]
if evaluated analytically or with sufficiently high precision,
and yet careful evaluations have led to very different results in
many instances. Before elucidating these points any further, we
also note that implementing the dipole approximation on the
level of potentials A(x,t) → A(t) eliminates magnetic effects
from the outset, thus changing the Lorentz invariants of the
theory and effectively reducing the equations (10) and (11)
only to the one equation (10) [44].

III. SWITCHING TO LENGTH GAUGE ONLY
FOR PARTICULAR SPECIES

The fact that the transition between velocity gauge and
length gauge can be viewed as an incomplete gauge transfor-
mation, viz. acting only on the matter fields, has the interesting
implication that we can separately choose for each matter field
ψi(x,t) whether we wish to represent its couplings in velocity
gauge or in length gauge. Recall that, in second quantization,
different matter fields ψi(x,t), 1 � i � n, represent different
particle species, i.e., the assertion above implies that, in a

system of electrons, protons, and α particles, we may, e.g.,
choose to represent the electrons and α particles in velocity
gauge and the protons in length gauge. Suppose we have n

different species of charged particles, and we retain velocity
gauge for nv of them, labeled by indices 1 � i � nv , while
we switch to length gauge for nl = n − nv . We will label the
latter field operators with indices 1 � ı̄ ≡ i − nv � nl . The
Hamiltonian in the mixed representation of electromagnetic
interactions then takes the form

Hvl =
∫

d3x
nv∑
i=1

1

2mi

{
�

2∇ψ+
i (x,t) · ∇ψi(x,t)

+ iqi�A(t) · [ψ+
i (x,t)

↔∇ ψi(x,t)]

+ q2
i ψ

+
i (x,t)A2(t)ψi(x,t)

}
+

∫
d3x

nl∑
ı̄=1

(
�

2

2mı̄
∇ψ+

ı̄ (x,t) · ∇ψı̄(x,t)

− qı̄ψ
+
ı̄ (x,t)x · E(t)ψı̄(x,t)

)

+
n∑

i=1

ψ+
i (x,t)Vi(x,t)ψi(x,t)

+ 1

2

n∑
i,j=1

∫
d3x

∫
d3x′ψ+

i (x,t)ψ+
j (x′,t)

×Vij (x − x′,t)ψj (x′,t)ψi(x,t). (23)

If we are using a semiclassical approximation by replacing
the photon operators A(t), E(t) = −d A(t)/dt , with classical
fields, the operator Hvl preserves particle numbers. In this
case we can map the second-quantized Schrödinger equation
for states in Fock space,

i�
d

dt
|�(t)〉 = Hvl|�(t)〉, (24)

into decoupled wave equations for many-particle wave func-
tions within each sector of Fock space by using the ansatz

|�(t)〉 =
∫

d3x1ψ
+
i1

(x1) · · ·
∫

d3xNψ+
iN

(xN )|0〉
×�i1,...,iN (x1, . . . ,xN,t), (25)

where ψ+
i (x) are the Schrödinger picture creation operators.

We assume ordering of the particle species labels ik in such
a way that all labels ik � nv correspond to field operators
in velocity gauge, while all labels ik > nv correspond to
field operators in length gauge. Use of the canonical (anti-
)commutation relations of the field operators and linear
independence of the N -particle states then reduces the second-
quantized Schrödinger equation (24) to the wave equation

i�
∂

∂t
�i1,...,iN (x1, . . . ,xN,t) = H

(1)
vl �i1,...,iN (x1, . . . ,xN,t),

(26)
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with the first-quantized Hamiltonian

H
(1)
vl = −

∑
k|ik�nv

�
2

2mik

(
∂

∂xk

− i

�
qik A(t)

)2

−
∑

k|ik>nv

(
�

2

2mik

∂2

∂x2
k

+ qik xk · E(t)

)

+ 1

2

N∑
j,k=1

Vij ,ik (xj − xk,t) +
N∑

k=1

Vik (xk,t). (27)

Furthermore, note that, within the framework of a Hartree
approximation, an ansatz

�i1,...,iN (x1, . . . ,xN,t) =
N∏

k=1

�ik (xk,t)

is used for the many-particle wave functions without imposing
symmetry or antisymmetry for bosons or fermions of the same
species. In this case the transformation between velocity-gauge
and length-gauge wave functions,

�
(v)
ik

(xk,t) ⇔ �
(l)
ik

(xk,t) = exp

[
− i

�
qik xk · A(t)

]
�

(v)
ik

(xk,t),

(28)

can even be separately imposed for each particle in the system,
i.e., within the limitations of Hartree approximations to many-
particle systems, we could even treat, e.g., electrons in outer
orbitals of an atom in velocity gauge and electrons in inner
orbitals in length gauge!

IV. ANALYTIC DIFFERENCES BETWEEN VELOCITY
GAUGE AND LENGTH GAUGE

The different form of interaction terms in the equations of
motion (16) and (22) and the corresponding Hamiltonians (12)
and (21) affects numerical procedures which can contribute to
different results for the two descriptions of quantum optical
interactions [9,10,38]. However, in spite of the formal analytic
equivalence of the theories through the transformation (18),
there are also important sources of analytical inequivalence
between the two formalisms.

We further pursue this question for an analytic origin
of differences between velocity gauge and length gauge
in a single-electron approximation. Examinations of atoms
and molecules in strong electromagnetic fields also use this
approximation, and it will simplify the equations considerably
without limiting the conclusions on the origin of differences
between velocity gauge or length gauge. The corresponding
Hamiltonians are

Hv =
∫

d3x
(

1

2me

{�2∇ψ+(x,t) · ∇ψ(x,t)

− ie�A(t) · [ψ+(x,t)
↔∇ ψ(x,t)]

+ e2ψ+(x,t)A2(t)ψ(x,t)} + ψ+(x,t)V (x)ψ(x,t)

)
,

(29)

and

Hl =
∫

d3x
(

�
2

2me

∇�+(x,t) · ∇�(x,t)

+�+(x,t)V (x)�(x,t) + e�+(x,t)x · E(t)�(x,t)

)
,

(30)

where V (x) is the effective potential experienced by the
electron. The transformation of the electron field operators
to length gauge is

�(x,t) = exp [iex · A(t)/�]ψ(x,t), (31)

or equivalently in terms of the k-space operators,

�(k,t) = ψ(k − eA(t)/�,t). (32)

Strong-electric-field situations are usually analyzed in
terms of numerical solutions of the corresponding Schrödinger
wave equations. The equations (16) and (22) for the operators
become the corresponding Schrödinger wave equations for
wave functions ψ̃(x,t) and �̃(x,t), respectively, after switch-
ing into the Schrödinger picture and expanding the states
in the one-particle sector of Fock space. The velocity-gauge
Schrödinger equation in Fock space,

i�
d

dt
|
(t)〉 = Hv|
(t)〉,

applied to single-particle states,

|
(t)〉 =
∫

d3xψ+(x)|0〉ψ̃(x,t), (33)

yields (after dropping the tilde from the wave function)

i�
∂

∂t
ψ(x,t) = − [�∇ + ieA(t)]2

2me

ψ(x,t) + V (x)ψ(x,t),

(34)

and similarly in length gauge,

i�
∂

∂t
�(x,t) = − �

2

2me

��(x,t) + V (x)�(x,t)

+ ex · E(t)�(x,t). (35)

Nevertheless, equations (31) and (32) now apply to the wave
functions and map the solutions of Eq. (34) bijectively and
unitarily into the solutions of Eq. (35). So how can we get
different physical results from equations (34) and (35)?

There are several effects here that need to be taken into
account. On the one hand, since the exponent in Eq. (31) is
only first order in e, any perturbative results from Eqs. (34)
and (35) will differ beyond first order or, stated differently,
what is formally second-order perturbation theory in Eq. (35)
is not actually second-order perturbation theory in Eq. (34).
For first-order matrix elements, the familiar identity

�p = ime[H,x] (36)

ensures

〈f |p|i〉 = imeωf i〈f |x|i〉 (37)

between energy eigenstates. This implies equivalence of
velocity and length forms of transition matrix elements in
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the limit of large transition times, Sf i = 〈f |UD(∞,−∞)|i〉,
where UD(t,t ′) is the time evolution operator in the interaction
(Dirac) picture. Equation (37) then takes the form which
actually ensures strict equivalence between first-order matrix
elements in velocity and length gauge,

〈f |p|i〉 → ±imeck〈f |x|i〉. (38)

See Refs. [45,46] for the inclusion of relativistic corrections
in Eq. (36) in atomic systems and confirmation that high-
precision numerical evaluations of first-order matrix elements
for transitions in helium respect equivalence at the 10 ppb level.
At the level of second-order matrix elements, Jentschura and
Pachucki showed that Eq. (36) can also be used to demonstrate
equivalence between velocity-gauge and length-gauge results
for polarizabilities of isotropic states [47]. This is remarkable,
because we have to distinguish between length form and
velocity form of matrix elements on the one hand, and
length-gauge and velocity-gauge results on the other hand.
The identity (37) can always be used to transform matrix
elements in either gauge, without ever invoking the gauge
transformation (18), and at the level of first-order perturbation
theory, Eq. (38) can then be used to demonstrate equivalence
of length-gauge and velocity-gauge results if the amplitudes
come with an energy-conserving factor δ(ωf i ∓ ck). However,
this does not generically work at second or higher order.
For example, the differential scattering cross section (3) is
the velocity-gauge electron-photon-scattering cross section
in length form, and the comparison with Eq. (4) shows the
differences with the length-gauge electron-photon-scattering
cross section in length form.

Indeed, due to the difficulties of interpretation of the
transition from velocity gauge to length gauge through
the transformation (18), Fulton had argued that the dipole
approximation should only be implemented at the end of
calculations, when any changes between length and velocity
representations should only be based on the relations (37) and
(38). This reduces the problem to the discussion of gauge
compatibility of the different forms of matrix elements. Fulton
demonstrated applicability of the technique (37) and (38)
for interaction potentials which depend on the locations of
many particles [48]. Furthermore, Johnson and collaborators
used the relativistic versions of (37) and (38) to demonstrate
equivalence of length gauge and velocity gauge of single-
photon transition matrix elements in first order in photon
operators for relativistic many-electron systems [49,50]. They
were not concerned with loss of gauge equivalence for
higher-order photon transitions but demonstrated that, in first
order in photon operators, gauge equivalence is maintained
for perturbations of the initial and final electron states through
relativistic Coulomb and Breit potentials.

The transition from Eq. (37) to Eq. (38) is justified
by the fact that these matrix elements appear with factors
δ(ωf i ∓ ck) for large observation times �t = t − t ′. However,
for monochromatic perturbation operators with frequency
ω = ±ck and small pulse duration �t , these factors are
replaced already in first order by a Dirichlet kernel sin[(ωf i ∓
ck)�t/2]/π (ωf i ∓ ck). This is a matter of concern for the
description of subfemtosecond spectroscopy in velocity or
length gauge, since the resulting energy uncertainty for time
resolution �t � 10−15 s is already of the order of �/�t �

0.7 eV. This implies discrepancies between first-order matrix
elements in length gauge and velocity gauge at least at
the several-percent level or higher, if the subfemtosecond
experiments are performed with UV laser pulses, and even
higher uncertainties for subfemtosecond experiments at lower
wavelengths [51,52]. Many aspects of pulse duration on
quantum-mechanical signals and spectral analysis are dis-
cussed in Ref. [53].

Furthermore, we should expect even larger differences be-
tween velocity gauge and length gauge for electron detachment
in strong fields. Before the detachment, energy eigenstates
would be defined in terms of atomic or molecular wave
functions. However, after the detachment, wave functions
are usually described in terms of dominant electric field and
subdominant potential terms, i.e., as Volkov solutions. This
implies that equation (36) and therefore also equations (37)
and (38) do not apply and cannot be used to infer equivalence
of velocity-gauge and length-gauge matrix elements.

A third analytic caveat regarding the equivalence of velocity
gauge and length gauge concerns the fact that the mapping
(31), |�(t)〉 = exp[iex · A(t)/�]|ψ(t)〉, is not a unitary map-
ping of the Hamiltonian [54]. To elucidate this point, note that
the mapping of the Hamiltonians in

i�
d

dt
|ψ(t)〉 = Hv(t)|ψ(t)〉 ⇒ i�

d

dt
|�(t)〉 = Hl(t)|�(t)〉

transforms

Hv(t) = [p + eA(t)]2

2me

+ V (x)

into

Hl(t) = exp [iex · A(t)/�]

(
Hv(t) − ex · d A(t)

dt

)
× exp [−iex · A(t)/�]

= p2

2me

+ V (x) − ex · d A(t)

dt
, (39)

and therefore the matrix elements of the Hamiltonians in
velocity gauge and length gauge differ,

〈
(t)|Hl(t)|�(t)〉
= 〈φ(t)|Hv(t)|ψ(t)〉 − e〈φ(t)|x|ψ(t)〉 · d A(t)

dt
. (40)

This implies that Hl(t) and Hv(t) evolve the system differently
through the eigenstates of the unperturbed system during an
electromagnetic pulse. We also note that Eq. (40) can yield
different energy expectation values for systems which are not
invariant under parity, or which have degeneracy between
even and odd states. Note that the question for equivalence
of energy expectation values for systems with, e.g., a single
mirror symmetry but no other parity invariance hinges on the
polarization of the incident radiation.

These observations are of no concern if we only care
about time evolution of a system from a state before a
classical electromagnetic pulse was applied to a state after the
pulse has ceased. However, if we wish to derive information
about optical responses of the system from shifts of energy
levels and eigenstates during application of a strong external
field, then we have to anticipate principally different results
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from velocity- and length-gauge descriptions. These results
can ultimately be mapped through application of Eq. (31).
However, this will yield unique, generally-agreed-upon results
only if we agree whether the velocity gauge states |ψ(t)〉
or the length-gauge states |�(t)〉 correspond to unperturbed
system eigenstates in the evaluation of any matrix elements of
Hv(t) or Hl(t) or their corresponding interaction terms. Stated
differently, the question is which state we consider as a basic
atomic or molecular state, and which state we consider as a
kind of dressed state through application of a basic dressing
operation exp[±iex · A(t)/�]. After all, the transformation
(31) impresses the Fourier components A(ω) along with all
higher harmonics onto the dressed wave function. Integrations
of equations (34) and (35) starting with the same atomic
or molecular state in a laser field of frequency ω0 would
therefore describe different physical situations. This confirms
the observation of Galstyan et al. of two principally different
families of solutions in quantum optical systems [38].

We can also generate the transformation (31) of the
Schrödinger field operators from velocity gauge to length
gauge as a unitary transformation in the form

�(x,t) = �(t)ψ(x,t)�+(t), (41)

with

�(t) = exp

[
e

i�

∫
d3xψ+(x,t)x · A(t)ψ(x,t)

]
. (42)

To fully appreciate the implications of this observation, we
have to go beyond the semiclassical approximation and restore
the photon operators in the dipole approximation,

A(t) =
√

�μ0c

(2π )3

∫
d3k√

2k

2∑
α=1

εα(k)[aα(k) exp (−ickt)

+ a+
α (k) exp (ickt)], (43)

with k · εα(k) = 0, εα(k) · εβ(k) = δαβ , [aα(k),aβ (k′)] = 0,
and [aα(k),a+

β (k′)] = δαβδ(k − k′).
Even after restoring A(t) as a photon operator, the unitary

transformation (42) leaves the vacuum invariant, but charged
particle states pick up a photon cloud either in length gauge
or in velocity gauge. Suppose we start with the single charged
particle state in velocity gauge,

|φ(t)〉 =
∫

d3xψ+(x)|0〉φ(x,t). (44)

The corresponding length-gauge state is

|
(t)〉 =
∫

d3x�+(x)|0〉φ(x,t) = �(0)|φ(t)〉

=
∫

d3x exp
( e

i�
x · A

)
ψ+(x)|0〉φ(x,t), (45)

where A ≡ A(t = 0) is the photon operator in the Schrödinger
picture. The length-gauge state would be dressed by a coherent
photon state.

On the other hand, if we suppose that the length-gauge state
is a charged single-particle state, we would infer a dressed
velocity-gauge state

|φ(t)〉 =
∫

d3x exp (iex · A/�)�+(x)|0〉φ(x,t). (46)

Note that the photon components in the dressed length-gauge
states (45) or dressed velocity-gauge states (46) correspond
to coherent states (see the appendix for definitions and
conventions for coherent states)

|ζ 〉 = exp (±iex · A/�)|0〉,

with amplitudes

ζα(k,x) = ±i
e

4π

√
μ0c

π�k
x · εα(k).

V. ACCELERATION GAUGE AND SHIFTS
IN PHASE SPACE

The apparent differences in velocity-gauge and length-
gauge results have always been puzzling, since the transfor-
mation (18) can be implemented as a gauge transformation
(19) and (20). On the other hand, every unitary time-dependent
transformation of wave functions or quantum states constitutes
a change of the picture of quantum dynamics. U(1) gauge
transformations can be expressed in terms of a Hermitian
phase factor ϕ(x,t), like the transformation (18) expressed
on the states,

|ψ (l)(t)〉 = ϒlv(t)|ψ (v)(t)〉,
ϒlv(t) = exp [−iqx · A(t)/�]. (47)

However, more general U(1) transformations with Hermitian
phase factors ϕ(p,x,t) can just as well be used to change
the picture of quantum dynamics, and we must just as well
be able to recover the correct physical predictions from
any unitarily related picture of quantum dynamics. The only
special property of the particular subgroup of picture-changing
operations which are gauge transformations is the fact that
the equations of the corresponding gauge theory remain form
invariant as long as we do not commit to any particular gauge
(just like the equations of Geometry or General Relativity
remain form invariant under diffeomorphisms as long as we
do not commit to any particular coordinate system). Therefore
it helps to illuminate the problem of apparent inequivalence
of velocity gauge and length gauge from the more general
perspective of picture-changing transformations, which we
limit to the case of time-dependent U(1) transformations
ϒ(t) = exp[iqϕ(p,x,t)/�].

One example is provided by the Galilei transformation with
boost parameter vG,

ϒG(t) = exp [−ip · vGt/�] exp [imx · vG/�], (48)

which transforms the velocity-gauge Hamiltonian

Hv(t) = [p − q A(t)]2

2m
+ V (x) (49)
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into

HG(t) = [p − mvG − q A(t)]2

2m
+ V (x − vGt) + vG · p.

Another well-known example is provided by the acceleration-
frame transformation [18,39,40] (see also Ref. [55] for
references to earlier occurrences of this transformation in the
physics literature)

ϒav(t) = exp

(
−i

q

�

p
m

·
∫ t

t0

dτ A(τ )

)

× exp

(
i

q2

2m�

∫ t

t0

dτ A2(τ )

)
, (50)

which shifts the operator for particle location according to

x → X(t) = ϒav(t) · x · ϒ+
av(t) = x − q

m

∫ t

t0

dτ A(τ ),

and transforms the velocity-gauge Hamiltonian (49) into the
“acceleration-gauge” (or “Henneberger frame” [40]) Hamilto-
nian

Ha(t) = p2

2m
+ V (X(t)).

The transformation which maps the length-gauge Hamiltonian

Hl(t) = p2

2m
+ V (x) + qx · d A(t)

dt

into Ha(t) is then given by

ϒal(t) = ϒav(t) · ϒ+
lv (t)

= exp

{
i

q2

2m�

∫ t

t0

dτ [A2(τ ) − A(t) · A(τ )]

}

× exp

{
i
q

�

[
x · A(t) − p

m
·
∫ t

t0

dτ A(τ )

]}
.

All these cases are captured in the group of shift operators
in phase space,

ϒ(t) = exp [iqp · c(t)/�] exp [iqx · a(t)/�]

= exp [iqϕ(p,x,t)/�] (51)

with

ϕ(p,x,t) = x · a(t) + p · c(t) + q

2
a(t) · c(t), (52)

and these reduce to U(1) gauge transformations if c(t) = 0.
Besides the advantage of Eq. (51) of also including Galilei

transformations (48) and the Henneberger transformation
(50), it is also instructive to think about the question of
equivalence of time-dependent gauge transformations in the
larger framework of time-dependent unitary transformations.
A time-dependent unitary transformation

|ψ ′(t)〉 = ϒ(t)|ψ(t)〉 (53)

shifts the Hamiltonian according to

H ′(t) = ϒ(t) ·
[
H (t) − i�

d

dt

]
· ϒ+(t)

= ϒ(t) · H (t) · ϒ+(t) − i�

∞∑
n=1

1

n!

(
iq

�

)n n

[ ϕ(t),d/dt]

= ϒ(t) · H (t) · ϒ+(t)

− q

∞∑
n=1

1

n!

(
iq

�

)n−1 n−1
[ ϕ(t),ϕ̇(t)]. (54)

This is the necessary and sufficient condition for the correct
transformation law

U ′(t,t ′) = ϒ(t)U (t,t ′)ϒ+(t ′) (55)

of the time evolution operators in the two pictures.
Equation (54) implies for the phase-space shift operators

(51) and (52) the following transformation of Hamiltonians:

H ′(t) = ϒ(t) · H (t) · ϒ+(t) − qϕ̇(t) − iq2

2�
[ϕ(t),ϕ̇(t)]

= ϒ(t) · H (t) · ϒ+(t) − qx · ȧ(t) − qp · ċ(t)

− q2 ȧ(t) · c(t). (56)

Therefore, while Eq. (55) of course implies

〈φ′(t)|U ′(t,t ′)|ψ ′(t)〉 = 〈φ(t)|U (t,t ′)|ψ(t)〉, (57)

the matrix elements of the Hamiltonians in the two represen-
tations are related by

〈φ′(t)|H ′(t)|ψ ′(t)〉 = 〈φ(t)|H (t)|ψ(t)〉−q ȧ(t) · 〈φ(t)|x|ψ(t)〉
− q ċ(t) · 〈φ(t)|p|ψ(t)〉
− q2a(t) · ċ(t)〈φ(t)|ψ(t)〉, (58)

which generalizes Eq. (40). Equivalence, e.g., of velocity and
length gauge has been argued on the basis of the identity (57);
see, e.g., Ref. [18]. However, actual calculations of transition
probabilities, decay rates, or scattering cross sections are based
on the matrix elements of the interaction picture (or Dirac
picture) time evolution operator between energy eigenstates,

Snm(t,t ′) = 〈ψn|UD(t,t ′)|ψm〉, (59)

with the interaction picture time evolution operator

UD(t,t ′) = exp (iH0t/�)U (t,t ′) exp(−iH0t
′/�)

= T exp

(
− i

�

∫ t

t ′
dτHD(τ )

)
, (60)

the Hamiltonian

HD(t) = exp (iH0t/�)W (t) exp (−iH0t/�),

and the identification of W (t), e.g., from

H0(p,x) = H (p,x,t) − W (p,x,t) = p2

2m
+ V (x), (61)

in a single (quasi-)particle approximation.
The initial and final times in Eq. (59) are usually taken as

t → ∞, t ′ → −∞, but the scattering-matrix elements both
for finite and infinite times are principally just a matrix
representation of the integration of the Schrödinger equation
in the interaction picture [56]. However, applications of the
different pictures (53) and (54) to the same system are based
on the same identification (61) of the unperturbed Hamiltonian
and therefore use the same eigenstates in Eq. (59), although
U ′

D(t,t ′) �= UD(t,t ′). This is in short the origin of the principal
difference of the scattering cross sections (3) and (4). More
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specifically, scattering-matrix elements in the two pictures (53)
and (54) are related by

S ′
nm(t,t ′) = 〈ψn|U ′

D

(
t,t ′

)|ψm〉
=

∑
kl

exp[i(ωnkt + ωlmt ′)]〈ψn|ϒ(t)|ψk〉

× Skl(t,t
′)〈ψl|ϒ+(

t ′
)|ψm〉. (62)

This is a more precise formulation of the observation from
Eq. (40) that the different formulations evolve a system
differently through the eigenstates of the unperturbed system.
Equation (62) implies that transition probabilities, decay rates,
and scattering cross sections will generically be different in the
different pictures (53) and (54), as explicitly demonstrated for
the case of velocity gauge versus length gauge in equations (3)
and (4). On the other hand, if the picture-changing operation
ϒ(t) involves semiclassical electromagnetic potentials which
correspond to pulses of finite duration �t < t − t ′, then
the scattering-matrix elements Snm(t,t ′), with initial time t ′
before the time t0 of onset of the pulse and final time t

after cessation of the pulse, are invariant with respect to
Eq. (53), and therefore any observable computed from those
scattering-matrix elements would also be invariant under the
picture-changing operation (53),

S ′
nm(t,t ′) = Snm(t,t ′), t ′ < t0 < t0 + �t < t. (63)

This does not apply to the scattering matrices leading to the
scattering cross sections (3) and (4), since their calculation
involves photon operators which describe spontaneous photon
emission or absorption at any time, as opposed to time-
constrained semiclassical pulses.

However, if Eq. (63) holds for semiclassical pulses, why
then do many researchers find strikingly different results
in studies of strong laser pulses, which are used, e.g., for
electron detachment and higher-harmonic generation? From
the previous observations, we can easily identify four sources
for different results in different pictures:

(1) The scattering-matrix formalism will generically yield
different results in the different pictures (53) and (54) due to the
transformation law (62), unless it is applied to semiclassical
pulses of finite duration [Eq. (63)].

(2) Due to the nonperturbative nature of the strong fields
involved, theoretical investigations of strong-field experiments
do not use the scattering-matrix formalism but employ numer-
ical integrations of the time-dependent Schrödinger equation.
Given the inhomogeneous transformation law (54) of the
Hamiltonian during picture changing, it is not surprising that
numerical integration of the Schrödinger equations for H (t)
and H ′(t) in the different pictures can lead to very different
conclusions.

(3) The modeling of electron detachment in strong fields
involves a change of H0 during the experiment, since the
bound-electron state is dominated by the attractive atomic or
molecular potentials, whereas the ionized state is presumed
to be dominated by the strong external radiation field. This
renders the relations (37) and (38) useless for trying to establish
equivalence even only at first order.

(4) As pointed out already before, the replacement of the
energy-preserving δ function through the Dirichlet kernel

δ(ωnm ∓ ck) → sin [(ωnm ∓ ck)�t/2]

π (ωnm ∓ ck)

for subfemtosecond pulses of frequency ±ck invalidates the
relation (38) for equivalence between velocity- and length-
gauge matrix elements,

〈ψf |p|ψi〉 = imωf i〈ψf |x|ψi〉 �= ±imck〈ψf |x|ψi〉.
Note that this effect alone cannot change the numerical
equivalence (63) of scattering-matrix elements for times t ′ and
t before and after semiclassical pulses, but we cannot expect to
be able to transform the scattering-matrix elements any more
into the same analytic form.

VI. CONCLUSIONS

Four sources of analytic differences between velocity
gauge and length gauge have been identified. The difference
between |ωf i |〈f |x|i〉 and ck〈f |x|i〉 for short observation
times or short pulses can be interpreted as a manifestation of
energy-time uncertainty, but it implies a discrepancy between
theoretical calculations in length gauge versus velocity gauge
at the several percent level or higher for subfemtosecond
spectroscopy.

Furthermore, equation (36) does not hold if the initial and
final states are eigenstates of different Hamiltonians, as often
appears in strong-field electron detachment. Therefore, no
corresponding equivalence of velocity-gauge matrix elements
and length-gauge matrix elements can be inferred from
Eq. (36) in these cases.

In addition the scattering-matrix formalism in the different
pictures. Eqs. (53) and (54) will generically yield different
results due to the transformation law (62), unless it is applied
to semiclassical pulses of finite duration [Eq. (63)].

Finally, the inequivalence (40) between matrix elements
of the Hamilton operators implies potentially large analytic
uncertainties for systems without parity invariance or with
accidental degeneracies between even and odd states. This
is in agreement with the observations of a high level of
agreement between velocity- and length-gauge calculations
for helium atoms [46] and the observation of equivalence
of second-order matrix elements for polarizabilities [47] and
two-photon transitions [54] in rotationally symmetric systems,
while at the same time numerically evaluated matrix elements
in velocity gauge and length gauge can be very different for
chiral compounds [12,13], and calculated ionization properties
can be very different for hydrogen [8,14,16,26].

From an analytic perspective, we would expect to find
strong differences between velocity gauge and length gauge
both for systems without parity invariance, and for strong-
field electron detachment. This seems to be corroborated by
numerical calculations in both cases and also by analytic work
on strong-field electron detachment.

So far everything has been formulated in a neutral way
without stating a preference for velocity gauge or length
gauge or any of the other pictures implied in Eqs. (51)–(54).
The transformation between velocity gauge and length gauge
has always been formulated as a transition from velocity
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gauge to length gauge; see, e.g., Eqs. (31) and (32), but
everything can just as well be formulated in the opposite
direction. However, since the different pictures can produce
different results even at the analytic level, for the reasons
outlined above, is there a picture that should be preferred
for principal reasons? This question has been asked time and
again especially for velocity gauge and length gauge. The
results (41)–(46) indicate that, if the wave function in one of
the pictures is considered as fundamental, the wave function in
the other picture corresponds to a state which is dressed with
a coherent photon component. However, this does not break
the tie with respect to the question of which picture should
be considered as “fundamental.” In light of the fact that both
velocity gauge and length gauge have proven to be particularly
successful in their own right in different physical situations,
the practical aspect of this question is rather: which of these
different situations are better described by dressed states, and
why? An argument which has often been made in favor of
length gauge (besides the simpler form of the interaction
term) is the apparent formulation in terms of gauge-invariant
quantities p = mv and E(t); see, e.g., Refs. [2,18]. Indeed,
the momentum in length-gauge wave functions �(x,t) and
velocity-gauge wave functions ψ(x,t) is

P =
∫

d3x
�

i

∑
i

�+
i (x,t)∇�i(x,t) (64)

=
∫

d3x
�

i

∑
i

ψ+
i (x,t)∇ψi(x,t)

−
∫

d3x
∑

i

qiψ
+
i (x,t)A(t)ψi(x,t); (65)

see also Appendix B, where these relations are derived on the
level of Schrödinger field operators and taking into account the
contributions from the electromagnetic fields to energy and
momentum conservation. These relations and the equations
(12) and (21) for Hamiltonians in velocity gauge and length
gauge show that, in length gauge, we can identify momentum
with particle velocity p = mv, whereas velocity gauge is of
course based on the canonical relation p = mv + q A for
particle momentum in external fields. As noted above, this
apparent formulation in terms of gauge-invariant quantities
has been alluded to as one advantage of the length-gauge
formulation. Furthermore, the direct identification of mo-
mentum and velocity also makes length gauge advantageous
for investigations of electron detachment [6,7,19–24] and
applications of the Keldysh formalism [10,14], since intuitive
methods using electron motion are better captured in that
formalism. This advantage disappears for large internuclear
separation in molecules, when the dipole operator during
electron transfer can become an excessively large inherent
perturbation of the system [25,26].

On the other hand, a different view can be expressed on
the basis of reductionism. Recall that the Dirac Hamiltonian
for quantum electrodynamics in Coulomb gauge has the form
(see, e.g., Sec. 21.4 in Ref. [4])

H =
∫

d3x
(

ε0

2
E2

⊥(x,t) + 1

2μ0
B2(x,t)

)

+
∑

i

Hi +
∑
ij

Vij , (66)

with E⊥(x,t) = −∂ A(x,t)/∂t , B(x,t) = ∇ × A(x,t), and the
kinetic and Coulomb terms for fermion species with labels i,j

(summations over the Dirac indices s are implicitly included
in Hi)

Hi = −c

∫
d3xψi(x,t)γ · [i�∇ + qi A(x,t)]ψi(x,t)

+mic
2
∫

d3xψi(x,t)ψi(x,t), (67)

Vij =
∑
s,s ′

∫
d3x

∫
d3x′ qiqj

8πε0|x − x′|
×ψ+

is (x,t)ψ+
js ′ (x′,t)ψjs ′ (x′,t)ψis(x,t). (68)

This Hamiltonian reduces to the velocity-gauge Hamiltonian
(12) in the nonrelativistic semiclassical dipole approximation,
and therefore from a reductionist point of view the velocity-
gauge Hamiltonian should be considered as more fundamental
than the length-gauge Hamiltonian or any other picture of
quantum dynamics in the semiclassical dipole approximation.
This is also directly manifested in the ψ+ A2ψ term in Eq. (1)
and the corresponding first term in the scattering cross section
(3), which arise in the nonrelativistic limit from intermediate
virtual positron states. Another case in point concerns the
question of which gauge naturally relates to standard atomic
energy eigenstates. The k-space representation of hydrogen
eigenstates |n,�,m�〉 is concentrated around k = 0 within a
characteristic radius k � (na)−1, where a is the Bohr radius,
e.g., for the 1s state,

〈k|
1,0,0(t)〉 =
√

2a
3

π

exp (−iE1t/�)

[1 + (ka)2]2
. (69)

The transformation (31) and (32) therefore implies that the
k-space representation of the 1s state in velocity gauge,
ψ1,0,0(k,t), would be concentrated around the wave number
−eA(t)/� if the length-gauge wave function �1,0,0(k,t) would
agree with Eq. (69). On the other hand, the length-gauge wave
function �1,0,0(k,t) would be concentrated in a radius k � a−1

around the wave number eA(t)/� if the velocity-gauge wave
function ψ1,0,0(k,t) would agree with Eq. (69). The latter
result would seem to make more sense on the basis of the
length-gauge Schrödinger equation (35). Assume an extremely
strong field such that (35) approximately reduces to

∂

∂t
�(x,t) � ie

�
x · d A(t)

dt
�(x,t). (70)

This has the solution

�(x,t) � exp
(
i
e

�
x · [A(t) − A(t0)]

)
�(x,t0), (71)

which corresponds to propagation of the initial state with a
plane-wave factor with wave number eA(t)/�. This would
lend credibility to the conclusion that standard atomic eigen-
states correspond to the velocity-gauge picture. It does not
constitute mathematical proof, however, that the velocity-
gauge picture is indeed more fundamental or superior in any
way. Furthermore, in times of discussions about emergent
phenomena in condensed-matter physics and quantum gravity,
the reductionist argument given above may not carry much
weight anymore and, indeed, declaring one gauge in any way as
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more fundamental or superior than any other gauge was never
the objective of this investigation, which was only driven by
the desire to understand why we can have strikingly different
results in different gauges in the dipole approximation. Recall
from the introduction that the length gauge produced superior
results in many instances. From the reductionist point of view,
the question is not whether length gauge is valid. The question
is why those systems are better described by states which are
dressed in the form (45). On the other hand, if the length-gauge
picture is considered more fundamental, the question arises
why systems which are better analyzed in velocity gauge are
better described by dressed states of the form (46).
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APPENDIX A: COHERENT STATES

The Coulomb-gauge photon field operator in the interaction
picture is

A(x,t) =
√

�μ0c

(2π )3

∫
d3k√

2k

2∑
α=1

εα(k){aα(k)

× exp [i(k · x − ckt)]

+ a+
α (k) exp [−i(k · x − ckt)]}, (A1)

with k · εα(k) = 0, εα(k) · εβ(k) = δαβ , [aα(k),aβ (k′)] = 0,
and [aα(k),a+

β (k′)] = δαβδ(k − k′).
The corresponding electric- and magnetic-field operators

E(x,t) = −∂ A(x,t)/∂t, B(x,t) = ∇ × A(x,t),

yield expectation values corresponding to a classical electro-
magnetic wave,

〈ζ |A(x,t)|ζ 〉 = A(x,t) =
√

�μ0c

(2π )3

∫
d3k√

2k

×
2∑

α=1

εα(k){ζα(k) exp [i(k · x − ckt)]

+ ζ+
α (k) exp [−i(k · x − ckt)]}, (A2)

〈ζ |E(x,t)|ζ 〉 = E(x,t) = −∂A(x,t)/∂t,

〈ζ |B(x,t)|ζ 〉 = B(x,t) = ∇ × A(x,t),

if we use the coherent photon state [57]

|ζ 〉 = exp

{∫
d3k

[
ζ (k) · a+(k) − ζ+(k) · a(k)

]}|0〉,

where the definitions ζ (k) · a+(k) = ∑2
α=1 ζα(k)a+

α (k) and
|ζ (k)|2 = ∑2

α=1 ζ+
α (k)ζα(k) were used.

The expectation values for photon number, energy, and
momentum in the coherent state are

〈n〉 =
∫

d3k|ζ (k)|2, 〈H0〉 =
∫

d3k�ck|ζ (k)|2,

and

〈P〉 =
〈∫

d3xε0 E(x,t) × B(x,t)

〉

=
∫

d3k�k|ζ (k)|2.

APPENDIX B: ENERGY AND MOMENTUM
IN COULOMB GAUGE

The Lagrange density for coupled electromagnetic and
nonrelativistic matter fields without any particular choice of
gauge is given by

L =
∑

i

[
i�

2

(
ψ+

i · ∂ψi

∂t
− ∂ψ+

i

∂t
· ψi

)
− qiψ

+
i 
ψi

− �
2

2mi

∇ψ+
i · ∇ψi − i

qi�

2mi

A · (ψ+
i

↔∇ ψi)

− q2
i

2mi

ψ+
i A2ψi

]
− 1

4μ0
FμνF

μν. (B1)

Here 
 = −cA0 is the electric potential, and we use the

definition of an alternating derivative operator ψ+ ↔∇ ψ ≡
ψ+ · ∇ψ − ∇ψ+ · ψ . The summation over i in (B1) refers
to different kinds of nonrelativistic particles (e.g., electrons,
protons, etc.), and a summation over spin labels is implicitly
understood.

The canonical energy-momentum tensor following from
the Lagrange density (B1),

�μ
ν = ημ

νL + 1

μ0
∂μAλ · Fνλ

−
∑

i

(
∂μψi

∂L
∂(∂νψi)

+ ∂μψ+
i

∂L
∂
(
∂νψ

+
i

)
)

,

is rendered gauge invariant in the usual way by adding the
trivially conserved tensor

δ�μ
ν = − 1

μ0
∂λ

(
AμFνλ

) = −Aμjν − 1

μ0
∂λAμ · Fνλ,

∂νδ�μ
ν ≡ 0.

The improved energy-momentum tensor tμ
ν = �μ

ν + δ�μ
ν

yields in particular the energy density H = −t0
0 for quantum

optics,

H = ε0

2
E2 + 1

2μ0
B2 +

∑
i

1

2mi

[
�

2∇ψ+
i · ∇ψi

+ iqi�A · (ψ+
i

↔∇ ψi) + q2
i ψ

+
i A2ψi

]
, (B2)

and the gauge-invariant momentum density Pa = ta
0/c,

P = ε0 E × B + 1

2i

∑
i

(�ψ+
i

↔∇ ψi − 2iqiψ
+
i Aψi). (B3)

We split the electric-field components in Coulomb gauge
∇ · A = 0 according to E‖ = −∇
 and E⊥ = −∂ A/∂t . The
equation for the electrostatic potential decouples from the

062118-11



RAINER DICK PHYSICAL REVIEW A 94, 062118 (2016)

vector potential,

�
 = − 1

ε0

∑
i

qiψ
+
i ψi,

and is solved by


(x,t) = 1

4πε0

∫
d3x′ ∑

i

qi

|x − x′|ψ
+
i (x′,t)ψi(x′,t).

Furthermore, the two components of the electric field are
orthogonal in the Coulomb gauge,∫

d3x E‖(x,t) · E⊥(x,t)

=
∫

d3kE‖(k,t) · E⊥(−k,t)

= −
∫

d3x
(x,t)
∂

∂t
∇ · A(x,t) = 0, (B4)

and the contribution from E‖ to the Hamiltonian generates the
Coulomb potentials in the Hamiltonian,

HC = ε0

2

∫
d3x E2

‖(x,t) = −ε0

2

∫
d3x
(x,t)�
(x,t)

= 1

2

∫
d3x
(x,t)�(x,t)

=
∑
ij

∫
d3x

∫
d3x′ qiqj

8πε0|x − x′|
×ψ+

i (x,t)ψ+
j (x′,t)ψj (x′,t)ψi(x,t). (B5)

The resulting Hamiltonian in Coulomb gauge therefore has the
form

H =
∫

d3x

(∑
i

1

2mi

{
�

2∇ψ+
i (x,t) · ∇ψi(x,t)

+ iqi�A(x,t) · [ψ+
i (x,t)

↔∇ ψi(x,t)]

+ q2
i ψ

+
i (x,t)A2(x,t)ψi(x,t)

}
+ ε0

2
E2

⊥(x,t) + 1

2μ0
B2(x,t)

)

+
∑
ij

∫
d3x

∫
d3x′ qiqj

8πε0|x − x′|
×ψ+

i (x,t)ψ+
j (x′,t)ψj (x′,t)ψi(x,t). (B6)

The momentum operator in Coulomb gauge follows from
Eq. (B3) and∫

d3xε0 E‖ × B = −
∫

d3xε0
�A =
∫

d3x�A

=
∫

d3x
∑

i

qiψ
+
i Aψi

as

P =
∫

d3x

(
�

i

∑
i

ψ+
i ∇ψi −

∑
i

qiψ
+
i Aψi + ε0 E × B

)

=
∫

d3x

(
�

i

∑
i

ψ+
i ∇ψi + ε0 E⊥ × B

)
. (B7)

All these results hold at the operator level within the full
second-quantized theory [4], with the only approximation of
nonrelativistic charged fields. If we now specify to the semi-
classical theory in dipole approximation, the transformation to
Schrödinger field operators in length gauge

�i(x,t) = exp

[
− i

�
qi x · A(t)

]
ψi(x,t)

yields expressions [after leaving out the formally divergent
kinetic contributions from the semiclassical fields E(t) =
−d A(t)/dt and B(t) = [∇ × A(x,t)]k·x→0 and neglecting the
contributions from AJ (x,t) (9) for the reasons pointed out after
Eq. (11)]

H =
∫

d3x

[∑
i

�
2

2mi

∇�+
i (x,t) · ∇�i(x,t)

− qi�
+
i (x,t)x · E(t)�i(x,t)

]

+
∑
ij

∫
d3x

∫
d3x′ qiqj

8πε0|x − x′|
×�+

i (x,t)�+
j (x′,t)�j (x′,t)�i(x,t), (B8)

and

P =
∫

d3x

[
−i�

∑
i

�+
i (x,t)∇�i(x,t) + ε0 E‖(x,t)B(t)

]

=
∫

d3x
�

i

∑
i

�+
i (x,t)∇�i(x,t) (B9)

=
∫

d3x
�

i

∑
i

ψ+
i (x,t)∇ψi(x,t)

−
∫

d3x
∑

i

qiψ
+
i (x,t)A(t)ψi(x,t), (B10)

since
∫
d3x E‖(x,t) × B(t) is a surface term.

Both the momentum (B9) in terms of the length-gauge
Schrödinger operators and the kinetic terms in Eq. (B8)
support the identification p = mv, whereas the kinetic terms
in Eq. (B6) and the expression (B10) agree with the general
classical relation p = mv + q A for the canonical particle
momentum in external fields.
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