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In bipartite quantum systems, entanglement correlations between the parties exerts direct influence in the
phenomenon of wave-particle duality. This effect has been quantitatively analyzed in the context of two qubits by
Jakob and Bergou [Opt. Commun. 283, 827 (2010)]. Employing a description of the K-meson propagation in free
space where its weak decay states are included as a second party, we study here this effect in the kaon-antikaon
oscillations. We show that a new quantitative “triality” relation holds, similar to the one considered by Jakob
and Bergou. In our case, it relates the distinguishability between the decay-product states corresponding to
the distinct kaon propagation modes KS , KL, the amount of wave-like path interference between these states,
and the amount of entanglement given by the reduced von Neumann entropy. The inequality can account for
the complementarity between strangeness oscillations and lifetime information previously considered in the
literature, therefore allowing one to see how it is affected by entanglement correlations. As we will discuss, it
allows one to visualize clearly through the K0-K 0 oscillations the fundamental role of entanglement in quantum
complementarity.
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I. INTRODUCTION

In the present work, we revisit the complementarity
between strangeness oscillations and lifetime information
in the neutral kaon system previously studied by Bramon,
Garbarino, and Hiesmayr (BGH) [1–3]. However, instead
of using the Wigner–Weisskopf approach to the isolated,
free-kaon propagation, we consider an open systems model
in which the neutral kaon’s weak decay states are included as
a second party. The interaction between the two subsystems is
given by a completely positive probability-preserving quantum
dynamical map. Our model coincides with that proposed by
Caban et al. [4] (and also discussed in Bertlmann et al. [5])
upon partial trace of the decay products, but it has the new
feature of allowing bipartite entanglement to be studied. We
examine quantitatively the effects of these correlations on
complementarity in the context of neutral kaon interferometry.

In this case, the quantitative duality relation of the
Greenberger–Yasin type [6] considered in Refs. [1–3] must
extend to a “triality” relation incorporating a quantitative
entanglement measure. We show here that a new such
quantitative complementarity relation holds:

V(τ ) �
√

1 − D2(τ ) − S2(τ ) ∀ τ ∈ I, (1)

where τ denotes the proper time and I is the time interval
relevant for the analysis (see Sec. III). This inequality is
similar to that proposed by Jakob and Bergou for bipartite
systems [7]. Here, D denotes the distinguishability between
the decay-product states corresponding to the distinct kaon
propagation modes KS , KL. As we will see, D quantifies
the increasing amount of lifetime information which becomes
available (due to entanglement correlations) in the decay-states
subsystem. The associated visibility V quantifies the amount
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of wave-like path interference between these states, while
S denotes the von Neumann entropy of the kaon state and
measures bipartite entanglement. We will demonstrate that
the quantitative complementarity relation (1) also accounts
for the complementarity between strangeness oscillations and
lifetime information considered by BGH. The results allow us
to visualize and discuss in a clear way through the K0-K 0

oscillations the essential role played by entanglement in
wave-particle duality.

II. THE MODEL

While there are several open quantum system models avail-
able in the literature offering completely positive probability-
preserving descriptions of the composite neutral kaon plus a
weak decay-products system [4,5,8–11], here we consider a
model in which these two subsystems are treated as different
parties. Therefore, we take the composite system state space as
the tensor productH = HQ ⊗ HP between the kaon (quanton)
Hilbert space HQ and the space of decay products states HP .

A short-lived kaon K0
S always decays into two pions, either

π+ + π− or π0 + π0. On the other hand, a long-lived kaon K0
L

has several decay modes: it can decay into three neutral pions
or π+ + π− + π0, but there are also the semileptonic decays
into π± + μ∓ + νμ, π± + e∓ + νe, and the considerably rare
K0

L decays into two pions. However, we will not consider here
this last decay mode associated with charge-parity violation.
In this case, the state of the decay-products subsystem can be
labeled by its pion content. Thus, we take HP as the Hilbert
space spanned by the (orthonormalized) vectors |0π 〉, |ππ〉,
and |π̃π〉, which represent respectively states with no pions,
two pions, and one or three pions.

The kaon state space is taken as the direct sum HQ = H0 ⊕
HK0 , where H0 is the Hilbert space spanned by the vector |0K〉
representing the vacuum (absence of kaon) and HK0 is the usual
kaon Hilbert space spanned by the strangeness eigenstates
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|K0〉, |K 0〉. Under our assumption of charge-parity symmetry,
the neutral kaon mass eigenstates |K0

S〉, |K0
L〉 corresponding to

the short-lived and long-lived propagation modes are

∣∣K0
S

〉 = 1√
2

(|K0〉 + |K 0〉), ∣∣K0
L

〉 = 1√
2

(|K0〉 − |K 0〉),

(2)

and we have 〈K0
S |K0

L〉 = 0. We assume that |0K〉 is normalized
and orthogonal to |K0

S〉, |K0
L〉.

So far for the kinematic aspects. Let us turn now to dy-
namics. The only physically meaningful initial configurations
are those with a kaon and no pion—that is, factorized initial
conditions of the form |�(0)〉 = ( α|K0

S〉 + β|K0
L〉 )|0π 〉. We

assume that evolution takes place entirely in the subspaceW <

H spanned by {|K0
S〉|0π 〉, |K0

L〉|0π 〉, |0K〉|ππ〉, |0K〉|π̃π〉} and
according to the quantum map

|0K〉|0π 〉 −→ |0K〉|0π 〉,∣∣K0
S

〉|0π 〉 −→ e
− 1

2 �Sτ
e−imSτ

∣∣K0
S

〉|0π 〉
+

√
1 − e−�Sτ |0K〉|ππ〉,∣∣K0

L

〉∣∣0π 〉 −→ e
− 1

2 �Lτ
e−imLτ

∣∣K0
L

〉|0π 〉
+

√
1 − e−�Lτ |0K〉|π̃π〉, (3)

where mS and �S = 1
τS

(mL and �L = 1
τL

) are the K0
S

(K0
L) mass and decay width [12], and where pS(τ ) ≡ 1 −

e−�Sτ [pL(τ ) ≡ 1 − e−�Lτ ] denotes the amplitude for the
state |K0

S〉|0π 〉 (|K0
L〉|0π 〉) mapping at time τ into |0K〉|ππ〉

(|0K〉|π̃π〉). Moreover, we assume that all the interactions
experienced by the kaon with other degrees of freedom have
been included in the description above. In this case the
composite system density operator ρ(τ ) = |�(τ )〉〈�(τ )| for
the initial |�(0)〉 can be assumed to remain pure in the course
of dynamics. From Eq. (3),

|�(τ )〉 = αe
− 1

2 �Sτ
e−imSτ

∣∣K0
S

〉 ⊗ |0π 〉

+βe
− 1

2 �Lτ
e−imLτ

∣∣K0
L

〉 ⊗ |0π 〉
+α

√
1 − e−�Sτ |0K〉 ⊗ |ππ〉

+β
√

1 − e−�Lτ |0K〉 ⊗ |π̃π〉. (4)

In the sequence, we focus our attention on kaons produced
in strangeness eigenstates—say, |K0〉 states generated by
strong reactions such as π−p → K0
. So we take α = 1√

2
=

β. Taking this into ρ(τ ), we see that the reduced kaon state is

ρQ(τ ) = TrP [ρ(τ )] = 1

2
e−�Sτ

∣∣K0
S

〉〈
K0

S

∣∣
+ 1

2
e−�Lτ

∣∣K0
L

〉〈
K0

L

∣∣
+

(
1 − e−�Sτ

2
− e−�Lτ

2

)
|0K〉〈0K |

+
{

1

2
e− 1

2 �Sτ e− 1
2 �Lτ ei�mτ

∣∣K0
S

〉〈
K0

L

∣∣ + H.c.

}
. (5)

This coincides with the kaon state evolution considered
in Ref. [4] by Caban et al. [13]. In this work, the authors
deduced the general form in Eq. (5) for the kaon’s dynamics
under the assumptions that (i) the kaon state evolution must
be completely positive and probability preserving, and (ii)
compatible with the Wigner–Weisskopf phenomenological
prescription [14]. Therefore, these properties are also true for
the reduced kaon state ρQ(τ ) in the present model (4). It is
straightforward to check that the composite system evolution
given by ρ(τ ) is also completely positive and probability
preserving.

III. RESULTS

We apply our model now to a quantitative analysis of
complementarity in the K0-K 0 system, including the duality
between strangeness oscillations and lifetime information. But
here we investigate the phenomenon in light of the new feature
presented by the model’s bipartite character: entanglement.
Our goal is to examine its role on complementarity in the
context of neutral kaon interferometry.

We can restrict our analysis to focus only on the proper time
interval 0 � τ � τ0, where τ0 = 4.79τS . The reason is that it
can be verified in experiment [1] that neutral kaons decaying
after τ0 can be regarded as KL

0 kaons with negligible error
probability. In other words: at τ = τ0 one can already consider
to have complete width information on the kaon. Therefore,
we assume in the sequence that τ ranges from 0 to τ0.

For pure composite-system states, the degree of mixedness
of a reduced party state both qualifies and quantifies entangle-
ment. Here we will use the von Neumann entropy S of the
reduced pionic subsystem state. It can be readily evaluated
from

ρP (τ ) = TrQ[ρ(τ )] = 1 − e−�Sτ

2
|ππ〉〈ππ |

+ 1 − e−�Lτ

2
|π̃π〉〈π̃π |+

(
e−�Sτ

2
+e−�Lτ

2

)
|0π 〉〈0π |

+
{

1

2

√
1 − e−�Sτ

√
1 − e−�Lτ |ππ〉〈π̃π | + H.c.

}
,

(6)

whose eigenvalues are {0,x,1 − x} for

x(τ ) ≡ e−�Sτ + e−�Lτ

2
,

0 � x � 1 ∀ τ . Direct numerical analysis reveals that

S = x ln x + (1 − x) ln (1 − x)

is monotone increasing in [0,τ0] (see Fig. 1).
As entanglement correlations are dynamically generated,

information about the kaon’s {|K0
S〉, |K0

L〉} component leaks
to the pionic subsystem. The natural quantifier of the amount
of lifetime information which thus becomes available to be
retrieved (through the pionic state) is the distinguishability

D(τ ) = 1
2

∥∥ρ
(S)
P (τ ) − ρ

(L)
P (τ )

∥∥. (7)

It is given by the trace distance between the pionic sub-
system states ρ

(S)
P (τ ) = 2〈K0

S |ρ(τ )|K0
S〉 = e−τ�S |0π 〉〈0π | and
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FIG. 1. The solid black lines show D2 + S2 increasing towards
1 while V2 decreases correspondingly, such that V2 � 1 − D2 − S2.
Proper time ranges from τ = 0 to τ = 4.79τS . The green dot-dashed
line shows D. The purple dashed line shows S.

ρ
(L)
P (τ ) = 2〈K0

L|ρ(τ )|K0
L〉 = e−τ�L |0π 〉〈0π | corresponding to

the distinct kaon propagation modes KS , KL. Due to the
generation of entanglement, we expect D(τ ) to also increase
monotonically in [0,τ0]. In fact, we found that D(τ ) =
1
2 |e−τ�S − e−τ�L | is an increasing function of τ in this interval.
The numerical results are summarized in Fig. 1.

The quantity naturally complementary to D and playing the
role of interferometric visibility here is the Uhlmann fidelity

V(τ ) = F
(
ρ

(S)
P (τ ), ρ(L)

P (τ )
)
, (8)

where F(ρ̂,τ̂ ) = Tr[(
√

ρ̂ τ̂
√

ρ̂)1/2]. The fidelity is an “over-
lap” measure generalized to arbitrary mixed states ρ̂, τ̂ ,
therefore quantifying the visibility of quantum interferences
between ρ

(S)
P (τ ), ρ

(L)
P (τ ). Moreover, it is well known to be

related to the trace distance by the information-theoretic
inequality

F(ρ̂,τ̂ ) �
√

1 − D2(ρ̂,τ̂ ). (9)

We have V(τ ) = e−�τ , where � ≡ 1
2 (�S + �L).

As was pointed out by Jakob and Bergou in Ref. [7],
complementarity in bipartite systems must relate the single-
partite properties distinguishability and visibility to the amount
of entanglement. Here we have

V2 + D2 = e−τ (�S+�L) + (e−�Sτ − e−�Lτ )2

4
= x(τ )2,

in such a way that

V2 + D2 + S2 = x2 + [x ln (x) + (1 − x) ln (1 − x)]2 � 1.

Indeed, numerical analysis of the quantities S,D, and V shows
that the inequality

V2 + D2 + S2 � 1 (10)

FIG. 2. The quantitative complementarity relation (10) for
τ ∈ [0, τ0]. The solid violet line shows V2 + D2 + S2. The upper
bound 1 is shown dashed, in black.

holds within the relevant proper time interval [0, τ0] (see
Fig. 2). As D2 + S2 increases towards (nearly) 1 in [0, τ0], the
quantityV must correspondingly decrease towards 0, therefore
enforcing the visibility of the wave-like path interference
phenomena to reduce.

Strangeness oscillations

To see that Eq. (10) also accounts for the complementarity
between strangeness oscillations and lifetime information in

[0,τ0], notice first that the visibility of K0K
0

oscillations must
be defined here as the quantity V0(τ ) such that

2〈K 0|TrP [ρ(τ )]|K 0〉 = F (τ ){1 − V0(τ ) cos (�mτ )}. (11)

That is, by the oscillatory term in the probability that the initial

|K0〉 is detected in the strangeness eigenstate |K 0〉 at the later
time τ = 0. Direct calculation gives

V0(τ ) = 2e− 1
2 (�S+�L)τ

e−�Sτ + e−�Sτ
. (12)

Next, a straightforward argument (see the appendix) shows
that the ratio dV0

dτ
/ dV

dτ
between its derivative and that of the

fidelity visibility (8) is positive in the time interval 0 � τ �
τ0 . The quantities V, V0 are then either both increasing or
both decreasing in [0, τ0]. Therefore, we see from Eq. (9) that
the increase of lifetime information as measured by D(τ ) in
fact enforces (not only V , but also) the visibility V0 of the
strangeness oscillations to decrease in this interval.

IV. CONCLUSIONS

Entanglement plays a crucial role in quantum-mechanical
complementarity for bipartite systems. We have shown in the
present work how it can be clearly illustrated and discussed
in the kaon-antikaon oscillating system. We considered a
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FIG. 3. Upper bounds for V2 (the dot-dashed green line) given by
1 − D2 (dashed purple line) and by 1 − D2 − S2 (solid black line).

bipartite model where a single neutral kaon interacts with the
environment consisting of its weak interaction decay products.
From an interferometric point of view, the kaon is treated as
the interfering object (quanton) and the lifetime or width
information plays the role of which-way information. This
is similar to the neutral kaon interferometry of Bramon,
Garbarino, and Hiesmayr [3]. We verified that, as entanglement
correlations are established between these two parties, lifetime
information leaks and becomes available in the environmental
state. Corresponding to the entanglement generation and
acquisition of lifetime information, we saw how the visibility
of which-way interference is reduced. The interplay between
the single-particle properties visibility and distinguishability
and entanglement was proved to be governed by a quantitative
complementarity relation:

V2 + D2 + S2 � 1.

This inequality is similar to the one proposed by Jakob and
Bergou in their analysis of wave-particle duality in bipartite
systems [7].

In this direction, it is interesting to notice that the inclusion
of the quantitative entanglement measure in this “triality”
relation is very important if we want to see the reduction
of the interference visibility V as enforced by quantum
complementarity. In Fig. 3, we compare the upper bounds
for V2 given by 1 − D2 alone and by 1 − D2 − S2. The upper
bound including entanglement is much sharper and consistent
with the actual reduction in V .

We have also shown how our inequality accounts for
the complementarity between strangeness oscillations and
lifetime information in the time interval relevant for the
analysis. This demonstrates consistency with the previous
analysis of complementarity in the neutral kaon system,
and with the general principle that the visibility of any
quantum interference phenomenon whatsoever must reduce
when which-way information becomes available [15–17].
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APPENDIX

Let us show that the ratio dV0
dτ

/ dV
dτ

between the derivatives
of the visibility of strangeness oscillations [Eq. (12)] and the
fidelity visibility [Eq. (8)] is positive in the time interval 0 �
τ � τ0 . Observe that this dimensionless ratio is given by

dV0

dτ

/
dV
dτ

= 2

e−�Sτ + e−�Lτ

(
1 − �Se

−�Sτ + �Le−�Lτ

�(e−�Sτ + e−�Lτ )

)
> 0 ∀ 0 � τ � τ0.

Therefore, it is enough to show that

�Se
−�Sτ + �Le−�Lτ

�(e−�Sτ + e−�Lτ )
� 1 ∀ 0 � τ � τ0.

To do this, notice that, since �S = 579�L, we have e−�Sτ �
e−�Lτ for every 0 � τ � τ0. Thus, in the interval [0, τ0] we
have

(�S − �L)e−�Sτ � (�S − �L)e−�Lτ ,

or
1
2 (�Se

−�Sτ + �Le−�Lτ ) � 1
2 (�Le−�Sτ + �Se

−�Lτ ).

Adding 1
2 (�Se

−�Sτ + �Le−�Lτ ) to both sides of the previous
inequality gives

�Se
−�Sτ + �Le−�Lτ � �(e−�Sτ + e−�Lτ ),

as desired.
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