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The nonlinear Compton scattering rate in a rotating electric field is explicitly calculated. For this purpose,
an approximate solution to the Klein-Gordon equation in the presence of a rotating electric field is applied.
An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for
implementation in kinetic codes. The spectrum is numerically calculated for present-day optical and x-ray laser
parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is
commonly assumed to be valid for a rotating electric field under certain conditions. Substantial deviations between
the two models, in both the radiated power and the spectral shape, are demonstrated. First, the typical number of
photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in
up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonic spectrum
for electrons with low asymptotic momentum compared to the field amplitude. This discrete structure is a clear
imprint of the electric field frequency, as opposed to the Volkov-Ritus rate, which reduces to the constant crossed
field rate for the physical conditions under consideration. Our model predictions can be tested with present-day
laser facilities.
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I. INTRODUCTION

The interaction of electromagnetic (EM) fields with matter
is one of the most fundamental problems in physics. The
conventional way to introduce the interaction with the photon
into the matter equation of motion is by perturbation theory.
For this approach to be adequate, the interaction term should
be small with respect to the other terms in the Lagrangian.
However, if the amplitude of the EM field under consideration
exceeds a certain value, a different framework must be adopted.
In order to quantitatively characterize the transition to the
strong-field regime (where the standard perturbation theory
fails), the nonlinearity parameter is introduced

ξ ≡ ea

m
. (1)

Natural units are used (� = c = 1), e and m are the electron
charge and mass, respectively, and a ≡ √−AμAμ is the am-
plitude of the vector potential Aμ. The intuitive interpretation
of ξ , which is the reciprocal of the known Keldysh parameter
[1,2], is the typical number of photons participating in the
scattering process of the particle and the EM wave. As a result,
if ξ � 1, i.e., in the strong-field regime, it involves many
photons absorption. In the opposite case (ξ < 1), known as
the perturbative regime, a nonlinear process is possible, but the
rate W decreases sharply with n (the number of participating
photons), namely, W (n) ∝ ξ 2n. In practical units the nonlin-
earity parameter is given by ξ = 7.5

√
I [1020 W/cm2]/ω[eV],

where I and ω are the laser intensity and frequency,
respectively.

The failure of the standard perturbation technique in the
strong-field regime calls for a nonperturbative formalism.
The essence of the nonperturbative approach (also known
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as the strong-field approximation) is that instead of treating
the laser background perturbatively, we include it in the free
Lagrangian [3]. Therefore, nonperturbative calculations of
quantum electrodynamics (QED) processes in the presence
of a laser field (laser assisted) are carried out by replacing
the free-electron wave function with the Volkov wave function
[4,5]. This wave function is a solution to the quantum equation
of motion of a particle interacting with a classical EM plane-
wave traveling in vacuum. Employing the above formalism,
the properties of QED in the nonperturbative regime were
thoroughly investigated both in the 1960s [2,6–11] and in
recent years [12–16]. In particular, much attention has been
focused on the influence of the temporal and spatial structure
of the laser pulse on the strong-field QED processes [17–21].
It should be mentioned that an alternative, fully quantum
approach is also feasible [22,23]. Nevertheless, provided the
laser pulse depletion due to a single QED process is negligible
and the number of photons in the laser quantum mode is
much higher than 1, the fully quantum approach reduces to
the strong-field one [24]. Since both assumptions are satisfied
to an excellent degree in the context of strong laser fields, the
strong-field approximation is sufficient.

The experimental exploration of the strong-field regime
became feasible due to the invention of the chirped-pulse
amplification technique 30 years ago [25]. Since then, the
laser intensity has increased eight orders of magnitude to the
current record [26] of 1022 W/cm2 at infrared wavelength (ω =
1.6 eV), corresponding to ξ = 50. Several laser infrastructures
with an expected intensity of 1024–1025 W/cm2 are under
construction worldwide, including the three facilities of the
ELI project [27]. Several others are in the planning phase,
such as the XCELS [28] in Russia, HiPER [29] in the UK, and
GEKKO EXA [30] in Japan.

Concurrently, a breakthrough in free-electron laser physics
during the 1980s made it possible to achieve intense coherent
x-ray light. Nowadays, there are several operating x-ray
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free-electron laser (XFEL) facilities (e.g., LCLS in Stanford
[31], SACLA in Japan [32], and FLASH in Hamburg [33])
and one under construction (XFEL in Hamburg [34]). The
maximum intensity produced in these facilities lies in the range
1020–1021 W/cm2, corresponding to ξ ≈ 2 × 10−3.

The experimental availability of such intense field sources
creates exciting opportunities in many research fields related to
strong-field physics [35,36], such as attosecond spectroscopy
[37], relativistic nonlinear optics and relativistic high-order
harmonic generation [38,39], ultrastrong laser-plasma interac-
tion and particle acceleration [40,41], laboratory astrophysics
[42], laser-assisted QED processes [43,44], Schwinger pair
production [45], and exotic nuclear physics [46].

This work is devoted to one of the most significant
laser-assisted QED processes, nonlinear Compton scattering.
Unlike the standard Compton process, where a photon scatters
off an electron, nonlinear Compton scattering describes the
coherent interaction of many photons with an electron. The
outgoing particles are the electron and a single energetic
photon. This scattering is of particular significance for several
reasons. First, it may be used to create γ sources in the
interaction of ultraintense lasers with an energetic electrons
beam. Second, it is one of the main processes responsible for
the electron radiation losses in the interaction of ultraintense
lasers with plasma. In particular, the interplay between this
process and the Breit-Wheeler process, involving a hard
photon interacting with many laser photons to create an
electron-positron pair, may result in a mechanism called
QED cascade in the following way. The hard photon emitted
during nonlinear Compton scattering decays into an electron-
positron pair through the Breit-Wheeler scattering. The newly
created particles also radiate hard photons through nonlinear
Compton scattering, leading to the emergence of an avalanche.
These QED cascades have attracted increasing scientific
attention [47–57] for both fundamental and practical reasons.
Practically, spontaneous cascades may drain energy from the
laser pulse and thus limit the utmost attainable intensity
[50]. From a fundamental point of view, the cascades are of
interest as they result in a QED plasma (namely, electrons,
positrons, and γ photons) resembling many astrophysical
scenarios [48].

The most favorable configuration to achieve the QED
cascade is a rotating electric field [51]. It may be realized
in the vicinity of the antinodes of a standing wave formed
by two counterpropagating laser beams. The standard kinetic
modeling consists of a particle-in-cell (PIC) code to describe
the plasma motion combined with a Monte Carlo QED module
to account for the strong-field QED emission processes listed
above. The QED rates are those obtained by the Volkov wave
function, though the EM field configuration is different from
the one used in the Volkov derivation.

The justification to this approximation was formulated by
Nikishov and co-workers [2,11] (see also the comprehensive
review [44]). Their derivation is based on the Volkov solution
and from now on will be referred to as the Volkov-Ritus
solution. The explanation of their argument requires the
introduction of the four dimensionless quantities on which
the quantum rate depends. The first is the field strength ξ

introduced above. The second is the normalized acceleration
experienced by the particle in its rest frame. It is known as the

quantum parameter and takes the form [44]

χ ≡ e

m3

√
−(Fμν�ν)2, (2)

where �ν is the eigenvalue of the kinetic momentum operator
−i∂μ − eAμ and the EM field strength tensor is given by

Fμν = ∂μAν − ∂νAμ. (3)

The classical regime, i.e., the nonlinear Thomson scattering,
corresponds to χ � 1. The next-generation lasers are expected
to enter the quantum regime χ ≈ 1. Two additional quantities
are the EM field invariants

F ≡ e2FμνF
μν

4m4
, G ≡ εαβμνe

2FαβFμν

4m4
. (4)

The symbol εαβμν stands for the Levi-Cività tensor. Ritus and
Nikishov argued that as long as the conditions

F ,G � χ2, F ,G � 1, ξ � 1 (5)

hold, the rate is well described by the Volkov-Ritus expression
(coinciding under these conditions with the emission in a
constant crossed field).

However, it was recently demonstrated by the present
authors [58] that the wave function of a particle in a rotating
electric field exhibits significant deviation from the Volkov
solution even if (5) is satisfied. Consequently, we are motivated
to explore the emission rate of an electron in this field config-
uration, corresponding to our wave function, as compared to
the familiar Volkov-Ritus rate. For the sake of simplicity, the
investigation was carried out for the scalar case, neglecting the
spin effects. These were shown to be of secondary importance
for ultraintense laser-particle interaction [59].

The paper is organized as follows. In Sec. II the strong-field
Lagrangian is written down and the second quantization is out-
lined. Section III reviews the analytical solution derived in [58]
for a particle in a rotating electric field. Section IV describes
the phase-space factor appearing in the nonlinear Compton
scattering rate. Section V includes a detailed calculation of
the matrix element. In Sec. VI we explicitly show that in
the proper conditions our formula recovers the Volkov-Ritus
one. Section VII deals with a continuum approximation to
our rate, Sec. VIII considers the radiation coherence time
interval, and Sec. IX contains the final expression for the
emission spectrum. In Sec. X the present rate is evaluated
numerically and compared to the Volkov-Ritus expression
for physical parameters corresponding to present-days laser
facilities. Section XI summarizes the paper.

II. LAGRANGIAN FORMULATION

The final goal of this work is the calculation of the nonlinear
Compton scattering rate in a rotating electric field. For this
purpose, a Lagrangian formulation of the problem, including
second quantization, is required. This framework, known as
strong-field QED, was developed for the Volkov problem long
ago [3,44] and was recently generalized by the present authors
[60] for the case of a rotating electric field. The main results
of the generalization are given below.
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The Lagrangian of the scalar QED reads

LsQED = 1

2
∂μ�∗∂μ� − 1

2
m2�∗�

− 1

16π
FμνF

μν + Aμ

(
f

μ

1 + Aμf2
)
, (6)

where � is the scalar field operator. The last term in the
Lagrangian, representing the interaction between light and
matter, is expressed using the definitions

f
μ

1 ≡ 1
2 ie(�∗∂μ� − �∂μ�∗) (7)

and

f2 ≡ 1
2e2|�|2. (8)

In standard QED, the interaction term in (6) is considered as
a perturbation. However, in the presence of a strong field, Aμ

acquires a vacuum expectation value and the interaction term
should be redefined according to Furry [3],

Aμ = Acl
μ + AQ

μ , Acl
μ ≡ 〈�|Aμ|�〉, (9)

where |�〉 stands for the vacuum state and will be defined
below. We substitute (9) into (6) and group all terms involving
both AQ

μ and f
μ

1 ,f2,

Lint = 2f2(Acl · AQ) + AQ · f1 + (AQ)2f2, (10)

where the center dot stands for Lorentz contraction. The
remaining terms are included in the free part of the Lagrangian

Lfree = 1

2
∂μ�∗∂μ� − 1

2
m2�∗� − 1

16π
FμνF

μν + LFurry,

(11)

where

LFurry = Acl · f1 + f2A
cl2

. (12)

Finally, the full Lagrangian is the sum L = Lfree + Lint. The
free equations of motion corresponding to (11) are

[−∂2 + e2Acl2 − 2ieAcl · ∂ − m2
]
� = 0, (13)

∂2AQ
μ = 0, (14)

∂2Acl
μ = 0. (15)

The solution of the system, addressed in the next section,
enables us to proceed with the second quantization procedure

� =
∫

d3q

(2π )3
√

2q0
[cqφA(q) + H.c.], (16)

AQ
μ =

∫
d3k′

(2π )3
√

2k′
0

[ε′
μak′e−ik′ ·x + H.c.], (17)

where ε′
μ is the photon polarization vector and φA(q) and

ε′
μe−ik′ ·x are the one-particle solution of (13) and (15), respec-

tively. The quasimomentum qμ is a 4-vector characterizing the
wave function φA and will be defined in the next section. We
introduced the creation and annihilation operators, obeying the

commutation relations

[a†
k′ ,ak′′ ] = (2π )3δ3(k′′ − k′), (18)

[c†q,cq ′ ] = (2π )3δ3(q − q ′). (19)

Now let us specify the vacuum state |�〉 and the cor-
responding classical field Acl

μ . As was mentioned in the
Introduction, a rotating electric field can be realized at the
antinodes of a standing wave formed by colliding circularly
polarized laser beams. The vector potential corresponding to
this configuration is

Acl,μ = 1
2a

μ

1 [cos(k1 · x) + cos(k2 · x)]

+ 1
2a

μ

2 [sin(k1 · x) + sin(k2 · x)], (20)

where the wave vectors are k
μ

1 = (ω,k) and k
μ

2 = (ω,−k)
and satisfy the vacuum dispersion relation k2

1 = k2
2 = 0. The

polarization vectors are given by

a
μ

1 = a(k · x)êμ

1 , a
μ

2 = a(k · x)êμ

2 , (21)

where a(k · x) is a slowly varying amplitude vanishing at k ·
x → ±∞. However, in the following this envelope is assumed
to be slow enough [da/d(k · x) � 1, corresponding to a many-
cycle pulse] so that a is approximately constant. As a result,
the influence of the ponderomotive force as well as finite pulse
effects is beyond the scope of our model. The unit vectors read

êlab
1 = (0,1,0,0), êlab

2 = (0,0,1,0), (22)

where the superscript lab attached to a 4-vector denotes that it
is evaluated in the laboratory frame of reference. Notice that
Acl given by (20) satisfies, as it should, the relevant equation
of motion (15). The ground state corresponding to this field
configuration is

|�〉 = |0〉|α,k1; α,k2〉, (23)

where |0〉 is the scalar part of the wave function and
|α,k1; α,k2〉 stands for two coherent states with 4-momenta
k1,k2, respectively, representing the counterpropagating laser
beams.

III. ANALYTICAL SOLUTION

In the previous section, the equation of motion describing
the dynamics of the scalar field operator was derived (13).
Substituting the ansatz (16) for �, one may obtain the equation
satisfied by the one-particle wave function φA,[−∂2 − 2ie(Acl · ∂) + e2Acl2 − m2

]
φA = 0, (24)

which is the familiar Klein-Gordon equation in the presence
of a classical EM field. Using simple trigonometric manipula-
tions, the laser field (20) takes the form

Acl,μ = cos(k · x)
[
a

μ

1 cos(ωt) + a
μ

2 sin(ωt)
]
. (25)

In the vicinity of the antinode, i.e., k · x = 0, the cosine equals
unity up to a second-order correction, i.e., cos(k · x) ∼= 1. In
order to cast Eq. (25) into a Lorentz-invariant form, namely,

Acl,μ = a
μ

1 cos(k · x) + a
μ

2 sin(k · x), (26)
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a wave vector kμ is introduced. In the laboratory frame it
reads klab = (ω,0,0,0). Consequently, it obeys a massivelike
dispersion relation

k2 ≡ m2
ph > 0, (27)

where mph is the effective mass of the rotating electric field
photons. As can be inferred from the definition of k, the photon
effective mass equals the laser frequency in the laboratory
frame, mph = ω.

The dynamics of Eqs. (24), (26), and (27) were investigated
by several authors [61–66]. It was shown that if one assumes a
massivelike dispersion relation for the EM field then the Klein-
Gordon equation reduces to the Mathieu ordinary differential
equation. In the following we will employ an approximate
solution to the Mathieu equation, recently published by the
present authors [58]. This solution was also generalized to a
standing wave [67] and compared to other approaches such as
the WKB or perturbative method in [68].

The approximate wave function φA(q) solving (24) takes
the form [58]

φA(q) = exp

[
−iq · x − i

e(a1 · q)

k · q
sin(k · x)

+ i
e(a2 · q)

k · q
cos(k · x)

]
. (28)

The quasimomentum is defined as

qμ ≡ pμ − νkμ, (29)

where pμ is the asymptotic momentum (the momentum in the
absence of the EM wave) and ν is the characteristic exponential
given by

ν = k · p

mph
2

⎡
⎣1 −

√
1 +

(
eamph

k · p

)2
⎤
⎦. (30)

In the limit mph → 0, the characteristic exponential reduces
to the Volkov expression, namely, ν → νV = −(ea)2/2(k · p).
As a result, the Volkov solution is recovered.

The underlying assumption behind this approximated solu-
tion is

δ ≡ eam2
ph|p · (ê1 + iê2)|

(k · q)2
� 1. (31)

Equivalently, in the laboratory frame, it takes the form

δ ≡ eaplab
⊥

(ea)2 + (
plab

0

)2 � 1, (32)

where p⊥ ≡
√

p2
x + p2

y is the perpendicular asymptotic mo-
mentum. The physical meaning of this condition is that our
approximation is valid unless the perpendicular asymptotic
momentum is comparable to both the field amplitude and the
asymptotic energy (i.e., plab

⊥ ≈ plab
0 and plab

⊥ ≈ ea).
Let us calculate three significant quantities associated with

the wave function. The first is the dressed electron effective
mass, frequently encountered in the following sections. Using
the definition m∗ ≡

√
q2 and (29), one obtains

m∗ = m
√

1 + ξ 2, (33)

which is identical to the expression corresponding to the
Volkov wave function [44]. The second quantity is the
eigenvalue �μ of the kinetic momentum operator, satisfying

(−i∂μ − eAμ)φA = �μφA. (34)

Evaluating the left-hand side of the above equation, one finds

�μ = pμ − eAμ − νkμ, (35)

which is nothing but the classical momentum of a particle in a
rotating electric field. The third quantity to be calculated is the
quantum parameter χ , obtained by substituting (35) into (2),

χ = ea(k · q)

m3

√
1 − m2

ph(Acl ′ · p)2

(ea)2(k · q)2
, (36)

where Acl ′ denotes the first derivative of Acl with respect to
(k · x). Notice that χ is time dependent (through Acl ′) unless
the asymptotic momentum satisfies Acl ′ · p = 0.

IV. SCATTERING PHASE SPACE

In the following, the nonlinear Compton scattering rate
corresponding to our present solution is obtained. According to
the standard formulation, we start with the transition amplitude
between the initial and final states and relate it to the interaction
Lagrangian. Afterward, the rate is written as a matrix element
integrated over the available phase space of the outgoing
particles. This section mainly deals with the particulars of the
phase-space integration, while the matrix element calculation
is addressed in the next one.

The transition amplitude iT between the initial and final
states reads

iT = 〈q ′,k′|(S − 1)|q〉, (37)

where the canonical normalization is used for the one particle
states, i.e., |q〉 ≡ √

2q0c
†
q(q)|�〉. The scattering matrix in the

interaction picture is given by

S = T exp

(
i

∫
d4xLint

)
, (38)

where T is the time ordering operator and Lint was given
in (10). The nonlinear Compton scattering originates in the
first-order term in the Taylor expansion of S. Hence,

iT = 〈q ′,k′|
∫

d4xLint|q〉. (39)

Omitting the term in (10) involving (AQ
μ )2 (since it does not

contribute to this scattering) and writing explicitly f
μ

1 ,f2, we
obtain

Lint = eAQ,μ
[
�∗(i∂μ + eAcl

μ

)
� − �

(
i∂μ − eAcl

μ

)
�∗]. (40)

Substituting (16), (17), and (40) into (39), the transition
amplitude takes the form

iT = ie

∫
dx4(ε′

μ)∗eik′ ·x[φ∗
A(q ′)

(
i∂μ + eAcl

μ

)
φA(q)

−φA(q)
(
i∂μ − eAcl

μ

)
φ∗

A(q ′)
]
. (41)

As explicitly shown later on, the integration over d4x results
in an infinite sum of energy-momentum-conservation delta
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functions

iT = i
∑

s

Ms(2π )4δ4(q + sk − k′ − q ′), (42)

where Ms is the matrix element and s is the number of laser
photons absorbed in the process. Let us consider a process with
a given s. The corresponding energy-momentum conservation
reads

sk + q = q ′ + k′. (43)

It is favorable to hold our discussion in the center-of-mass
frame. Let us write down the incoming 4-momenta explicitly

sk = (√
p2

in + s2m2
ph,0,0,pin

)
, (44)

q = (√
p2

in + m2∗,0,0, − pin
)
, (45)

where pin is the momentum of each of the incoming particles
in the center-of-mass frame. The 4-momenta of the outgoing
particles are

q ′ = pout

⎛
⎝
√

1 +
[

m∗
pout

]2

, sin θ cos ϕ, sin θ sin ϕ, cos θ

⎞
⎠,

(46)

k′ = pout(1,− sin θ cos ϕ,− sin θ sin ϕ,− cos θ ), (47)

where θ and ϕ are the scattering angles and pout is the
momentum of the outgoing particles in the center-of-mass
frame. The center-of-mass energy is given by

E2
s = (sk + q)2 = s2m2

ph + m2
∗ + 2sk · q. (48)

The initial center-of-mass momentum is related to Es by

Es = sk0 + q0 =
√

s2m2
ph + p2

in +
√

m2∗ + p2
in. (49)

The solution of equation (49) yields

pin = s(k · q)

Es

√
1 −

(
m∗mph

k · q

)2

. (50)

The final center-of-mass momentum is related to Es by

Es = pout +
√

m2∗ + p2
out. (51)

Hence we have

pout = E2
s − m2

∗
2Es

= s2m2
ph + 2sk · q

2Es

. (52)

For vanishing mph Eqs. (49) and (51) take exactly the same
form. Therefore, Eqs. (50) and (52) become identical (pin =
pout), as expected.

In order to obtain the total emission rate for a hard photon by
the electron, the phase-space integration should be performed.
The rate W is related to the transition amplitude by [5]

W = 1

2q0

∫
d3q ′

(2π )32q ′
0

d3k′

(2π )32k′
0

|T |2. (53)

Notice that the integration result is Lorentz invariant and the
only frame-dependent term is the coefficient 1/2q0 multiplying

the integral. The δ function appearing in the expression for
|T |2 contains four constraints on the possible final states.
Therefore, the summation over the phase space reduces to
a two-dimensional integral [69]

δ4(sk + q − q ′ − k′)
d3q ′d3k′

q ′
0k

′
0

→ poutd(cos θ )dϕ

Es

. (54)

Since each s has a unique center-of-mass frame, different s

corresponds to different θ . As a result, we would like to replace
cos θ in (54) by a more convenient variable. For this purpose,
a Lorentz-invariant parameter is introduced

u ≡ k · k′

k · q ′ . (55)

This variable is also an indicator of the classical or quantum
nature of the scattering [44]. Since u � 1 implies a negligible
momentum of the outgoing photon, it corresponds to the
classical limit. On the other hand, for u ≈ 1 the quantum
mechanics dominates the process. In the strong-field regime
(ξ � 1) one may show that u ≈ 1 corresponds to χ ≈ 1. One
may show that θ is related to u by (see Appendix A)

cos θ = ηs

(
κs − κs + 1

1 + u

)
, (56)

with

κs ≡ E2
s + m2

∗
E2

s − m2∗
(57)

and

ηs ≡ sk0

pin
. (58)

Notice that in the Volkov limit (i.e., mph → 0) we have ηs =
1 by definition, due to the vacuum dispersion of the laser
photons. In order to obtain ηs in terms of the initial quantities,
Eq. (50) and the relation k0 =

√
m2

ph + (pin/s)2 are employed:

ηs =
√

(k · q)2 + 2s(k · q)m2
ph + s2m4

ph

(k · q)2 − (mphm∗)2
. (59)

In the laboratory frame, k · q = mphq
lab
0 . As a result, Eq. (59)

simplifies to

ηs = q lab
0 + smph√(
q lab

0

)2 − m2∗
. (60)

The limiting values of u, corresponding to cos θ = ±1, are

us,min = ηs − 1

ηsκs + 1
, us,max = ηs + 1

ηsκs − 1
. (61)

For vanishing mph the well-known Volkv-Ritus expression is
recovered, namely, uV

s,min = 0 and

uV
s,max =

(
Es

m∗

)2

− 1. (62)

Finally, the phase-space factor (54) may be written as

δ4(sk + q − q ′ − k′)
d3q ′d3k′

q ′
0k

′
0

→ ηsdudϕ

(1 + u)2
. (63)
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Substituting (63) into (53) and summing over the polarization
of the outgoing photon, the rate is obtained

dW

dudϕ
=
∑

s

dWs

dudϕ
, (64)

dWs

dudϕ
= ηs

32π2q0(1 + u)2
× 1

2

∑
ε′

|Ms,ε′ |2. (65)

Notice that the matrix element is averaged over the polarization
ε′ of the emitted photon. The total rate is obtained by
integrating (64) with respect to u,ϕ in the range 0 < ϕ < 2π

and umin < u < umax. In order to return to the cgs unit system
the simple transformations m → mc2, mph → mphc

2, and
q → �q are carried out.

V. MATRIX ELEMENT CALCULATION

In the preceding section, a relation between the transition
amplitude and the particle wave function was established
(41). In the following, it is further evaluated and expressed
in terms of the initial quantities. Substituting the analytical
wave functions (28) into (41), we arrive at

iT = ie

∫
d4x(ε′μ)∗eiQ

[
qμ + q ′

μ

+
(

e(q · Acl)

(k · q)
+ e(q ′ · Acl)

(k · q ′)

)
kμ − 2eAcl

μ

]
, (66)

where the exponent argument is

Q ≡ (q ′ − q + k′) · x + α1 sin(k · x) − α2 cos(k · x) (67)

and the following quantities are introduced:

αi ≡ e(ai · q)

(k · q)
− e(ai · q ′)

(k · q ′)
, i = 1,2. (68)

It proves useful to rewrite the following expression, appearing
in the exponent argument:

α1 sin(k · x) − α2 cos(k · x) = z sin[(k · x) − φ0], (69)

with the definitions

z ≡
√

α2
1 + α2

2 (70)

and

φ0 ≡ tan−1(α1/α2). (71)

As shown below, the phase φ0 does not appear in the final
expression and therefore bears no physical meaning.

In order to carry out the integration, we take advantage of
the identity

[1, cos(k · x), sin(k · x)]eiz sin[(k·x)−φ0] =
∑

s

(B,B1,B2)eis(k·x),

(72)

where

B ≡ Js(z)eisφ0 , (73)

B1 ≡
(

s

z
Js(z) cos φ0 + iJ ′

s (z) sin φ0

)
eisφ0 , (74)

B2 ≡
(

s

z
Js(z) sin φ0 − iJ ′

s (z) cos φ0

)
eisφ0 , (75)

and Js(z) is the Bessel function. In terms of B,B1,B2, the
integration of (66) yields

iT = i
∑

s

Ms(2π )4δ4(q + sk − k′ − q ′), (76)

where the matrix element takes the form

iMs = ieε′
μ

[
(qμ + q ′μ)B − 2eB1a

μ

1 − 2eB2a
μ

2

+ e(a1 + a2) ·
(

q

k · q
+ q ′

k · q ′

)
kμ

]
(77)

and the expression for Acl
μ (26) was used. The next step is to

sum over the emitted photon polarization. For this purpose, we
introduce the quantity Mμ, defined by

M ≡ Mμε′μ. (78)

Due to the dispersion of the emitted photon, namely, k′2 =
0, one can apply the Ward identity [69] and therefore the
summation over the outgoing photon polarization is simplified
to ∑

ε′
|M|2 = −gμνMμM∗

ν, (79)

where gμν ≡ diag(1,−1,−1,−1) is the Minkowski metric.
Substituting (77) and (78) into (79), the final expression is
obtained (see Appendix B for details)

1

2

∑
ε′

|Ms,ε′ |2 = − 2e2J 2
s (z)

(
2m2

∗ + u − 3

2(u + 1)
s2m2

ph

)

+ 4e4a2

(
s2

z2
J 2

s (z) + J ′2
s (z)

)
. (80)

At the moment, the variable z (necessary to calculate the
matrix element) depends upon the unknown quantities

(k · q ′),(q ′ · a1),(q ′ · a2). (81)

Let us express (81) in terms of the Lorentz invariants

s,(k · q),(q · a1),(q · a2),u,ϕ. (82)

We start with k · q ′. Using (A1) from Appendix A, we simply
get

k · q ′ = sm2
ph + k · q

u + 1
. (83)

As for (q ′ · a1),(q ′ · a2), a parametrization of the vector
potential in the center-of-mass frame is required. We assume,
without loss of generality, that the momentum of the incoming
particle lies (in the laboratory frame) in the x-z plane. Hence,
in the center-of-mass frame a2 remains unchanged,

a2 = a(0,0,1,0), (84)

062105-6



NONLINEAR COMPTON SCATTERING IN A STRONG . . . PHYSICAL REVIEW A 94, 062105 (2016)

and by definition a2 · q = 0. In Appendix C, an expression for
a1 in the center-of-mass frame is derived

a1 = a
[
R0,

√
1 − R2

0

(
η2

s − 1
)2

,0,R0ηs

]
, (85)

where

R0 = q · a1

aEs

. (86)

Employing (84), (85), and (46), the evaluation of (q ′ · a1),(q ′ ·
a2) is straightforward

a2 · q ′ = −apout sin θ sin ϕ (87)

and

a1 · q ′ = apout

[
R0

√
1 +

(
m∗
pout

)
+ R0ηs cos θ

− sin θ cos ϕ

√
1 − R2

0

(
η2

s − 1
)]

. (88)

Plugging the above equations into (68), we obtain α1,α2:

α2 = eapout sin θ sin ϕ(1 + u)

k · q + sm2
ph

(89)

and

α1 = e(a1 · q)

k · q
− eapout(u + 1)

k · q + sm2
ph

[
R0

√
1 +

(
m∗
pout

)

+R0ηs cos θ − sin θ cos ϕ

√
1 − R2

0

(
η2

s − 1
)]

. (90)

To sum up, the final expression for the matrix element is (80),
where z is calculated using (70), (89), and (90).

In the above derivation, z depends on both u and ϕ, as
opposed to the Volkov-Ritus case (where it depends upon u

only). Notice, however, that under the condition q · a1 = 0,
we have R0 = 0 and the dependence on ϕ vanishes. The
expression for z simplifies to

z = eapout

sm2
ph + k · q

sin θ (1 + u). (91)

Employing (56), the angle θ may be written in terms of u:

sin θ (1 + u) =
√

Āsu2 + B̄su + C̄s (92)

with

Ās ≡ 1 − κ2
s η2

s , B̄s ≡ 2
(
κsη

2
s + 1

)
, C̄s ≡ 1 − η2

s . (93)

By equating the derivative of (92) with zero, one can readily
obtain the u value corresponding to the maximum of this
function

um
s = η2

s κs + 1

η4
s κ

2
s − 1

. (94)

By definition, the contribution of a given harmonic s is centered
around u = um

s . The substitution of (94) into (92) yields the
maximal value of this function

D̄s ≡ sin θ (1 + u)|max = ηs(ηsκs + 1)√
η4

s κ
2
s − 1

. (95)

VI. VOLKOV-RITUS LIMIT

The matrix element calculation being completed, a bench-
mark with an established result is valuable. For vanishing mph,
the quantum problem is identical to the one solved by Volkov.
Consequently, the results obtained in the previous section
should recover the familiar Volkov-Ritus formulas [44]. In
the following, this limit is explicitly worked out.

We start with expression for the matrix element derived
in the previous section (80). For mph = 0, the second term
vanishes and the familiar Volkov-Ritus expression for scalars
[44] is reproduced

1

2

∑
ε′

|Ms,ε′ |2V =−4e2J 2
s (z)m2

∗

+ 4e4a2

(
s2

z2
J 2

s (z) + J ′2
s (z)

)
. (96)

One can observe that the Volkov-Ritus matrix element (96)
is not very different from that obtained earlier (80). The
major difference, however, lies in the dependence of z on the
particle’s incoming momentum, as shown below.

Let us find z in the Volkov-Ritus limit. For a vanishing
mph we have ηs = 1, as can be seen from (58). Therefore, the
formula (90) for α1 simplifies to

α1 = eapout sin θ cos ϕ

k · q
+ e(a1 · q)

k · q

[
1 − (u + 1)pout

Es

×
√

1 +
(

m∗
pout

)2

+ (u + 1)pout cos θ

Es

]
. (97)

Using (A7) from Appendix A, the last term is rewritten

(u + 1)pout cos θ

Es

= (u + 1)

Es

(
q ′

0 − Es

1 + u

)
. (98)

Plugging (98) into (97), one can observe that the term in square
brackets in (97) is identically zero. Thus, z may be cast in the
form

z = eapout

k · q
sin θ (1 + u). (99)

From ηs = 1 we deduce that C̄s = 0 and therefore (92)
simplifies to

sin θ (1 + u) = 2Esm∗
E2

s − m2∗

√
u
(
uV

s,max − u
)
, (100)

where uV
s,max was defined in (62). The substitution of (52) and

(100) into (99) yields

z = eam∗
k · q

√
u
(
uV

s,max − u
)
. (101)

In the absence of mph, Eq. (36) implies that k · q is sim-
ply related to the quantum parameter, namely, χ = ea(k·q)

m3 .
Consequently, the familiar Volkov-Ritus expression is recov-
ered

z = ξ 2
√

1 + ξ 2

χ

√
u
(
uV

s,max − u
)
, (102)

where (1) and (33) were used as well.
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VII. CONTINUUM APPROXIMATION

As explicitly demonstrated in Sec. V, the emission spectrum
is composed of s → ∞ harmonics. As a matter of fact, the
number of harmonics with non-negligible probability depends
upon the nonlinearity parameter ξ . In the Volkov-Ritus rate,
for instance, the spectrum peak corresponds to s ∝ ξ 3 in the
strong-field regime, ξ � 1. If the emission spectrum consists
of a large number of overlapping harmonics, it becomes a
continuous function. In the following, we seek the continuous
limit of the rate obtained above (64), (65), and (80). For the
sake of simplicity, the discussion is limited to the case of q ·
a1 = 0, where the ϕ dependence vanishes and the expression
for z is simpler (91).

The essence of this approximation is the replacement of the
sum over the harmonics by an integral, i.e.,∑

s

→
∫

ds. (103)

As a result, (64), (65), and (80) take the form (after the
integration over ϕ)

dW

du
= m2e2

16πq0(1 + u)2

∫
ds ηsF (s,u), (104)

where

F ≡ − 2J 2
s (z)

(
2 + u − 3

2(u + 1)

s2m2
ph

m2

)

+ 4ξ 2

[(
s2

z2
− 1

)
J 2

s (z) + J ′2
s (z)

]
. (105)

In addition, the relation between a Bessel function with a large
index (s � 1) to the Airy function [70] is employed

Js(z) ≈
(

2

s

)1/3

Ai(y), (106)

where Ai(y) ≡ (1/π )
∫∞

0 dt cos(t3/3 + yt) and

y ≡
( s

2

)2/3
(

1 − z2

s2

)
. (107)

Let us write down the expressions appearing in (105) in terms
of y,(

s2

z2
− 1

)
J 2

s (z) =
(

2

s

)4/3
y

1 − (2/s)2/3y
Ai2(y) (108)

and

J ′2
s (z) =

(
2

s

)4/3

Ai′2(y)

√
1 − y

(
2

s

)2/3

. (109)

Since the emission is attributed mainly to z → s, we have
y( 2

s
)2/3 � 1 and therefore the root in (109) and the denomi-

nator in (108) may be approximated by 1. Finally, we obtain

F ≈ − 4

(
2

s

)2/3

Ai2(y) + 4

(
2

s

)4/3

ξ 2[yAi2(y) + Ai′2(y)].

(110)

The continuum approximation is applicable if the har-
monics overlap to create a continuous spectrum. In order to

FIG. 1. Bessel function Js(z) and its derivative J ′
s (z) for s = 1000.

formulate the continuum condition, a better understanding
of a single harmonic structure is required. The contribution
of a single harmonic, as derived above, is a function of the
corresponding Bessel function and its derivative Js(z),J ′

s (z).
The argument z is a function of u and one may prove that it
lies in the range 0 < z < zmax. In the Volkov-Ritus case, the
maximal value of z is

zV
max = s(1 − 1/2ξ 2), (111)

as was derived in [44]. For the present solution, (91), (92), and
(95) imply that zmax is given by

zmax = eapout

k · q + sm2
ph

ηs(ηsκs + 1)√
η4

s κ
2
s − 1

. (112)

One may show analytically that it always falls behind zV
max.

An illustration of the Bessel function for large s appears in
Fig. 1. As can be seen, the Bessel function and its derivative
vanish through most of the range 0 < z < s, but rise abruptly
near z = s. Hence, the contribution to the emission comes
from this region. Let us estimate the argument zr for which the
function starts rising. For this purpose, the relation between the
Bessel function and the Airy function (106) is invoked once
again. The Airy function is approximately zero if its argument
satisfies yr > 3. Accordingly, zr obeys

yr = 3 =
( s

2

)2/3
(

1 − z2
r

s2

)
. (113)

For the Bessel function plotted above (s = 1000), this estima-
tion yields zr = 976, in agreement with Fig. 1. Since for large
s we have zr ≈ s, a quantity measuring the distance between
zr and s is introduced

εr
s ≡ s − zr

s
. (114)

Substituting (114) into (113), εr
s is obtained

εr
s = 3

2

(
2

s

)2/3

. (115)
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The deviation of zmax with respect to s is denoted similarly by

εmax
s ≡ s − zmax

s
. (116)

Due to (111), the deviation of zV
max from s may be readily

obtained

εV
s ≡ s − zV

max

s
= 1

2ξ 2
. (117)

Having discussed the Bessel function behavior in the
relevant regime, the width of a given harmonic may be
readily obtained. The u values corresponding to the harmonic
boundaries satisfy the equation z(u) = zr . In terms of zmax, the
argument z given in (91) may be written as

z(u) = zmax

D̄s

√
Āsu2 + B̄su + C̄s . (118)

Employing (118), the equation for the harmonic boundaries
reads

Āsu
2 + B̄su + C̄s = D̄2

s

(
1 − εr

s

1 − εmax
s

)2

. (119)

Notice that zmax,zr were replaced by εr
s ,ε

max
s according to

Eqs. (115) and (116). The difference �us between the solutions
us,2,us,1 of (119), corresponding the harmonic width, is

�us = 1

Ās

√√√√B̄2
s − 4Ās

[
C̄s − D̄2

s

(
1 − εr

s

1 − εmax
s

)2
]
. (120)

With the above expression at hand, the continuum condition
may be quantitatively formulated. As mentioned before, the
spectrum is continuous if the harmonics overlap. It occurs
if the spacing between two neighboring harmonics is much
smaller than the harmonic width, i.e.,

�us

um
s+1 − um

s

� 1. (121)

The inequality (121) is harmonic dependent. In order to use
the continuum formula, (121) has to hold for all the harmonics
with non-negligible contribution to the spectrum.

Now let us show how, for vanishing mph, the expressions
derived above (104) and (110) recover the Volkov-Ritus
continuum approximation. In the Volkov limit, the maximal
value of the Bessel argument is (111), corresponding to
y = (u/2χ )2/3. Expanding y in the vicinity of this point, (107)
becomes (as was shown in [44])

y =
(

u

2χ

)2/3

[1 + ρ2], (122)

where the expansion parameter ρ is related to s by

ρ ≡ ξ

(
sχ

ξ 3u
− 1 − 1

2x2

)
. (123)

The substitution of (110) and (123) in (104) yields the Volkov-
Ritus continuum approximation

dW

du
= e2m2

2π3q0

∫
dρ

(u/2χ )1/3

(1 + u)2

×
{
−Ai2(y) +

(
2u

χ

)2/3

[yAi2(y) + Ai′2(y)]

}
. (124)

The expression above coincides with the rate of a particle in a
constant crossed field. It should be mentioned that in this case,
since the field frequency is assumed to go to zero, one may
replace q0 with �0 (see [44]).

VIII. COHERENCE TIME INTERVAL

In this work a periodic electric field with an infinite duration
is considered. In the following we discuss the realistic pulse
duration required for the buildup of the spectral structure of
the emitted radiation. In other words, we look for the effective
time interval over which the radiation is formed. Our analysis
closely follows the one presented by Ritus [44], with several
necessary modifications. For the sake of the argument, let us
perform the integration in (66) over the spatial coordinates
only (in the laboratory framework):

iT =
∫ ∞

−∞
dtM(t)e−i(q0−q ′

0−ω′)t δ(3)(q − q′ − k′), (125)

where

M(t) = (M1 + M2 cos ωt + M3 sin ωt)eiz sin(ωt−φ0) (126)

is a periodic function whose cycle is τ = 2π/ω and z is
given by (91). The coefficients M1,M2,M3 may be found in
Sec. V and bear no importance for the present discussion. As
explained in Sec. V, the evaluation of the integral yields an
infinite sum of energy-momentum-conservation δ functions
(77), each corresponding to a different number s of laser
photons participating in the process. We consider a given
harmonic s and seek the time interval over which it is
formed. According to the corresponding δ function, we have
q0 − q ′

0 − ω′ = −sω. As a result, (125) takes the form

iT =
∫ ∞

−∞
dtM(t)e−isωt δ(3)(q − q′ − k′). (127)

The integral (127), if performed over a single cycle, yields
the Fourier coefficient Ms . The summation over an infinite
number of cycles results in the δ function. Equation (127)
implies that the contribution to the emitted radiation is periodic
in time.

In the following we focus our attention on a single cycle. As
derived in Sec. V, Ms constitutes a combination of the Bessel
function and its first derivative (77). The same result may be
obtained by integration of (127) over a single cycle due to the
identity

Js(z) = ω

∫ τ/2

−τ/2
dtei(z sin ωt−sωt). (128)

Owing to the rapidly oscillating exponent argument, the main
contribution to the integral originates from a narrow interval
�tc around t = 0 (where the argument vanishes). This interval
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may be written [44] in terms of z,s as �tc = τ cosh−1(s/z).
Approximating z by zmax and using (116) one obtains �tc =
τ cosh−1[1/(1 − εmax

s )]. Since εmax
s < εr

s and according to
(115), we have εmax

s � 1 and hence �tc � τ as long as s � 1.
In the Volkov-Ritus case εV

s is given analytically by (117),
leading to �tc = τ/ξ [44]. An analogous analysis regarding
J ′

s (z) leads to the same result for �tc.
Let us discuss our findings. We have seen that the

contribution to the emission is periodic in time. However, for
ξ � 1, the emission of a given harmonic takes place over a
narrow time interval �tc rather than the entire cycle. This
interval, over which the radiation is formed, is termed the
coherence time interval. Since the coherence time interval
is much shorter than a single cycle (�tc � τ ), the emission
process may be regarded as instantaneous. Namely, it does not
depend on the temporal history of the EM field. However,
this argument applies only in the continuum limit for the
following reason. On account of the finite integration interval
�tc, the energy-momentum-conservation δ function becomes
a sinc function with a spectral width �ω′ ≈ 1/�tc. Since
the coherence interval obtained above is much shorter than
τ , we have �s � 1, where �s = �ω′/ω is the number of
harmonics included in the interval �ω′. As a result, the
approximated Fourier transform (125) of M(t) in the vicinity
of ω′ = q0 − q ′

0 + sω consists also of contributions from �s

neighboring harmonics. Consequently, limiting the integration
to the coherence interval yields satisfactory results for the
spectrum only if it changes over an energy scale much
greater than �ω′ = ω�s. This requires the fulfillment of the
following conditions. First, the harmonics should overlap,
i.e., the continuous approximation should hold. Second, the
uncertainty �s should be smaller than the number of absorbed
laser photons, i.e., �s � s. In the Volkov case this relation is
automatically satisfied since �s ≈ ξ and s ≈ ξ 3. In our case
this condition should be verified numerically for the particular
physical parameters under consideration.

As a consequence of the above discussion, the results
obtained in this paper are valid even for a few-cycle pulse
provided �s � s and the continuum approximation is valid.
Beyond this regime, our analysis is adequate only for a long
pulse containing tens of cycles at least.

IX. EMISSION SPECTRUM

In the previous sections, the rate W was calculated as
a function of the invariant dimensionless variables u,ϕ. In
practice, we are interested in the spectrum of the emitted
power P as a function of the outgoing photon energy ω′. In
the following, the transformation between these quantities is
discussed. Since the numerical results appearing in this work
were calculated for problems without a ϕ dependence (see the
following section), it is omitted from this discussion as well.
The emitted power spectrum is given by

dP

dω′ =
∑

s

ω′ dWs

dω′ =
∑

s

ω′ dWs

du

du

dω′ . (129)

The relation between u and ω′ stems from the definition (55),

u = ω′

Elab
s − ω′ , (130)

where Elab
s = q lab

0 + sω = ω′ + q lab
0

′
is the total energy in the

laboratory frame. The derivative is given by

du

dω′ = 1

Elab
s − ω′ + ω′(

Elab
s − ω′)2 = Elab

s(
Elab

s − ω′)2 , (131)

where the derivative of Elab
s with respect to ω′ vanishes. If

q lab
0 � sω for all the harmonics with non-negligible contri-

bution to the spectrum, which holds for our calculation, the
energy Elab

s is the same for all the harmonics. As a result,
ω′ du

dω′ may be extracted from the summation over s,

dP

dω′ = ω′(
q lab

0 − ω′)2

dW

du
. (132)

This is the final expression relating dW/du obtained earlier to
the actual measurable spectrum dP/dω′.

To conclude the analytical part of the paper, let us
summarize the final expressions obtained so far. The emission
probability is given by (64) and (65), the matrix element is
given by (80), and the variable z is calculated using (70), (89),
and (90). In the continuum approximation, these expressions
are replaced by (110), (104), (107), and (91). The relation
between the emission probability and the spectrum in the
laboratory frame was obtained in this section, Eq. (132).

X. NUMERICAL RESULTS

A. Optical laser

In the following the radiation emitted by an electron
interacting with a rotating electric field (in the laboratory
frame) is numerically investigated. The field vector potential
is given by (26) and the wave vector is klab = (mph,0,0,0)
(see Sec. III for details). It yields a homogenous electric
field rotating in the x-y plane with frequency ω = mph. As
discussed in Sec. II, it approximates the field in the vicinity of
the antinode of a standing wave created by counterpropagating
beams. The electron initial asymptotic momentum takes the
form plab = (p0,0,0,pz) and the corresponding quasimomen-
tum q is related to the asymptotic momentum by (29). The
electron initial momentum was chosen to be perpendicular
to the field plane in order to avoid dependence on ϕ [since
q · a1 = q · a2 = 0; see Eq. (91)]. The laser photons energy
is ω = mph = 1.6 eV, corresponding to Ti:sapphire laser. The
intensity was chosen to be the present-day record [26], I =
1022 W/cm2, leading to a normalized amplitude of ξ = 50.

In Figs. 2 and 4–7 the emitted photon spectrum is presented
for several asymptotic momentum values. The solid line
corresponds to our solution and was calculated by (64), (65),
and (80). It should be mentioned that for the parameters of
Figs. 2, 4, and 5 the continuum approximation (104), (110), and
(91) is adequate and gives exactly the same spectrum as the full
calculation. Our reference model (represented by the dashed
line) is the Volkov-Ritus rate in the constant crossed field limit
(124) and (102). As discussed in the Introduction, this model
is commonly assumed to be adequate for an arbitrary field
configuration given that (5) is satisfied, which holds in the
cases under consideration. The evaluation of (124) requires
three quantities: χ , ξ , and �0. The quantity �0 is taken from
(35) and χ is given in (36). Since the configuration considered
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FIG. 2. Spectral emission according to our solution (solid curve)
and the Volkov-Ritus rate (dashed curve) for ξ = 50, ω = 1.6 eV, and
plab = (0,0,1000 m).

here satisfies Acl ′ · p = 0, the quantum parameter takes the
simplified form

χ = ea(k · q)

m3
. (133)

Notice that even though �μ is time dependent, χ is constant
in time and changes only due to the emission process.

Figure 2 shows the emitted spectrum for plab
z = 1000 m.

Namely, the electron is accelerated towards the laser with an
energy of 0.5 GeV. Such conditions may be achieved either
by a standard accelerator (such as SLAC [71]) or by a laser-
plasma accelerator [40]. Since this configuration parameters
correspond to χ = 0.15, it lies in the quantum regime. The
two models coincide for soft outgoing photons (<30 MeV)
but for higher energies the present model decreases much
faster. Specifically, the spectrum corresponding to the present
solution dies out at ω′

∗ ≈ 100 MeV, while for the Volkov-Ritus
case we have ω′V

∗ ≈ 300 MeV. The asterisk stands for the cut-
off energy, meaning that the emission for ω′ > ω′

∗ is negligible
(roughly speaking, less than 1% of the spectrum peak value).
Moreover, the total emitted power is P = 1.1 × 1022 eV/s and
P V = 2.5 × 1022 eV/s, respectively, namely, twice larger for
the Volkov-Ritus calculation.

In order to account for the spectral difference exhibited in
Fig. 2, we seek a theoretical estimation for the cutoff harmonic
s∗. In Sec. VII we have seen that the Bessel function of a
given index s goes to zero if its argument z satisfies z < zr =
s(1 − εr

s ). As a result, if the maximal argument of a given s,
zmax = s(1 − εmax

s ), is smaller than zr , the contribution of this
harmonic should be negligible. This insight enables us to write
down the cutoff condition εmax

s = εr
s satisfied by the cutoff

harmonic s∗. Figure 3 shows the dependence of εr
s , εmax

s , and
εV
s on the harmonic index s for the same physical parameters.

According to the intersection points, one can deduce the cutoff
harmonic: s∗ ≈ 2.3 × 105 for our present model and sV

∗ ≈
1.3 × 106 for the Volkov-Ritus case.

Now let us calculate the energy ω′
∗ corresponding to this

harmonic and compare it with the one inspected from the

FIG. 3. Dimensionless quantities εmax
s , εr

s , and εV
s as a function of

the harmonic index s. The solid line stands for εmax
s , representing the

normalized deviation of the Bessel argument zmax from s and given
in (116). The dashed line stands for εr

s , representing the normalized
deviation of the Bessel argument zr from s and given in (115). The
dot-dashed line stands for εV

s , representing the normalized deviation
of the Bessel argument zV

max from s and given in (117).

numerical spectrum exhibited in Fig. 2. For this purpose,
several quantities have to be evaluated: Es∗ = 62.3 m, κs∗ =
4.6, and ηs∗ = 1.001, where Eqs. (48), (57), and (60) were
used. It allows us to calculate the u value for which this
harmonic contributes (94), namely, um

s∗ ≈ 0.27. Plugging it
into (131), one finds that the spectrum should die out at
ω′

∗ ≈ 110 MeV. An analogous procedure for the Volkov-Ritus
model yields κs∗ = 1.67, um

s∗ = 1.5, and thus ω′V
∗ ≈ 305 MeV.

Both estimations are in excellent agreement with the numerical
calculation of Fig. 2.

According to the numerical calculation, this effect (i.e.,
a lower cutoff for the present model spectrum) decreases
for increasing asymptotic momentum. The spectra of the
two models coincide for pz > 1.5 × 104 m. In the following
the opposite limit is explored; the asymptotic momentum is
gradually reduced to nonrelativistic values.

In Fig. 4 the momentum is equal to the field amplitude, i.e.,
plab

z = 50 m. This case is of special interest as it is the maximal
momentum possible if the particle is accelerated by the field
itself (without using an external accelerator). The difference
between the models is analogous to the one appearing in Fig. 2
but more pronounced: Now the total emitted power is P =
0.15 × 1020 eV/s and P V = 2.3 × 1020 eV/s and the cutoff is
ω′

∗ = 200 keV and ω′V
∗ = 4000 keV, respectively. Notice that

due to the lower asymptotic momentum, the spectral cutoff
and the emitted power of both models are reduced orders of
magnitude compared to those in Fig. 2.

In Fig. 5 the incoming momentum is an order of magnitude
smaller than the field amplitude (plab

z = 5 m). The total emitted
power is P = 0.06 × 1020 eV/s and P V = 1.17 × 1020 eV/s
and the cutoff is ω′

∗ = 75 keV and ω′V
∗ = 2000 keV, respec-

tively. That is to say, the emitted power corresponding to the
present solution is lower by a factor of 20 than the power
predicted by the Volkov-Ritus model. It can be seen that as
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FIG. 4. Spectral emission according to our solution (solid curve)
and the Volkov-Ritus rate (dashed curve) for ξ = 50, ω = 1.6 eV, and
plab = (0,0,50 m).

compared to Fig. 4, the spectral shape and the maximum value
of dP/dω′ remain the same for both models. The difference
is in the lower cutoff and, as a result, the total emitted power.
The reason lies in the lower value of k · q and therefore of χ .

In Fig. 6 the incoming momentum is decreased even lower
(plab

z = 0.01 m), giving rise to an interesting phenomenon.
The harmonics width becomes smaller than the spacing
between following harmonics and consequently the spectrum
is no longer continuous but takes a comblike structure. It
corresponds to the breakdown of the continuum condition
derived in Eq. (121).

In the following we suggest two qualitative explanations for
this phenomenon. The classical one is that for negligible pz

values, the electron motion follows the vector potential, as can
be inferred from (35). Consequently, the motion is circular. In
this case, as was found long ago by Schott, the particle radiates

FIG. 5. Spectral emission according to our solution (solid curve)
and the Volkov-Ritus rate (dashed curve) for ξ = 50, ω = 1.6 eV, and
plab = (0,0,5 m).

FIG. 6. Spectral emission according to our solution (solid curve)
and the Volkov-Ritus rate (dashed curve) for ξ = 50, ω = 1.6 eV, and
plab = (0,0,0.01 m).

discrete harmonics [72,73]. It may also be readily seen from
the energy-momentum conservation (43). In the classical case
q · q ≈ q · q ′. Therefore,

sq · k = q · k′. (134)

Writing the above equation in the laboratory frame, one obtains

ω′ = sωq lab
0

q lab
0 − |q|lab cos γ

≈ sω, (135)

where γ is the angle between q′ and k′ in the laboratory
frame. Since the second term in the denominator is negligible
with respect to the first, the emitted harmonics are simply
multiplication of the original one.

From the quantum point of view, we have seen in Sec. IV
that in the center-of-mass frame the angle of the outgoing
photon may get any value, but its energy has a certain
value k′

0. Transforming to the laboratory frame of reference,
different emission angles correspond to different Lorentz
transformations, giving rise to an energy spread. As a result,
the closer the laboratory frame is to the center-of-mass frame
of a given harmonic, the narrower its width is. This condition
is achieved by lowering the incoming momentum pz.

Figures 7 and 8 are zoomed-in presentations of Fig. 6 in
different spectral regions. Figure 7 shows a range of 8 eV in
the soft part of the spectrum and Fig. 8 shows the same range
near the peak. They demonstrate that the harmonics width is
extremely small for low-energy photons and increases with the
photon energy, in accord with the explanation above.

B. X-ray laser

In this section another possible experimental setup is
discussed. The optical laser is replaced by an x-ray laser with
the parameters of the LCLS x-ray free-electron laser facility
[31], i.e., I = 4 × 1020 W/cm2 and ω = mph = 10 keV cor-
responding to ξ = 2 × 10−3. Due to the small value of ξ ,
the emission involve only the two first harmonics and the
continuum approximation could not be used. As a result, the
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FIG. 7. Zoom in of Fig. 6 in the range 161–169 eV.

constant crossed field condition (5) is not satisfied and the
Volkov-Ritus model is inapplicable in a rotating electric field
even according to the Nikishov-Ritus assumption described
in the Introduction. Nevertheless, in the absence of any
other adequate model, it is used as a reference for our
prediction. Consequently, the Volkov-Ritus rate was calculated
by employing the full expression (104), (96), and (102) instead
of the continuum expression used for the optical laser above.

Figure 9 compares the emission predicted by the present
solution to the Volkov-Ritus one for nonrelativistic asymptotic
momentum plab

z = 10−4 m. According to (59), (57), and (94),
the first and second harmonics correspond to um

s = 0.01,0.02,
respectively. Hence, the scattering is in the weakly quantum
regime [see the discussion below Eq. (55)]. The energy
contained under the curves is roughly identical, as opposed
to the optical laser calculations above. The difference in this
case lies in the width of the harmonics. The mechanism
behind the narrowing is the same as that encountered in
Figs. 6–8. The second harmonic is of special interest for several
reasons. First, the width differences are more pronounced for
this harmonic. Second, it stems from the nonlinearity of the

FIG. 8. Zoom in of Fig. 6 in the range 32–32.008 keV.

FIG. 9. Spectral emission according to our solution (solid curve)
and the Volkov-Ritus rate (dashed curve) for ξ = 2 × 10−3, ω =
10 keV, and plab = (0,0,10−4 m).

interaction and could be seen for strong fields only. Third, a
measurement of the second harmonic under similar conditions
was recently demonstrated [74]. It should be stressed that our
result could not be compared with this specific experiment
since it was not carried out in a standing wave. However, it
shows that an experimental test of our calculation is possible
with present-day facilities. The advantage of this experimental
setup over the former one (the optical laser) is that the quantum
regime can be achieved without an external accelerator.

XI. CONCLUSION

In this article the nonlinear Compton scattering rate in a
rotating field was investigated. For the sake of this purpose,
we employed an analytical solution to the Klein-Gordon
equation describing a particle in the presence of this field
configuration, recently derived by the present authors [58]. A
closed analytical expression for the relevant matrix element
was obtained in Eq. (80).

Furthermore, we have shown that for strong fields (ξ � 1)
and initial asymptotic momentum satisfying the condition
(121), the spectrum may be approximated by a continuous
function instead of discrete harmonics sum. This is a gen-
eralization of the familiar continuum approximation of the
Volkov-Ritus rate [2]. The final expression (104) and (110) is
easy to calculate and may be employed in kinetic laser-plasma
calculations.

Numerical calculations of the emitted photon spectrum
according to the present rate were carried out and compared
with the Volkov-Ritus rate. Physical parameters correspond-
ing to the state-of-the-art facilities of both optical lasers
(I = 1022 W/cm2 and ω = 1.6 eV) and XFEL lasers (I =
4 × 1020 W/cm2 and ω = 10 keV) were chosen.

In the first case (optical laser), the Volkov-Ritus rate reduces
to the constant crossed field rate, frequently used in QED PIC
simulations. The following points arise from the comparison.

(i) The deviation between our expression and the Volkov-
Ritus one in the total emitted power grows for decreasing
incoming particle asymptotic momentum plab

z and amounts
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to a factor of 20. In addition, the spectrum cutoff energy is
considerably lower for our present solution. As an explanation
for this phenomenon, a semianalytical way to determine the
cutoff energy was suggested and achieved good agreement
with the calculated spectrum. The discrepancy between our
model and the Ritus-Volkov one decreases for increasing plab

z .
The value above which both models coincide was found by
numerical means.

(ii) For plab
z � ea the energetic width of the harmonics

that compose the spectrum falls beneath the spacing between
them. As a result, the spectrum structure becomes comblike, as
opposed to the continuous shape of the Volkov-Ritus rate under
these conditions. An intuitive explanation for the discrepancy
was suggested. This phenomenon is clear evidence of the
imprint of the rotating frequency on the emission spectrum,
as opposed to the constant field paradigm.

In the second case (x-ray laser), the emitted power ac-
cording to the models under consideration was approximately
equivalent. However, the present solution predicted much
narrower harmonics. The mechanism behind this narrowing
is the same as for the optical laser. The importance of the x-ray
laser setup stems from the fact that it does not require high
asymptotic momentum. As a result, it enables experimental
verification of our model in the quantum regime without using
an accelerator (as opposed to the optical laser setup).

To conclude, the above calculations may be experimentally
tested for present-day laser systems. In addition, they may be
of great importance in the context of PIC QED calculations of
the QED cascade mechanism assumed to be measurable for
the next-generation laser facilities.

APPENDIX A

In the following the relation (56) between u and cos θ is
explicitly derived. Substituting k′ from the energy-momentum
conservation (43) into the definition of u (55), we arrive at

u = sm2
ph + k · q

k · q ′ − 1. (A1)

Let us write down the explicit expression for u in the center-
of-mass frame. Using (44) and (45), the numerator reads

k · q + sm2
ph = k0q0 + p2

in/s + sm2
ph. (A2)

Since k2
0 = (pin/s)2 + m2

ph, the former equation becomes

k · q + sm2
ph = k0q0 + sk2

0 . (A3)

Employing the relation Es = sk0 + q0, we find

k · q + sm2
ph = k0Es. (A4)

We substitute (A4) into (A1) and evaluate k · q ′ using (46).

u = sk0Es

sk0q
′
0 − pinpout cos θ

− 1. (A5)

In terms of ηs [defined in (58)] it becomes

u = ηsEs

ηsq
′
0 − pout cos θ

− 1. (A6)

Hence, cos θ can be obtained in terms of u,

cos θ = ηs

pout

(
q ′

0 − Es

1 + u

)
. (A7)

Substituting the expression (52) for pout and using the identity

q ′
0 =

√
p2

out + m2∗ = E2
s + m2

∗
2Es

, (A8)

we find

cos θ = ηs

(
κs − κs + 1

1 + u

)
, (A9)

where κs was defined in (57).

APPENDIX B

This Appendix is dedicated to the derivation of the matrix
element expression (80). Substituting (77) into (79), we have

1

2

∑
ε′

|M|2

=−2e2B2(m2
∗ + q · q ′) + 2Bk · (q + q ′)

× [ᾱ1Re(B1) + ᾱ2Re(B2)] − 4eB(q + q ′)

× [a1Re(B1) + a2Re(B2)]

− 4e4a2(|B1|2 + |B2|2) + e|ᾱ1B1 + ᾱ2B2|2m2
ph, (B1)

where Re denotes real part and the following definition is used:

ᾱi ≡ e(ai · q)

(k · q)
+ e(ai · q ′)

(k · q ′)
, i = 1,2. (B2)

It should be mentioned that since Mμ ∝ eisφ0 , this constant
exponent does not contribute to M2 and thus may be omitted.
As a result, B is real (while B1,B2 remain complex).

Before starting, let us examine the last term in Eq. (B1). It
is of the same order of magnitude as the quantity δ assumed to
be small in the present wave-function derivation (see Sec. III)
and thus may be neglected. In order to simplify (B1), the term
k · (q + q ′)ᾱ1 is further worked out

k · (q + q ′)ᾱ1 = e(a1 · q) + e(a1 · q ′)

+ e(a1 · q)
k · q ′

k · q
+ e(a1 · q ′)

k · q

k · q ′ , (B3)

where the explicit formula (B2) for ᾱ1 was used. Due to the
algebraic identities

k · q

k · q ′ = 1 + k · (q − q ′)
k · q ′ , (B4)

k · q ′

k · q
= 1 − k · (q − q ′)

k · q
, (B5)

Eq. (B3) becomes

k · (q + q ′)ᾱ1 = 2e(a1 · q) + 2e(a1 · q ′) − α1(q − q ′), (B6)

where α1 was defined in Eq. (68). Analogously, we have

k · (q + q ′)ᾱ2 = 2e(a2 · q) + 2e(a2 · q ′) − α2(q − q ′). (B7)
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Substituting (B6) and (B7) into (B1), several terms cancel out
and we are left with

1

2

∑
ε′

|M|2 = −2e2B2(m2
∗ + q · q ′) − 4e4a2(|B1|2 + |B2|2)

+ 2eB(q − q ′)[Re(B1)α1 + Re(B2)α2]. (B8)

By virtue of the identity [44]

α1B1 + α2B2 = sB, (B9)

we obtain

1

2

∑
ε′

|M|2 = −2e2B2(m2
∗ + q · q ′) − 4e4a2(|B1|2 + |B2|2)

+ 2e2sB2k · (q − q ′). (B10)

Employing (83) we have

k · (q − q ′) = uk · q + sm2
ph

u + 1
. (B11)

As a result, the matrix element becomes

1

2

∑
ε′

|M|2 = −2e2B2(m2
∗ + q · q ′) − 4e4a2(|B1|2 + |B2|2)

+ 2e2sB2
uk · q + sm2

ph

u + 1
. (B12)

In order to proceed, let us express q · q ′ in terms of u.
Multiplying (43) by q ′, we obtain

q · q ′ = m2
∗ + k′ · q ′ − sk · q ′. (B13)

The center-of-mass energy may be written in terms of the
outgoing 4-momenta

E2
s = (k′ + q ′)2 = m2

∗ + 2k′ · q ′. (B14)

Therefore, k′ · q ′ reads

k′ · q ′ = E2
s − m2

∗
2

. (B15)

The substitution of (B15, 83) into (B13) yields

q · q ′ = E2
s + m2

∗
2

− s2m2
ph + s(k · q)

u + 1
. (B16)

With the aid of (B16), we get

1

2

∑
ε′

|M|2 = −2e2B2

(
2m2

∗ + u − 3

2(u + 1)
s2m2

ph

)

− 4e4a2(|B1|2 + |B2|2). (B17)

Plugging B,B1,B2, defined in (73)–(75), into (B17), we obtain
the final expression

1

2

∑
ε′

|Ms,ε′ |2 = −2e2J 2
s (z)

(
2m2

∗ + u − 3

2(u + 1)
s2m2

ph

)

+ 4e4a2

(
s2

z2
J 2

s (z) + J ′2
s (z)

)
. (B18)

APPENDIX C

In this Appendix an expression for the component a1 of the
vector potential [defined in (21)] in the center-of-mass frame
is obtained. The most general expression is

a1 = a(R0,R1,0,R3). (C1)

For the moment, R0,R1,R3 are unknown. Fortunately, a1 is
known to obey several identities and thus relations between
these coefficients may be deduced. Since a1 · k = 0 we have

R3 = R0
ω

kz

= R0ηs. (C2)

Due to a1 · a1 = −a2 we have

R1 =
√

1 − R2
0

(
η2

s − 1
)
. (C3)

Hence, (C1) takes the form

a1 = a
[
R0,

√
1 − R2

0

(
η2

s − 1
)
,0,R0ηs

]
. (C4)

The final step is to obtain R0 in terms of the known quantity
q · a1. For this purpose, we write q · a1 in the center-of-mass
frame

q · a1 = aR0(q0 + sω) = aR0Es. (C5)

Therefore,

R0 = q · a1

aEs

. (C6)
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