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Decoherence by spontaneous emission: A single-atom analog of superradiance
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We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves
interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary
decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the
influence functional method. These terms are respectively related to the strength of the coupling between system
and environment, and to the quality of the information about the system leaking into the environment. While
the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when
only partial information about the system is obtained from the disturbed environment. The nonlocal contribution
contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate
reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a
trap, may be applied to a variety of quantum systems.
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I. INTRODUCTION

Decoherence is a fundamental issue of quantum mechanics
that has been the object of innumerous theoretical and
experimental studies [1]. The dynamics of open quantum
systems is particularly intriguing in the case of non-Markovian
environments [2–7]. In this paper we show that an environment
of finite memory enables a quantum system with a single atom
to mimic collective effects such as superradiance [8], which is
still a topic of intense investigation [9–16].

The influence functional [17,18] is an effective theoretical
tool to capture the effect of a non-Markovian environment on
a quantum system. An important application is to model the
interaction between atoms and material surfaces mediated by
the quantum electromagnetic field. In this context, nonstation-
ary [19–22] and quantum friction effects [23] can be analyzed
with the help of closed-time-path (CTP) integrals describing
the density matrix evolution. In the CTP formalism, the finite
memory time of the environment induces a coupling between
the backward and forward histories of the system within
the closed-time-path integrals describing the density matrix
evolution. Such coupling leads to an irreducible functional,
in the sense that it cannot be split into separate contributions
from forward and backward histories. Throughout this paper
we assume that the initial system density matrix contains
well-separated wave packets about to follow distinct quantum
paths while maintaining a negligible overlap between each
other. This is typically the case for cold atoms trapped in optical
lattices in the Lamb-Dicke regime, or for atom interferometers
propagating over a macroscopic scale. After CTP integration,
this clear separation between the wave packets enables one
to interpret the complex phase arising from this irreducible
functional as a genuinely nonlocal phase. The associated phase
shifts have been studied in Refs. [20–22] in the context of atom
interferometry. When the environment has a finite memory,
the corresponding nonlocal contribution to the decoherence
rate is essential. In this paper we show that such contribution
may be negative (i.e., to be interpreted as recoherence in the
sense defined by Ref. [24]), and that it exhibits interference
oscillations which constitute an analog of superradiance [8].
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The paper is organized as follows. In Sec. II we discuss
the coupling between backward and forward histories in the
closed-time-path formalism and its relation with nonlocality.
An explicit perturbative expansion is developed in Sec. III.
Section IV introduces an alternative approach enabling the
connection with the quality of which-path information leaking
into the environment. In Sec. V we show that the decoherence
of a single atom oscillates as a function of the distance between
the wave packets, which is reminiscent of superradiance.
Concluding remarks are presented in Sec. VI.

II. COUPLING BETWEEN BACKWARD
AND FORWARD HISTORIES

Precisely, we consider a system described by a center-of-
mass position r interacting with a generic environment. It is
well known that the evolution of pure quantum states can be
described in terms of forward path integrals. On the other hand,
an open quantum system can be suitably described by a density
matrix, whose elements contain products of wave functions by
their complex conjugates. Therefore, it is possible to write the
evolution of a density matrix as a double path integral, with
the complex conjugation representing a backward propagation
[17,18,25,26]. The reduced density matrix of our system is
propagated with the CTP integral

〈rf |ρ(�t)|r′
f 〉 =

∫ rf ,r′
f

CTP
Dr e

i
�

(S0[r]−S0[r′]+SIF[r,r′]), (1)

where we used the following notation:∫ rf ,r′
f

CTP
Dr=

∫
dr0dr′

0

∫ r(�t)=rf

r(0)=r0

Dr

×
∫ r′(�t)=r ′

f

r′(0)=r′
0

Dr′〈r0|ρ(0)|r′
0〉, (2)

with ρ(0) the initial system density matrix and S0[r] the
interaction-free action of the system, i.e., when all couplings
to the other degrees of freedom (d.o.f.)—referred to as the
environment—are ignored. We have assumed that system
and environment are initially uncorrelated. As the actions
S0[r] and S0[r′] appear with different signs, the paths [r(t)]
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FIG. 1. Closed-time-path diagrams representing (a) local and
(b) nonlocal contributions to the influence functional. The nonlocal
influence terms couple the backward and forward histories.

and [r′(t)] correspond, respectively, to forward and backward
histories. The influence of the environment on the system
is completely described by the complex influence functional
SIF[r,r′], which can be decomposed into a sum of local and
nonlocal terms, namely SIF[r,r′] = SL[r,r′] + SNL[r,r′]. The
local influence functional is expressed in terms of the single
functional Ssingle depending on one path at a time: SL[r,r′] =
Ssingle[r] − S∗

single[r′] (explicit expressions are given below). In
contrast, the irreducible influence functional SNL[r,r′] cannot
be expressed as a combination of single-path functionals. The
presence of this nonlocal functional couples the backward and
forward histories, as illustrated in Fig. 1. This coupling occurs
over a time scale of the order of the memory time of the
environment.

The real part of the influence functional describes a
relative phase shift between the two paths, while its imaginary
part, henceforth denoted by SDec

L(NL)[r,r
′] = Im[SL(NL)[r,r′]],

provides the exponential attenuation of the interference fringes
[27]. Note that the expression of the local influence functional
SL[r,r′] as a difference between a functional and its complex
conjugate is perfectly consistent with this interpretation.
Indeed, this form ensures that its real and imaginary parts are,
respectively, antisymmetric and symmetric under the exchange
of paths. These features are actually needed to preserve
the Hermiticity of the reduced density matrix ρ(rf ,r′

f ; t) =
ρ∗(r′

f ,rf ; t) during the propagation. As a consequence, the
local decoherence rates associated with SDec

L [r,r′] sum up.
In order to highlight the role of the irreducible functional

SNL[r,r′], we consider here the decoherence resulting only
from the local influence functional SL[r,r′]. We show that it
yields results in contradiction with the common interpretation
of decoherence as a flow of which-way information from the
system to its environment. Let us assume that the system is put
in a coherent superposition state of paths [r1(t)] and [r2(t)].
For simplicity, we assume that the density matrix corresponds
to thin wave packets, so that only the quantum paths lying
in a tight bundle around the central paths [r1(t)],[r2(t)]
significantly contribute to the integrals (1) and (2). We now
take the limit where these two paths become arbitrarily close
to one another, and make the reasonable assumption that the
single-path functional Ssingle[r] is continuous. One gets from
SDec

L [r1(t),r2(t)] = Im{Ssingle[r1(t)] + Ssingle[r2(t)]} a system
decoherence rate which is twice the contribution arising from
each path. On the other hand, in this limit, the two paths are so
close that no matter which way the system goes, it leaves an al-
most identical record on the environment. Thus, the amount of
which-way information flowing to the environment gradually

vanishes, but the local decoherence rate remains finite (similar
conclusions hold for wave packets of finite width [28]).

This example shows that the imaginary part of the irre-
ducible influence functional SDec

NL [r,r′] captures the distin-
guishability between the two paths [r1(t)] and [r2(t)]. This
property requires a functional involving simultaneously both
paths at a time. In the limit above, when the two paths [r1(t)]
and [r2(t)] become identical, this contribution should cancel
exactly the local contribution from SL[r,r′], enabling one
to retrieve the expected absence of decoherence. Thus, in
this limit, the irreducible influence functional should provide
complete recoherence to the system. The derivation below
confirms this argument: indeed the nonlocal contribution
to decoherence has then the same amplitude as the local
decoherence, and opposite sign.

The opposite limit is reached when the paths [r1(t)] and
[r2(t)] are so different that, when followed by the system,
their respective perturbations of the environment correspond
to orthogonal quantum states. In other words, perfect which-
way information flows from the system to the environment:
by performing a suitable measurement of the perturbation
suffered by the environment, an observer could tell with
certainty which path was taken by the system. As established
below, the nonlocal decoherence contribution vanishes in
this regime, meaning that the decoherence saturates as a
function of the distance between the paths. More generally,
the total decoherence rate results from a fine tuning between
a local decoherence rate of positive sign associated with the
probability of a physical process, and a nonlocal decoherence
rate of indefinite sign, to be interpreted as a recoherence [24]
rate when bearing a negative sign. This nonlocal recoherence
measures the lack of which-way information obtained from
the system-environment interaction process.

It has been shown previously that the environment may
induce, through the influence functional, nonlocal phase shifts
in systems such as atom interferometers when considering
the dipolar interaction [20,22]. However, in these examples,
the nonlocal contribution represents only a tiny (relativistic)
correction to other local atomic phases induced by the envi-
ronment. In contrast, as far as decoherence is concerned, the
nonlocal influence contribution [depicted in Fig. 1(b)] can be
of the same order of magnitude as the local term. By capturing
the quality of the which-way information leaking into the
environment, the nonlocal contribution is hence absolutely
essential to estimate the decoherence.

III. LOCAL AND NONLOCAL
DECOHERENCE FUNCTIONALS

We address the decoherence effect over a time scale �t

simultaneously much larger than the self-dynamics of the
environment and much shorter than the time scale associated
with the strength of the coupling with the system. For instance,
the natural width of the atomic transition is several orders
of magnitude smaller than the transition frequency in usual
atomic states, allowing us to consider the intermediate time
�t. The average decoherence rate on this time scale will be
referred to as the stationary decoherence rate.

We first use CTP path integrals in order to obtain the local
and nonlocal stationary decoherence rates, noted �L and �NL,
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respectively, and defined as

�L(NL) = lim
�t→+∞

1

� �t
SDec

L(NL)[r1(t),r2(t)]|t∈[0,�t] (3)

for an initial quantum superposition of thin wave packets cen-
tered at prescribed paths [r1(t)] and [r2(t)] (recoil neglected),
defined on the time interval [0,�t].

In order to compute the right-hand side of Eq. (3), we
assume that the total action has the general form S[r,q,X] =
S0[r] + Sq[q] + SX[X] + Sint[r,q,X], with q and X repre-
senting environment d.o.f. and Sq, SX the corresponding
free actions. We start by coarse graining over the fastest
environment d.o.f., making use of a hierarchy of time scales
(see for instance [19]). Here we assume that the continuum
of d.o.f. X(x) fluctuates on a much faster time scale than
the d.o.f. q(t). In the example to be discussed later, X(x)
represents the electromagnetic (EM) field and q(t) the atomic
dipole, so that the fluctuations of the former are indeed short
lived on an atomic dipole time scale [29]. Thus, we first
coarse grain over the environment d.o.f. X(x), yielding an
auxiliary influence functional SIF[r,r′,q,q′], and then trace
out the slower environment d.o.f. q(t). We consider general
free actions and only require the interaction to be local, that is,

Sint[X,q,r] =
∫ �t

0
dt V (X(r,t),q(t)). (4)

For simplicity, we also assume very thin wave packets,
since the generalization to more general wave functions is
straightforward [22]. We trace out the environment degrees of
freedom using perturbation theory and suppose the first order
to vanish [that is 〈q(t)〉 = 0 or 〈X(r,t)〉 = 0 at any time t] [30].

In Appendix A we show that the local and nonlocal
influence functionals are then given by

SL[r1(t),r2(t)]= i

�

∫ �t

0
dt

∫ �t

0
dt ′�(t−t ′)[〈Ṽ (r1(t))Ṽ (r1(t ′))〉

+ 〈Ṽ (r2(t ′))Ṽ (r2(t ′))〉], (5)

SNL[r1(t),r2(t)] = − i

�

∫ �t

0
dt

∫ �t

0
dt ′〈Ṽ (r2(t))Ṽ (r1(t ′))〉,

(6)

where � represents the Heaviside step function and Ṽ (r(t)) =
Ṽ (r(t),t) denotes the operator V in the interaction picture
obtained from the free evolution of the operators X and q.
〈· · · 〉 denotes the expectation value in the initial state of the
environment.

A situation of particular interest is the one where the
d.o.f. q and X are linearly coupled: V (r,t) = q(t) · X(r,t).
Substituting this equation into Eqs. (5) and (6) and taking the
imaginary part we obtain

SDec
L [r1(t),r2(t)] =

∫ �t

0
dt

∫ �t

0
dt ′[G(r1(t),r1(t ′))

+G(r2(t ′),r2(t ′))], (7)

SDec
NL [r1(t),r2(t)] =

∫ �t

0
dt

∫ �t

0
dt ′G(r1(t),r2(t ′)), (8)

where we employed the shorthand notation ri(t) = (t,ri(t))
(i = 1,2) and

G(x,x ′) ≡ 1

4�

∑
i,j

[�(t − t ′)〈[qi(t),qj (t ′)]〉〈[Xi(x),Xj (x ′)]〉

+ 〈{qi(t),qj (t ′)}〉〈{Xi(x),Xj (x ′)}〉]. (9)

In the sum, the indices i,j span the Cartesian components of
the vectors q and X(x). Combining these expressions with
Eq. (3), one obtains the stationary decoherence rates �L and
�NL predicted by the influence functional method.

The nonlocal contribution to decoherence SDec
NL [r1(t),r2(t)]

originates from the mixing of the forward [r1(t)] and backward
[r2(t)] histories within the CTP path integral. As suggested by
Eqs. (8) and (9), such coupling can only occur in practice
if the memory time of the d.o.f. q(t), captured by the decay
of the correlation functions 〈qi(t)qj (t ′)〉, is greater than the
propagation time of the interaction connecting the two histo-
ries. For instance, cold atoms can provide internal d.o.f. with
sufficiently long-lived correlations enabling the connection
between forward and backward histories at distinct locations.
In this sense, cold atomic systems provide an adequate
playground for probing non-Markovian environments for open
quantum systems.

It is possible to generalize the argument above to multiple-
path atom interferometers [31]. It turns out that the nonlocal
contribution to decoherence involves a sum over all possible
pairs of paths, similarly to the nonadditive atomic phases
induced by electromagnetic vacuum field fluctuations [21].

IV. NONLOCALITY AND QUALITY OF INFORMATION

To have a complementary insight on the nature of the
nonlocal decoherence, we present below an alternative deriva-
tion, based on standard time-dependent perturbation theory.
As in the previous derivation, we assume that the system and
environment are initially uncorrelated, described by a pure
quantum state of the form

|�(0)〉 = 1√
2

(|ψ1(0)〉 + |ψ2(0)〉) ⊗ |ψE(0)〉, (10)

and that their coupling can be treated perturbatively. The
system quantum states |ψ1(0)〉 and |ψ2(0)〉 correspond to
propagations along paths [r1(t)] and [r2(t)], respectively, and
|ψE(0)〉 is the initial state of the environment. Although
we have chosen a particularly simple initial state for the
system, the discussion to follow could be generalized without
difficulty to an initial quantum state of the form |ψ(0)〉 =∑N

k=1 αk|ψk(0)〉 ⊗ |ψE(0)〉.
The total Hamiltonian reads H = H0 + HE + V, with

H0, HE , and V representing the system, environment, and
interaction terms, respectively. In the limit of thin wave
packets, the time evolution of each state |ψk(0)〉 ⊗ |ψE(0)〉
present in the superposition (10) can be obtained by replacing
the observable r̂ by its time-dependent average value rk(t)
within the interaction V . With this replacement, each initial
state |ψk(0)〉 ⊗ |ψE(0)〉 evolves into a product state. However,
the two state components present in (10) follow different
average paths rk(t). As a consequence, the system and the
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environment become entangled at time t [32]:

|�(t)〉 = 1√
2

(|ψ1(t)〉 ⊗ ∣∣ψ (1)
E (t)

〉 + |ψ2(t)〉 ⊗ ∣∣ψ (2)
E (t)

〉)
.

(11)
The influence of the environment on the system coherence
is then captured by the complex amplitude 〈ψ (2)

E (t)|ψ (1)
E (t)〉.

As in the previous section, we assume that the leading-order
perturbation is of second order in the interaction V (r), i.e., the
initial state |�(0)〉 is such that 〈�(0)|V (r)|�(0)〉 = 0 at any
position r. The resulting influence of the environment can then
be compared with the expression for the complex influence
functional SIF[r1(t),r2(t)] derived from CTP integrals in the
previous section:

eiSIF[r1(t),r2(t)]/� = 〈
ψ

(2)
E (t)

∣∣ψ (1)
E (t)

〉
= 〈ψE(0)|T̃ e

i
�

∫ �t

0 dtṼ (r2(t))

×T e− i
�

∫ �t

0 dt ′Ṽ (r1(t ′))|ψE(0)〉, (12)

where T and T̃ denote, respectively, the time ordering and
antitime ordering operators. One retrieves the local influence
functional (5) by expanding each evolution operator in (12)
separately to second order, whereas the nonlocal functional
(6) is obtained by taking the product of first-order terms
in (12).

This approach provides a complementary interpretation
of the influence functionals SL and SNL in terms of the
environment state vectors appearing in Eqs. (10) and (11).
We first develop the local decoherence functional by taking
the imaginary part of (5) and using the identity Re[〈AB〉] =
1
2 〈{A,B}〉 for generic operators A,B. We then perform the
variable change t ↔ t ′ in the integrals involving antitime
ordered terms to find

SDec
L [r1,r2] = 1

2�

∑
k=1,2

∫ �t

0
dt

∫ �t

0
dt ′〈Ṽ (rk(t))Ṽ (rk(t ′))〉.

(13)
We insert this expression into Eq. (3) and use the completeness
relation over the Hilbert space associated with the environment
to find the local decoherence rate [33]

�L = lim
�t→+∞

1

2�t

∑
k=1,2

∑
|iE〉

∣∣∣∣〈iE|−i

�

∫ �t

0
dtṼ (rk(t))|ψE(0)〉

∣∣∣∣
2

.

(14)
The sum can be naturally restricted to the environment
quantum states |iE〉 coupled to the initial state |ψE(0)〉
through the interaction potential Ṽ (r,t). Physically, the local
decoherence rate appears as the average probability per unit
time, to leading order in the interaction potential, that the initial
state of the environment suffers a transition. Thus, the local
decoherence rate is directly connected to the total transition
rate from the initial environment state.

The nonlocal decoherence rate is instead related to the
quality of the information flowing from the system into the
environment. From Eq. (6), the nonlocal influence functional
SNL can be expressed in terms of the overlap between the
environment state perturbations when following each of the
two system’s paths:

SNL[r1,r2] = −i�
〈
ψ

(1),1
E (�t)

∣∣ψ (2),1
E (�t)

〉
, (15)

with ∣∣ψ (k),1
E (�t)

〉 = − i

�

∫ �t

0
dtṼ (rk(t))|ψE(0)〉 (16)

representing the first-order perturbation in the interaction
picture when taking path [rk(t)]. In particular, the nonlocal
decoherence rate vanishes when the propagation of the
system along the paths [r1(t)] and [r2(t)] leads to orthogonal
perturbations of the initial environment state. In this case, the
interaction produces a perfect record of the system quantum
state in the environment.

More generally, the nonlocal decoherence rate (3) is
proportional to the real part of the overlap between the
environment state components,

�NL = − lim
�t→+∞

1

�t
Re

[〈
ψ

(1),1
E (�t)

∣∣ψ (2),1
E (�t)

〉]
, (17)

and thus may be positive or negative in principle. Nev-
ertheless, �NL is certainly negative when the paths [r1(t)]
and [r2(t)] become arbitrarily close to one another, since
the amplitude 〈ψ (1),1

E (�t)|ψ (2),1
E (�t)〉 tends by continuity to

|| |ψ (1),1
E (�t)〉||2 = || |ψ (2),1

E (�t)〉||2 in this case.
We can also discuss this limit by looking at the total

decoherence rate � = �L + �NL. From Eqs. (14), (16), and
(17), one shows that

� = lim
�t→+∞

1

�t
〈ψ (−)

E (�t)|ψ (−)
E (�t)〉, (18)

where |ψ (−)
E (�t)〉 = 1√

2
[|ψ (2),1

E (�t)〉 − |ψ (1),1
E (�t)〉].

Equation (18) resembles the result of Ref. [34] expressing
the decoherence by emission of electromagnetic radiation in
terms of a current difference.

When the paths [r1(t)] and [r2(t)] become arbitrarily close
to one another, so do the perturbed states |ψ (1),1

E (�t)〉 and
|ψ (2),1

E (�t)〉, yielding a vanishing total decoherence rate from
(18). This results from a fine tuning between a positive local
decoherence rate �L and a negative nonlocal decoherence rate
�NL. The latter may be interpreted as a recoherence of the
system, reflecting that the environment acquires imperfect
which-way information about the system. While the local
decoherence rate �L guarantees the positivity of the total deco-
herence rate �, only the nonlocal contribution �NL captures the
distinguishability between the two possible “footprints” left by
the system on the environment when going along path [r1(t)]
or path [r2(t)]. This term only survives if the environment has a
sufficiently long memory time and in that sense is reminiscent
of non-Markovian processes in open quantum systems [3].

V. DECOHERENCE BY SPONTANEOUS EMISSION AND
SUPERRADIANCELIKE INTERFERENCE

We now illustrate the general arguments discussed above
on a concrete example, which is an idealization of atom inter-
ferometry within an optical trap. Inspired by the double well
atom interferometry experiments reported in Refs. [35,36], we
consider the spontaneous emission of a single excited atom
prepared in a coherent superposition of two wave packets
located in different wells of an external potential, as illustrated
in the inset of Fig. 2. In the spirit of Ref. [32], our formalism
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FIG. 2. Decoherence rate variation with the distance a between
the two wells. The total rate � is expressed in units of the local
contribution �L, which does not depend on a, whereas the distance is
expressed in units of the transition wavelength λes . For simplicity, we
have considered a two-level atom in the excited state. The quantum
state of the atom center-of-mass is initially a coherent superposition
of localized wave packets in a double-well potential, as illustrated by
the inset.

allows us to interpret the decoherence either as resulting
from a random phase, associated with the influence functional
developed in Secs. II and III, or in terms of entanglement with
the dipole and electromagnetic field, discussed in Sec. IV.
We show that the decoherence rate oscillates as a function of
the distance a between the wave packets. These oscillations,
resulting from quantum interferences in the transition ampli-
tudes, enable us to build an analogy with superradiance. This
is remarkable since our system contains only a single atom,
while superradiance [8] is in essence a collective phenomenon.

A closely related experiment [37]—an atom interferometer
undergoing photon scattering—reported oscillations of the
interference fringe contrast as a function of the distance
between the arms. Other studies focused on the decoher-
ence of the atomic internal degree of freedom [38,39] or
on the influence of a largely spread center-of-mass wave
function [40].

We consider an atom prepared in a coherent superposition
state of the form |ψ〉 = 1√

2
(|ψ+〉 + eiϕ|ψ−〉), where |ψ±〉

correspond to the trapped wave packets in the two wells
(tunneling neglected) located at r = ± 1

2 a (see inset of Fig. 2)
assumed distant enough so that 〈ψ−|ψ+〉 = 0, i.e., the atoms
are trapped in the optical lattice in the Lamb-Dicke regime.
We also assume that such superposition may be produced by
an atomic beam splitter leaving unaffected the atomic internal
state—taken as an excited eigenstate |e〉—and that the two
wave functions are recombined coherently at a later time.

We apply Eqs. (5) and (6) to the case of a dipo-
lar interaction Hamiltonian (in the interaction picture)
Ṽ (r,t) = −d(t) · E(r,t). The decoherence rates then in-
volve bilinear correlations in both dipole and electric field
operators. Our first step is then to analyze such cor-
relations. The dipole correlation reads 〈e|di(t)dj (t ′)|e〉 =
1
3δij

∑
s |ds |2eiωesτ , the sum being performed over all pos-

sible internal atomic states s with the Bohr frequencies

ωes = 1
�

(Ee − Es) and ds = 〈e|d(0)|s〉. The vacuum electric
field correlation is well known [41]: 〈0|Ei(r,t)Ej (r′,t ′)|0〉 =∫

d3k
∑
λ

( �ω
(2π)3 )eik·(r−r′)−iω(t−t ′)(εkλ)i(εkλ)j , with ω = k/c and

εkλ representing a transverse unit vector associated with
polarization λ. The decoherence rates read (α = L,NL)

�α = −1

3

∑
s

|ds |2
∫

d3k
(

ω

2π2�

) ∫ +∞

−∞
dτei(ωes−ω)τ ξα, (19)

where ξL = 1 and ξNL = −eik·a.
As one may expect intuitively, the decoherence rates

are closely related to the spontaneous emission rate γ =
1

�t

∑
s

∫
d3k|〈1k| ⊗ 〈s| − i

�

∫ �t

0 dtV (r,t)|e〉 ⊗ |0〉|2. From
Eq. (19), one derives that the local decoherence rate is
indeed the half-sum of the spontaneous emission rates in
each well. Since those are identical and independent of
the center-of-mass position, one finds �L = γ for the local
decoherence rate. The nonlocal decoherence rate is obtained
from Eq. (19) as

�NL = −
∑

s

�es sinc

(
2π

a

λes

)
, (20)

where the sinc(x) = sin(x)/x and �es = ω3
es |ds |2/(6π�c2)

represents the spontaneous transition rate from level e to level
s, associated with the transition wavelength λes = 2πc/ωes.

In Fig. 2 we plot the total decoherence rate � = �L + �NL as
a function of the distance a, for the case of a two-level atom
(in this case γ = �es).

The local and nonlocal decoherence rates only differ
through the presence of the interference factor ξNL = −eik·a
within the integral (19) for the latter, which originates from
the two separate positions r± = ± 1

2 a taken on the right-hand
side of Eq. (6) [see also Fig. 1(b)]. If the well separation
is such that a  mins{λes}, the interference factor is then
ξNL ≈ −ξL = −1, and the nonlocal recoherence effect cancels
the local decoherence, as illustrated by Fig. 2. Physically, the
wavelength of the photons emitted by the excited atom is too
large for the two wells to be resolved within the diffraction
limit. Therefore, an observer detecting a spontaneously emitted
photon could not tell from which well the radiation was
emitted, and this lack of information is at the origin of the
nonlocal recoherence.

In the opposite limit a � maxs{λes}, the nonlocal rate �NL

becomes negligible since it is given by the integration of a fast
oscillating complex exponential. Thus, the total decoherence
rate saturates in the long-distance limit to the value fixed
by the spontaneous emission rate, which is represented by a
horizontal dashed line in Fig. 2. In this regime, increasing the
distance a between the wells will not improve the which-path
information contained in each emitted photon, which already
reveals almost certainly which well is occupied by the atom
(see also Ref. [42] for a related discussion). Alternatively,
this can also be interpreted as follows: in the regime a �
maxs{λes}, we have a/c � 1/ωmax (ωmax representing the
largest Bohr frequency), so the time-of-flight between wells is
much longer than the characteristic time of the atomic dipole
correlation function, and then the coupling between forward
and backward histories illustrated by Fig. 1(b) vanishes.
In other words, the nonlocal decoherence rate contributes
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significantly only if the two atomic wave packets are closer
than a characteristic length scale given by the memory
time of the environment times the propagation velocity of
the interaction. In Appendix B we study another example
where the quality of which-path information saturates, for
the case where this information is encoded in the frequency of
the emitted photon.

The most interesting regime corresponds to intermediate
values for the distance between the wave packets, for which
the decoherence rate displays oscillations with a period set
by the transition wavelength λes as shown in Fig. 2. Those
oscillations are in contradiction with the naive expectation
that the decoherence rate should be a monotonic increasing
function of the separation. They may be interpreted in terms
of interference effects from photons coproduced by each
atomic wave packet in the superposition. For certain distances,
decoherence can be faster than in the case of infinite separation,
where the which-way information would in principle be the
most accurate. This is in close analogy with the behavior of
the photon emission rate in the case of superradiance [8] with
two atoms separated by a distance smaller or of the order of
the transition wavelength. As in the problem of superradiance,
the oscillation amplitude decays as the inverse of the distance
between the wave packets. Intuitively, this power law results
from the electromagnetic field Green’s function connecting
the two separated wave packets (nonlocal contribution), as
illustrated in Fig. 1(b) and indicated in Eqs. (8) and (9). Hence,
the decoherence rate saturates to the value defined by the local
contribution �L = �es in the long distance limit.

Differently from the case of superradiance, in our single-
atom effect we have interference of quantum amplitudes
associated with information on the atomic position, but
not in the photon emission rate. This is consistent with
previous works [43–45] showing that the shape of the external
wave function of a single atom does not influence its total
spontaneous emission rate, even though it may change the
emission spectrum. The oscillation of the decoherence rate,
combined with a fixed spontaneous emission rate, is indeed to
be interpreted as an oscillation of the quantity of which-way
information contained in each emitted photon. A possible
definition of this quantity would be the ratio �/�L between the
total decoherence and the spontaneous emission rates shown
in Fig. 2. Photons emitted by wave packets located far apart
carry a which-way information equal to unity, while those
emitted by less distant wave packets may have a which-way
information enhanced or suppressed by interference effects.

VI. CONCLUSION

In conclusion, we have shown that quantum interferences
may enhance or reduce the decoherence of the center-of-mass
position of a single excited atom. As a consequence, this
decoherence can be fastest at a finite separation. The resulting
oscillations suggest an analogy with superradiance, with the
photon emission rate replaced by the decoherence rate. Instead
of multiple atoms, here we have multiple wave packets giving
rise to different quantum paths. This enhancement of decoher-
ence does not result from an increased spontaneous emission
rate, but rather from interferences involving the quantum states
of the environment associated with distinct paths.

The quantum interferences observed in the decoherence
rate are entirely related to the contribution of the nonlocal
functional, which results from the coupling between forward
and backward histories. This contribution, often neglected
in the dynamics of open quantum systems, captures the
quality of the which-way information flowing from the system
into the environment. It is actually essential to estimate the
decoherence of a system interacting with a non-Markovian
environment.
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APPENDIX A: EXPLICIT DERIVATION OF THE
INFLUENCE FUNCTIONAL

In this Appendix we present the CTP derivation of Eqs. (5)
and (6) for the local and nonlocal influence functionals,
respectively. For the sake of clarity, from now on we identify
the operators with a hat. To simplify the notation, we start
with a simple system composed only of two d.o.f. X and
q. For convenience, we recall the formal expression of the
influence functional, obtained by integrating over the d.o.f. X

[17,18,25]:

e
i
�

SIF[q,q ′] =
∫

dXf

∫ Xf ,Xf

CTP
DXe

i
�

(SX[X]−SX[X′])

× e
i
�

(Sint[X,q]−Sint[X′,q ′]), (A1)

where SX[X] stands for the free action involving the d.o.f.
X only and Sint[X,q] is the interaction term, which couples
X and q. We require the interaction to be local: Sint[X,q] =∫ T

0 dt V (X(t),q(t)), where V is a generic potential. This action
is identical to (4) except for the position dependence of the
potential, which we omit for the time being to render the
presentation simpler.

We also remind the definition of the CTP integration (2)∫ Xf ,X′
f

CTP
DX=

∫
dX0dX′

0

∫ X(�t)=Xf

X(0)=X0

DX

×
∫ X′(�t)=X′

f

X′(0)=X′
0

DX′〈X0|ρ(0)|X′
0〉. (A2)

We assume that the coupling can be treated perturbatively,
and that the leading order term is of second order. The influence
functionals are then written as

SIF
L [q,q ′] = 1

4�

∫
dXf

∫ Xf ,Xf

CTP
DXe

i
�

(SX[X]−SX[X′])

× (
S2

int[X,q] + S2
int[X

′,q ′]
)
, (A3)

SIF
NL [q,q ′] = − 1

2�

∫
dXf

∫ Xf ,Xf

CTP
DXe

i
�

(SX[X]−SX[X′])

× (Sint[X,q]Sint[X
′,q ′]). (A4)
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Let us develop in detail the expression of the nonlocal
influence functional (the local one can be obtained following
similar steps). A key point is that the integrals (A3) can be
performed separately on the paths X and X′. For example, we
perform the integral over the path X:

I[q] =
∫ Xf

X0

DXe
i
�

SX[X]Sint[X,q]. (A5)

We may write (A5) as

I[q] =
∫ �t

0
dt

∫
dX(t)

(∫ X(t)

X0

DXe
i
�

SX[X]

)
V (X(t),q(t))

×
(∫ Xf

X(t)
DXe

i
�

SX[X]

)
. (A6)

We now proceed to evaluate this quantity with the help of
the propagator

〈X2|Û (t,t ′)|X1〉 =
∫ X(t)=X2

X(t ′)=X1

DX e
i
�

SX[X], (A7)

where Û (t,t ′) is the evolution operator. As in Ref. [18], we note
that the potential V (X(t),q(t)) is an eigenvalue associated with
the vector |X(t)〉. We write

〈Xf |Û (�t,t)|X(t)〉V (X(t),q(t))

= 〈Xf |Û (�t,t)V (X̂,q(t))|X(t)〉, (A8)

so that one obtains

I[q] =
∫ �t

0
dt〈Xf |Û (�t,t)V (X̂,q(t))Û (t,0)|X0〉. (A9)

The path integral over X′,

I ′[q ′] =
∫ X′

f

X′
0

DX′e− i
�

SX[X′]Sint[X
′,q ′] (A10)

can be expressed similarly as

I ′[q ′] =
∫ �t

0
dt ′〈X′

0|Û (0,t ′)V (X̂,q(t ′))Û (t ′,�t)|Xf 〉. (A11)

Note the backward evolution, which results from taking the
action with the −1 prefactor in (A10). Using the expressions
(A9) and (A11) for I[q] and I ′[q ′] as well as the completeness
relation, one obtains

SNL = − i

�

∫ �t

0
dt

∫ �t

0
dt ′

∫
dXf

×〈Xf |V (X̂(t ′),q(t ′))V (X̂(t),q(t))ρ̂(0)|Xf 〉

= − i

�

∫ �t

0
dt

∫ �t

0
dt ′〈V (X̂(t ′),t ′)V (X̂(t),t)〉.

We have introduced the interaction picture operators X̂(t) =
U (0,t)X̂U (t,0) and used the cyclic property of the trace
as well as the group property of the evolution operator
Û (t3,t2)Û (t2,t1) = Û (t3,t1).

Finally, we now include the possibility of X to be a field
so that the interaction of X with q becomes dependent of
the center-of-mass position of the system and given by (4) in
Sec. III. We assume the wave packet width to be negligible

(for a detailed account of the width see Ref. [22]). In this case,
the derivation provided above remains essentially the same,
except for the replacement of X̂(t) and X̂′(t ′) by X̂(r1(t),t)
and X̂′(r2(t ′),t ′), respectively. With such replacements, one
obtains a functional depending on two paths, i.e., Eq. (A11)
becomes

SNL[r1(t),r2(t)] = − i

�

∫ �t

0

∫ �t

0
dtdt ′〈V (X̂(r2(t ′)))V (X̂(r1(t)))〉

with the four-vector notation rk(t) = (rk(t),t). This form is
equivalent to Eq. (5). The local influence functional can be
derived by following the same steps.

APPENDIX B: QUALITY OF INFORMATION
IN THE TIME DOMAIN

In this Appendix we discuss another example showing that
the nonlocal decoherence contribution represents the quality
of which-way information. We consider the evolution of the
system during a finite time �t much greater than the decay
time of the dipole and field correlations. One expects that
only nearly resonant processes may contribute significantly to
the decoherence rate over the considered time scale �t . This
corresponds to the emission of photons with frequencies in the
vicinity of the atomic Bohr frequencies ωes. Below we show
that a small mismatch of the Bohr frequencies ωes in the two
wells affects the local and nonlocal decoherence rates in very
different ways.

From now on, we assume that the atomic levels are light
shifted differently in each well, yielding the distinct Bohr
frequencies ω±

es . To simplify the discussion, we assume that
the values of the atomic transition matrix elements |ds |2 are
not significantly modified. To obtain the local and nonlocal
decoherence rates, one uses again Eqs. (14), (16), and (17).

The local decoherence rate involves two successive tran-
sitions through intermediate states of identical energies. One
obtains �L = 1

2 (�+
L + �−

L ), where the rates �+
L and �−

L corre-
spond to the local rate �L as given by Eq. (19) up to a change
of the Bohr frequencies from ωes to ω+

es and ω−
es , respectively.

Typically, the change of the local decoherence rate is extremely
small. In contrast, the nonlocal decoherence rate involves
transitions through atomic states dressed differently by the
light field. Precisely, the nonlocal decoherence rate involves
the integration of oscillating functions

�NL = − 1

3�t

∑
s

|ds |2
∫

d3k
(

ω

2π2�

)
eik·a

×
∫ �t

0
dtme−i(ω+

es−ω−
es )tm

∫ 2tm

2tm−2�t

dτe− i
2 (ω+

es+ω−
es )τ .

(B1)

where we introduced the time variables tm = 1
2 (t + t ′) and

τ = t − t ′. The integral over τ can be extended to infinity and
yields, together with the integral over k, a finite result. The
integral over the time tm fails to provide a term proportional
to �t because of the oscillatory complex exponential arising
from the light shift mismatch. One then finds that the nonlocal
decoherence rate is significant only for short monitoring times
or small frequency mismatches, |ω+

es − ω−
es | <∼ 1/�t.
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Again, we may interpret this result in terms of quality of
information. We assume here that the two wells are close
a/λes  1 for all levels s, so that which-path information
can only be stored in the frequency value ω+

es or ω−
es . By

monitoring the system during �t , the frequency resolution
is limited by δω � 1/�t . If |ω+

es − ω−
es | <∼ 1/�t, an observer

detecting a photon emitted from one of the wells would not
be able to resolve the frequency with the accuracy needed
to determine the location of the emitting atom. Thus, the
emission process carries which-way information of low quality
in this case. Consistently with our previous interpretation,

the nonlocal decoherence term is significant and of negative
sign, thus providing recoherence to the system. On the
other hand, if |ω+

es − ω−
es | � 1/�t, the nonlocal decoherence

rate associated with the level s vanishes. In this limit,
the detection of a photon emitted from a transition e → s

provides perfect information on the atomic position given the
frequency resolution achievable during the monitoring time
�t. This is another example showing that the presence of a
nonlocal stationary recoherence rate is tied to imperfections
in the which-way information gained through the interaction
process.
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