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The phase-space description of bosonic quantum systems has numerous applications in such fields as quantum
optics, trapped ultracold atoms, and transport phenomena. Extension of this description to the case of fermionic
systems leads to formal Grassmann phase-space quasiprobability distributions and master equations. The latter are
usually considered as not possessing probabilistic interpretation and as not directly computationally accessible.
Here, we describe how to construct c-number interpretations of Grassmann phase-space representations and their
master equations. As a specific example, the Grassmann B representation is considered. We discuss how to
introduce c-number probability distributions on Grassmann algebra and how to integrate them. A measure of size
and proximity is defined for Grassmann numbers, and the Grassmann derivatives are introduced which are based
on infinitesimal variations of function arguments. An example of c-number interpretation of formal Grassmann
equations is presented.
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I. INTRODUCTION

The phase-space approach to quantum mechanics has
proved to be invaluable tool in such fields as quantum
optics and trapped ultracold atoms [1–4]. This approach
allows one to calculate quantum observable properties as
averages of classical quantities over certain quasiprobability
distributions. At the same time, the full quantum evolution
often takes the form of a simple Fokker-Planck equation for
these quasiprobability distributions. The latter property turns
phase-space techniques into a stochastic simulation tool which
was used to conduct Monte Carlo calculations of a number of
full many-body problems [1–4].

When extending phase-space techniques to the case of
fermions, a fundamental limitation is faced due to anticom-
mutation of fermionic canonical variables. Because of this,
the corresponding canonical operators cannot have c-number
eigenvalues except zero. As a consequence, it is impossible to
construct c-number quasiprobability distributions for them.

There are several approaches to this problem, e.g., consider
pairs of fermionic canonical operators [5–7]. However, the
most formal, nonclassical, and elegant one is to change the
notion of number [8]. Fermionic canonical operators can have
nonzero eigenvalues if we consider these eigenvalues as anti-
commuting numbers, which are conventionally called Grass-
mann numbers (hereinafter, the term “Grassmann number”
will be abbreviated as “g number”). This way it is possible to
develop phase-space representations for fermions which bear
remarkable analogy to bosonic ones [9]. In particular, there are
Grassmann quasiprobability distributions of the same types:
P,B,Q functions, s-ordered representations [9–11], and also
Wigner functions [12]. Moreover, their master equations also
look quite similar to the bosonic case. For example, in the case
of real-time quantum dynamics with pairwise interactions, it is
possible to derive a master equation which looks similar to the
Fokker-Planck equation for positive-P distribution [10,11].

Nevertheless, there is an important difference: all fermionic
quasiprobability distributions are g numbers. Grassmann
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numbers are dramatically different from c numbers: the latter
are simple and the most basic things. However, the g number is
not simple: it may carry the structure of a many-body correlated
state. Every g number defines a hierarchy of n-point functions,
just as the physical state defines a hierarchy of correlations.

Because of this complexity, Grassmann phase-space meth-
ods are usually considered as not possessing probabilistic
interpretation and as not directly computationally accessible
[6,7,13]. At the same time, there are published works in
which c-number stochastic unravelings are constructed for
Grassmann master equations [10,11]. These findings raise a
number of questions. First, the possibility of stochastic un-
raveling means that the Grassmann representations are in fact
equivalent to certain c-number quasiprobability distributions,
with their own correspondence rules for observables, quantum
states, and evolution equations. Second, in the work [11] there
exists controversy with the earlier paper [10]. This means
that the nature of this stochastic unraveling is not completely
understood.

The goal of this work is to clarify these questions:
to describe the classical phase-space representations which
emerge in these stochastic unravelings and to find its physical
interpretation. We also investigate how to apply the Grass-
mann phase-space representations in order to describe open
fermionic systems which are coupled to reservoirs.

For the purpose of this work, we choose a particu-
lar g-number phase-space method, i.e., the Grassmann B

representation [10,11,14], because currently it is the only
method whose master equations were stochastically unraveled.
This representation is the analog of the Drummond-Gardiner
positive-P representation [15]. However, we believe that
the techniques we describe can be applied to find classical
probability interpretations of other g-number representations.

In Sec. II, we begin with a brief exposition of Grassmann
B representation. We discuss its physical interpretation as a
description of the quantum system’s state as a hole excitation
of a certain filled Fermi sea of states. A fermionic analog of
optical equivalence theorem is derived. Next, we construct
probability and stochastic calculus on Grassmann algebra. In
order to accomplish this, in Sec. III we discuss such notions as
the function of an arbitrary g number, the proximity and size of
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a g number, Grassmann derivatives based on an infinitesimal
variation of the function argument, and probability distribution
on Grassmann algebra and its integral. In Sec. IV, we discuss
how to introduce c-number probability distribution into the
Grassmann B representation. It turns out that there are two
ways of doing it. Physically, the first way corresponds to a
fixed hole excitation in a stochastically moving Fermi sea. In
Sec. V, the second way is considered, which corresponds to
the opposite description in terms of stochastic hole excitation
on top of a fixed Fermi sea. It is shown that evolution
of the emerging quasiprobability distributions is governed
by the Fokker-Planck equation (for systems with pairwise
interactions). The corresponding equations for the stochastic
Fermi sea are found to coincide with that derived in [11]. A
question of how to apply the Grassmann phase-space approach
to fermionic open quantum systems coupled to a reservoir is
considered in Sec. VI. We discuss the results of this work in
Sec. VII.

II. GRASSMANN B REPRESENTATION

The close g-number analog of Drummond-Gardiner
positive-P representation [15] is the Grassmann B represen-
tation, which was introduced in works [10,11]. In this section,
we briefly review the main results about the B representation
according to the literature and discuss its physical meaning.

A. Definition of representation and its physical content

Suppose we have a fermionic system with M modes (single-
particle states). For each mode j , there are associated creation
â
†
j and annihilation âj operators. The state of the quantum

system is described by density operator ρ̂. Strictly speaking, a
physical density operator should be number conserving and it
can be written in the following form [9]:

ρ̂ =
∑
N�0

�N (̂a†)|0p〉〈0p|�†
N (̂a). (1)

Here, â† = (̂a†
1, . . . ,̂a

†
M ) is a vector of creation operators. The

N -particle wave function �N (̂a†) is a homogeneous function
of the order of N ,

�N (̂a†) =
∑

i1,...,iN

�(i1, . . . ,iN )̂a†
i1
, . . . ,̂a

†
iN

. (2)

However, in order to facilitate the description of superconduc-
tivity and superfluidity phenomena, a relaxed non-number-
conserving form of the density operator is considered,

ρ̂ =
∑

l

�p;l (̂a†)|0p〉〈0p|�†
p;l (̂a), (3)

where now �p;l (̂a†) are either even or odd polynomials in
â
†
j . The polynomials of undefined parity are prohibited [9].

Hereinafter, we will deal only with density operators of this
class, and we will refer to them as the “physical density
operators.” The subscript p in Eq. (3) means “related to particle
picture.”

A Bargmann coherent state is defined as [10,11]

|e〉 = exp

⎛⎝−
∑

j

ej â
†
j

⎞⎠∣∣0p
〉
, (4)

where ej is a Grassmann number and |0p〉 is a particle vacuum
(when each mode is empty). The required basic notions of
Grassmann calculus and the explanation of notation we employ
may be found in Appendix A. An overview of “practical”
Grassmann calculus is also given in [9]. The utility of coherent
states is based on the fact that annihilation and creation
operators act upon them as

âj |e〉 = ej |e〉, â
†
j |e〉 = −−→

∂ j |e〉 = |e〉←−∂ j , (5)

where
−→
∂ j and

←−
∂ j are the usual left and right Grassmann

derivative operators with respect to element ej [9].
Analogously to the bosonic Glauber-Sudarshan P repre-

sentation [16,17], we can expand the density operator ρ̂ over
the diagonal coherent state projections [10,11],

ρ̂ =
∫

de∗
1 . . . de∗

MdeM . . . de1ρh(e,e∗)|e〉〈e∗|. (6)

Here, 〈e∗| = (|e〉)† = 〈0p| exp (−∑
j âj e

∗
j ). The expansion

coefficient ρh(e,e∗) is a g number and it is called the
Grassmann B function of operator ρ̂. We will omit the
word “Grassmann” and refer to it just as the “B function.”
Hereinafter, we will employ the following notation: for
arbitrary (physical) operator ô, its B function will be denoted
as oh(e,e∗). For compound operator expressions, e.g., âô, their
B functions will be denoted as {̂aô}h(e,e∗). From the results
of [11], it follows that ρh(e,e∗) always exists, is an even g

number for physical operators, and is unique. The subscript h
means “related to hole picture,” as we will now illustrate.

Let us discuss the physical content of the representation
given by Eq. (6). There is a particle-hole duality in the
description of fermion systems. This means that we can
introduce a hole vacuum (when every mode is filled),

|0h〉 = â
†
1 . . . â

†
M |0p〉, (7)

and with respect to this state, the density matrix assumes the
form

ρ̂ =
∑

l

�h;l (̂a)|0h〉〈0h|�†
h;l (̂a

†), (8)

where again �h;l (̂a) are either even or odd polynomials in âj .
The B function in Eq. (6) is related to the hole representation
given by Eq. (8):

ρh(e,e∗) =
∑

l

�h;l(e)�†
h;l(e

∗). (9)

This can be proven by inserting the form (9) into the expansion
given by Eq. (6) and evaluating the resulting Grassmann
integrals. In other words, for a given filled sea of states
j = 1, . . . ,M , the B function is obtained by representing the
density operator as a hole excitation and then by substituting
each creation or annihilation operator with a corresponding g

number.
This physical picture allows one to directly write B

functions without calculations. For example, consider a system
of free thermal fermions in a grand-canonical ensemble with
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chemical potential μ, inverse temperature β, and occupying
M states with energies εk . Each mode is filled with probability

〈nj 〉 = 1

eβ(εj −μ) + 1
, (10)

and a hole (represented by ej e
∗
j ) is excited with probability

1 − 〈nj 〉. Therefore, we have

ρh(e,e∗) =
∏
j

[〈nj 〉 + (1 − 〈nj 〉)ej e
∗
j ] (11)

for the normalized grand-canonical density operator.
We can also define the B function for the density operator

in the particle picture. In order to accomplish this, we define a
hole Bargmann coherent state,

|e〉′ = exp

⎛⎝−
∑

j

ej âj

⎞⎠|0h〉 =
M∏

j=1

(̂a†
j − ej )|0p〉,

(12)
which is the unnormalized displaced fully occupied state. It
was introduced in [9] and has the properties

â
†
j |e〉′ = ej |e〉′, âj |e〉′ = −−→

∂ j |e〉′ = −|ej 〉′←−∂ j . (13)

We expand the density operator over the diagonal hole-
coherent-state projections,

ρ̂ =
∫

de∗
1 . . . de∗

MdeM . . . de1ρp(e,e∗)|e〉′〈e∗|′. (14)

Here 〈e∗|′ = (|e〉′)†; the expansion coefficient ρp(e,e∗) will
also be called the B function. Again, by a direct calculation of
Grassmann integrals, it can be shown that ρp(e,e∗) corresponds
to the density operator ρ̂ in the particle picture given by Eq. (3):

ρp(e,e∗) =
∑

l

�p;l(e)�†
p;l(e

∗). (15)

We will call ρh(e,e∗) the “hole-B function” and ρp(e,e∗) the
“particle-B function.” The particle-B function may be useful
when we need to represent correlated physical states for which
the particle picture is more natural. For example, for the
Bardeen-Cooper-Schrieffer state

ρ̂ = exp

(∑
k

ϕkâ
†
kâ

†
−k

)
|0p〉

〈
0p

∣∣ exp

(∑
k

ϕ∗
k â−kâk

)
, (16)

we can directly write the particle-B function,

ρp(e,e∗) =
∏
k

exp(ϕkeke−k + ϕ∗
k e

∗
−ke

∗
k ), (17)

where the g-number ek corresponds to a mode with
momentum k.

Now let us turn to the question of how to evalu-
ate observables in the Grassmann B representation. This
question was considered in [10,11] by a different ap-
proach. Here we will continue our physical interpretation.
Let us consider an elementary projection observable ô =
b̂
†
i1

. . . b̂
†
in
|0s〉〈0s |̂bjm

. . . b̂j1 . By subscript s we mean one of the
representations, i.e., particle p or hole h. The operators b̂j are
equal to the particle annihilation operators âj in the p picture,
and to the hole annihilation operators â

†
j in the h picture. In

order for ô to be physical, the parities of n and of m should

coincide. The following relation for expected value of ô,

Tr[̂b†i1
. . . b̂

†
in
|0s〉〈0s |̂bjm

. . . b̂j1 ρ̂]

=
∫

de∗
1 . . . de∗

MdeM . . . de1

×ejm
. . . ej1e

∗
i1

. . . e∗
in
ρs(e,e∗), (18)

can be proven by substituting the expansions of ρ̂ given by
Eqs. (6) and (14) into the first line of this relation, and by
evaluating the Grassmann integrals. Here the subscript s means
the picture which is reciprocal to s, i.e., p = h and h = p. We
can swap ejk

’s and e∗
il
’s in the last line to obtain

Tr[̂b†i1
. . . b̂

†
in
|0s〉〈0s |̂bjm

. . . b̂j1 ρ̂]

=
∫

de∗
1 . . . de∗

MdeM . . . de1

× (−e∗
i1

) . . . (−e∗
in

)ejm
. . . ej1ρs(e,e∗). (19)

Then, for arbitrary observable we get:

Tr[̂oρ̂] =
∫

de∗
1 . . . de∗

MdeM . . . de1

×os(−e∗,e)ρs(e,e∗). (20)

In other words, in order to compute the quantum average, we (i)
represent the observable and the density operator in reciprocal
pictures, (ii) substitute all annihilation and creation operators
with g numbers, and (iii) evaluate the Grassmann integral of
their product. This prescription is a close fermionic analog of
the bosonic optical equivalence theorem. Observe that in the
relation (20), the operators ô and ρ̂ may be arbitrary physical
operators.

Usually the observables are expressed not as projections,
but as normally ordered polynomials, e.g., ô = â

†
i âj . We can

express normally ordered observables in terms of projections
by writing

ô = â
†
i1

. . . â
†
in
âjm

. . . âj1 = â
†
i1

. . . â
†
in
ÎM âjm

. . . âj1 , (21)

where ÎM is the identity operator in the space generated by
modes j = 1, . . . ,M . In the particle picture, this operator is
defined as

ÎM =
∏
j

[|0j 〉〈0j | + â
†
j |0j 〉〈0j |̂aj ], (22)

where 0j is the particle vacuum for mode j . The B function
for ÎM is

{ÎM}p = exp

⎛⎝∑
j

ej e
∗
j

⎞⎠. (23)

Combining together Eqs. (21), (22), and (20), we find the
formula for the expected value of normally ordered observable
: o(̂a† ,̂a) :,

Tr[: o(̂a†,̂a) : ρ̂]

=
∫

de∗
1 . . . de∗

MdeM . . . de1

× exp

⎛⎝∑
j

ej e
∗
j

⎞⎠o(−e∗,e)ρh(e,e∗). (24)
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Reiterating the same arguments for antinormally ordered
observables {o(̂a,̂a†)} and for ÎM in the hole picture, we find
the result

Tr[{o(̂a,̂a†)}ρ̂]

=
∫

de∗
1 . . . de∗

MdeM . . . de1

× exp

⎛⎝∑
j

ej e
∗
j

⎞⎠o(−e∗,e)ρp(e,e∗). (25)

Analogously to the bosonic Drummond-Gardiner positive-
P representation [15], in the following it will be convenient
to treat e and e∗ as completely independent nonconjugate
complex g numbers [11]. Therefore, we double the dimension
of our Grassmann algebra by introducing additional basis
elements e′

j , j = 1, . . . ,M . Then, in all the relations starting
from Eq. (6), we replace all the occurrences of e∗ by e′∗, and
all the occurrences of e∗

j by e′∗
j . This operation does not change

the validity and scope of the presented results.

B. Equations of motion

In this section, we review how the master equations for B

functions are derived, starting from the equations of motion
for the density operator.

Let us consider a quantum system with Hamiltonian

Ĥ = â†
pTpq âq − 1

4 â†
pâ†

qVpqrs âr âs . (26)

From now on, summation over repeated indices is implied.
Real-time evolution of the density operator is governed by the
von Neumann equation,

i∂t ρ̂ = [Ĥ ,ρ̂]. (27)

We can use the properties of coherent states (5) in order to find
a master equation for the corresponding B representation. In
particular, by Grassmann integration by parts, it can be shown
that [11]

{̂aj ρ̂}h = ejρh, {̂a†
j ρ̂}h = −→

∂ jρh, (28)

{ρ̂âj }h = ρh
←−
∂ ′

j∗ , {ρ̂â
†
j }h = ρhe

′∗
j . (29)

Here,
←−
∂ ′

j∗ is the right Grassmann derivative with respect to
element e′∗

j ; we omit the arguments (e,e′∗) of B function ρh.
We can apply these rules for the von Neumann equation (27)
and find [11]

∂tρh = −−→
∂ p(iTpqeq)ρh − ρh[

−→
∂ ′

p(iTpqe
′
q)]∗

+ 1

2
−→
∂ p

−→
∂ q

(
i

2
Vpqrseres

)
ρh

+ 1

2
ρh

[−→
∂ ′

p

−→
∂ ′

q

(
i

2
Vpqrse

′
re

′
s

)]∗
. (30)

Now, if we compare this equation with the Fokker-Planck
equation for a classical c-number probability distribution P

expressed in terms of complex variables [18],

∂tP = −∂pApP − ∂∗
pA∗

pP + 1
2∂p∂qBplBqlP

+ ∂p∂∗
q BplB

∗
qlP + 1

2∂∗
p∂∗

q B∗
plB

∗
qlP , (31)

we observe that B-function master equation (30) looks like the
anticommuting analog of Fokker-Planck equation (31). This
analogy encourages us to find a certain Grassmann analog of
stochastic process which has ρp(e,e′∗; t) as its “probability”
density. It fact, it has been done in [10,11], but without
considering the emerging classical probability distributions. In
the following sections, we will do it by explicitly introducing
a c-number probability distribution into the B representation
(14).

III. GRASSMANN CALCULUS REVISITED

We want to construct a classical stochastic interpretation of
the B-function master equation (30). Before we do so, we need
to carry out some preparatory work. The classical stochastic
process is defined through infinitesimal increments of the
process variables. The appearance of the term “infinitesimal”
means we need to discuss how to introduce the norm of
an arbitrary g-number g. Moreover, the behavior under
infinitesimal variations is described in terms of derivatives.
However, the conventional Grassmann derivative operators−→
∂ j and

←−
∂ j are defined as formal algebraic manipulations

on the basis elements ej . Therefore, we need to find another
notion of Grassmann derivatives which is connected with
infinitesimal variations. Next, in order to introduce probability
distributions on Grassmann algebra, we need to discuss the
notion of function of arbitrary g number and how to integrate
it.

A. Norm of Grassmann number

In [[11], p. 49], it is argued that g numbers do not have
notions of size and magnitude, and thus there is no notion
of proximity for them. Nevertheless, we believe that such a
concept can be defined consistently.

Since “analytic” Grassmann numbers are defined according
to Eq. (A2) of Appendix A, we see that each g number is
equivalent to a hierarchy of n-point functions G(i1, . . . ,in).
Physically, we can interpret the g number as a quantum many-
body state, and the functions G(i1, . . . ,in) can be interpreted as
its n-particle amplitudes. Due to anticommutation between the
basis elements, G(i1, . . . ,in) are not unique: we can represent
the n-point function as a sum,

G(i1, . . . ,in) = GA(i1, . . . ,in) + Z(i1, . . . ,in), (32)

where GA(i1, . . . ,in) is completely antisymmetric, and
Z(i1, . . . ,in) is arbitrary but which has the symmetry of any
Young tableau except complete antisymmetry. In the follow-
ing, we always choose Z(i1, . . . ,in) = 0. We can introduce the
norm of the g number as the sum of norms of its n-particle
amplitudes,

‖g‖2 ≡ |GA(0)|2 + ‖GA(1)‖2 + · · · + ‖GA(M)‖2, (33)

where ‖GA(i)‖2 is a certain (yet to be defined) n-point-function
norm. Then, the distance between two g-numbers g and h is
defined as ‖g − h‖2. Such a definition is appealing from the
physical point of view, since the two quantum states should be
regarded as similar if all their n-point functions (correlations)
are similar. If we choose the n-point-function norm as the
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Hilbert-Schmidt norm,

‖GA(n)‖2 =
∑

i1<···<in

|GA(i1, . . . ,in)|2, (34)

then our g-number norm satisfies all the expected and
reasonable inequalities,

‖g + h‖ � ‖g‖ + ‖h‖, ‖gh‖ � ‖g‖‖h‖, (35)

and if

‖g − h‖ = 0, then g = h. (36)

From a physical point of view, the norm (34) has the meaning
of the (unnormalized) probability of observing any n-point
configuration, and ‖g‖2 is its normalization factor.

B. Functions of Grassmann numbers

1. Algebraic functions

The major objects of our theory, i.e., the B function
ρh(e,e′∗), a coherent state dyadic |e〉〈e′∗|, and master equation
(30), are formulated as depending on the basis elements ej and
e′∗
j . This means that in a stochastic interpretation, ej and e′∗

j

should be replaced with stochastic process variables gj and
g′∗

j , which in turn should be considered as arbitrary g numbers
with random n-point functions G(i1, . . . ,in). Therefore, we
need to consider functions of arbitrary Grassmann numbers,
e.g., |g〉〈g′∗|. The general analytic function f of arbitrary
g-numbers gj is a sum of monomials,

(g+
i1

)p1 , . . . ,(g+
in

)png−
j1
, . . . ,g−

jm
, (37)

where pk are non-negative integer powers since, in general,
(g+

k )
2 
= 0; however, the indices j1, . . . ,jm should all be

different since (g−
k )

2 = 0. We call such functions algebraic
since they can be expressed in terms of algebraic operations:
multiplication, addition, and taking even and odd parts.

2. Nonalgebraic functions

In order to define the c-number stochastic process, we
also need to introduce classical probabilities on Grassmann
numbers. Apparently they cannot be expressed as a sum or
series of monomials (37). This is because classical probability
should take real positive values for all g, whereas algebraic
functions of the form (37) will, in general, take g-number
values. However, such nonalgebraic functions of Grassmann
numbers as classical probabilities naturally depend on n-point
functions. For a given g-number g, we will denote its n-point
function by the corresponding capital letter, G(in), where
in = (i1, . . . ,in); the set of all G(in) of a given order n, for all
values of in, will be denoted by G(n); and the full hierarchy
[G(0), . . . ,G(M)] will be designated by G. Therefore, a
classical probability P depending on g will be denoted as
P (GA). Observe that we take the antisymmetric part of G.

C. Metric Grassmann derivatives

Now we have the notion of proximity and magnitude. We
can introduce the novel Grassmann derivatives which are based
on infinitesimal variations of arguments. In order to distinguish
them from the ordinary formal Grassmann derivatives, we call

them “metric Grassmann derivatives.” According to standard
calculus, the derivative of algebraic function f is defined
through its local behavior,

f (g + δ) − f (g) =
∑

in

	A(in)∂GA(in)f (g) + O(‖δ‖2),

(38)

where 	A(in) is the antisymmetric part of the n-point function
	(in) of δ; and ∂GA(in) is the usual c-number derivative
with respect to n-point function GA(in). This definition is
precise. However, it is insufficient since it ignores the algebraic
structure and the commutation properties of δ. This is because
we can write

δ = δ+ + δ−, (39)

and substitute it into f (g + δ). Since f (g + δ+ + δ−) is a
polynomial (or a series), we expand it and move all δ+ and
δ− to the left (or to the right) respecting their commutation
properties. Keeping only the first-order terms in δ+ and δ−,
we arrive at the following representations of local behavior:

f (g + δ) − f (g) = δ+−→
∂ +

g f (g) + δ−−→
∂ −

g f (g) + O(‖δ‖2)

(40)

and

f (g + δ) − f (g) = f (g)
←−
∂ +

g δ+ + f (g)
←−
∂ −

g δ− + O(‖δ‖2),

(41)

where we have introduced the novel odd-left
−→
∂ −

g , odd-right
←−
∂ −

g , even-left
−→
∂ +

g , and even-right
←−
∂ +

g “metric Grassmann
derivatives.” We define these derivatives operationally as
coefficients of monomials δ± after all δ+ and δ− where
commuted to the left (right). From this definition, we deduce
their properties. The even-left metric Grassmann derivative−→
∂ +

gi
has the following properties:

−→
∂ +

gi
c = 0,

−→
∂ +

gi
g+

j = δij ,
−→
∂ +

gi
g−

j = 0, (42)

where c is a g-number constant. More complex objects are
differentiated according to linearity,

−→
∂ +

g {c1f1(g) + c2f2(g)} = c1
−→
∂ +

g f1(g) + c2
−→
∂ +

g f2(g),

(43)

and by employing the following commutation relation:
−→
∂ +

g f = (
−→
∂ +

g f ) + f
−→
∂ +

g . (44)

The odd-left metric Grassmann derivative
−→
∂ −

gi
has the follow-

ing properties:
−→
∂ −

gi
c = 0,

−→
∂ −

gi
g−

j = δij ,
−→
∂ −

gi
g+

j = 0. (45)

Compound objects are differentiated according to the antilin-
earity,
−→
∂ −

g {c1f1(g) + c2f2(g)} = c1
−→
∂ −

g f1(g) + c2
−→
∂ −

g f2(g), (46)

and the anticommutation relation
−→
∂ −

g f = (
−→
∂ −

g f ) + f
−→
∂ −

g . (47)
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Here, for each Grassmann number g, we have introduced its
involution g as the negation of its odd part:

g = g+ − g−. (48)

The properties of the right metric derivatives are obtained
through complex conjugation, according to the following
relations:

[
−→
∂ ±

g ]∗ = ←−
∂ ±

g∗ , [
←−
∂ ±

g ]∗ = −→
∂ ±

g∗ . (49)

Different derivatives have the following commutation rela-
tions:

−→
∂ +

gi

−→
∂ ±

gj
= −→

∂ ±
gj

−→
∂ +

gi
,

−→
∂ −

gi

−→
∂ ±

gj
= (±1)

−→
∂ ±

gj

−→
∂ −

gi
. (50)

Left and right derivatives are related as
−→
∂ +

g f (g) = f (g)
←−
∂ +

g ,
−→
∂ −

g f (g) = −f (g)
←−
∂ −

g . (51)

We observe that the properties of
−→
∂ −

g are similar to the
conventional (formal) Grassmann derivatives, except that they
act upon variable g instead of fixed basis element ej . However,

the even derivative
−→
∂ +

g is a novel object. There is a relation
between the ordinary c-number calculus derivatives and the
metric Grassmann derivatives:∑

in

	A(in)∂GA(in)f (g) = {δ+−→
∂ +

g + δ−−→
∂ −

g }f (g)

= f (g){←−∂ +
g δ+ + ←−

∂ −
g δ−}. (52)

D. Integration over Grassmann algebra

In order to work with classical probability, we need to
integrate it over Grassmann numbers. Therefore, we introduce
integration in the space of n-point functions,∫

dGAP (GA) :=
M∏

n=1

∏
in

∫
C

dGA(in)dG∗
A(in)P (GA), (53)

where
∏

in
means the product over all the ordered sequences

i1 < · · · < in; P (GA) is an arbitrary c-number function of n-
point functions GA(in). Using our definitions, it can be shown
that there is the following integration-by-parts formula:∫

dGAf (g)

⎧⎨⎩∑
in

∂GA(in)H (in)

⎫⎬⎭P (GA)

= −
∫

dGAP (GA){h+−→
∂ +

g + h−−→
∂ −

g }f (g)

= −
∫

dGAf (g){←−∂ +
g h+ + ←−

∂ −
g h−}P (GA), (54)

where f (g) is arbitrary algebraic g-number function. From
now on, we assume that n-point functions are always antisym-
metric, and the subscript A will be omitted.

E. Chain rule

Suppose that we have algebraic g-number function f (g)
such that its expression contains basis elements ei only
indirectly through the variable g. Let us evaluate

−→
∂ if (g),

where
−→
∂ i is the conventional (formal) Grassmann derivative

with respect to basis element ei . The derivative
−→
∂ if (g) means

that we go through all the occurrences of ei sequentially and
commute them to the left, one at a time. We can do it in two
stages: first we commute to the left all the occurrences of g

(one at a time), then we compute the derivative of g. Therefore,
we obtain the following chain formulas:

−→
∂ if (g) = {(−→∂ ig

+)
−→
∂ +

g + (
−→
∂ ig

−)
−→
∂ −

g }f (g). (55)

Arguing similarly, we get the chain rule for the right derivative:

f (g)
←−
∂ i = f (g){←−∂ +

g (g+←−
∂ i) + ←−

∂ −
g (g−←−

∂ i)}. (56)

IV. FIRST PROBABILISTIC INTERPRETATION: FIXED
HOLE EXCITATION IN A STOCHASTIC FERMI SEA

Now we are ready to introduce the stochastic interpretation
of the formal Grassmann B-function master equation (30).
The idea is that we introduce random g-number vectors
g = (g1, . . . ,gM ) and g′. However, the dependence on g and g′
can be introduced in two ways. The first way is to consider the
coherent state dyadic as a function of these vectors, |g〉〈g′∗|.
The second way is to consider the B function as depending on
these vectors, ρh(g,g′∗).

In this section, we study the first way which may be called
the “stochastic Fermi-sea” representation, as will become
clear. The second way will be discussed in the next section.

A. Definition of representation

The coherent state dyadic as a function of g-number
variables, |g〉〈g′∗|, has the following properties:

â
†
i |g〉 = −−→

∂ ±
gi
|g〉 = (∓1)|g〉←−∂ ±

gi
, (57)

âi |g〉 = âi(1 − gpâ†
p)|0〉 = −gpâi â

†
p|0〉 = −gi |0〉. (58)

The last equation is problematic: its form is not suitable for
construction of a phase-space representation. However, if g is
odd, so that gp = g−

p , then we obtain

âi |g−〉 = g−
i |0〉 = g−

i (1 − g−
p â†

p)|0〉 = g−
i |g−〉. (59)

We see that suitable differential correspondences are realized
only when g belongs to the odd sector. Therefore, from now
on, we impose this restriction on g and g′. The conjugated
relations are

〈(g−)∗|̂ai = −〈(g−)∗|←−∂ −
g∗

i
= −→

∂ −
g∗

i
〈(g−)∗|, (60)

〈(g−)∗|̂a†
i = 〈(g−)∗|(g−

i )∗. (61)

At the time moment t = 0, the random vectors g and g′ should
coincide with the vectors of basis elements, g = e and g′ = e′.
However, at later time, they begin to diffuse. We express this
fact by inserting integration over the probability distribution
into the Grassmann B representation (6):

ρ̂(t) =
∫

odd
dGdG′∗P (G,G′∗; t)

×
∫

de′∗
1 . . . de′∗

MdeM . . . de1ρh(e,e′∗)|g〉〈g′∗|, (62)
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with the initial condition

P (G,G′∗; 0) = δ(G − E)δ(G′∗ − E′∗). (63)

Here, bold capital letters designate vectors G =
(G0, . . . ,GM ), E = (E0, . . . ,EM ), etc.; the symbol Gj

means the full hierarchy of n-point functions for gj . In
fact, our Grassmann representation is equivalent to ordinary
c-number phase-space representation,

ρ̂(t) =
∫

odd
dGdG′∗P (G,G′∗; t)
̂(G,G′∗), (64)

with the overcomplete operator basis


̂(G,G′∗) =
∫

de′∗
1 . . . de′∗

MdeM . . . de1ρh(e,e′∗)|g〉〈g′∗|.
(65)

Let us discuss the physical content of this phase-space picture.
Observe that in the operator basis (65), the B-function ρh(e,e′∗)
is a parameter: for different ρh(e,e′∗), we obtain different
operator bases 
̂ and different phase-space pictures (64). We
can interpret the structure of 
̂ as a “quantum kinematics.”
Analogously to the kinematics of classical mechanics, we (i)
postulate the existence of space which is spanned by modes
j = 1, . . . ,M , then (ii) select the reference frame in this space
by the choice of filled sea of states g1, . . . ,gM , and, finally, (iii)
define the state of the “body” by specifying the hole excitation
field ρh(e,e′∗). Therefore, such a description corresponds to a
fixed hole-excitation field in a moving background Fermi sea.
We call this the “stochastic Fermi-sea representation.”

B. Equations of motion

We symbolically denote the relation (64) as

P (G,G′∗; t) = {ρ̂(t)}sea(G,G′∗). (66)

In order to construct a master equation for the stochastic
Fermi-sea representation, we proceed analogously to Sec. II B:
we find expressions for {̂a†

i âj ρ̂(t)}sea, etc. Note that since
integration-by-parts formula (54) contains only the combina-
tions h−−→

∂ −
g and

←−
∂ −

g h−, there are no rules for nonconserving
terms such as {̂aj ρ̂(t)}sea. Using the coherent state properties
(57) and (59)–(61), we find

â
†
i âj |g〉 = gj

−→
∂ −

gi
|g〉. (67)

Using this relation and its conjugated variant in the stochastic
Grassmann B representation (62), and integrating by parts
according to (54), we find

{̂a†
i âj ρ̂(t)}sea = −

∑
in

∂Gi (in)Gj (in){ρ̂(t)}sea, (68)

{ρ̂(t )̂a†
i âj }sea = −

∑
in

∂G′∗
j (in)G

′∗
i (in){ρ̂(t)}sea. (69)

Representation for quartic terms such as {̂a†
i â

†
j âkâl ρ̂(t)}sea can

be found by repeated application of Eqs. (68) and (69), and by
using the anticommutation relation

−→
∂ −

gp
gs = δps − gs

−→
∂ −

gp
. (70)

In the stochastic Fermi-sea representation, the von Neumann
equation (27) assumes the form

∂t {ρ̂(t)}sea =
(

∂Gp(in)

[
iTpqGq(in) − i

4
VlpqlGq(in)

]
− i

4
∂Gp(im)Gr (im)∂Gq (in)Gs(in)Vpqrs

+
{
∂G′

p(in)

[
iTpqG

′
q(in) − i

4
VlpqlG

′
q(in)

]
− i

4
∂G′

p(im)G
′
r (im)∂G′

q (in)G
′
s(in)Vpqrs

}∗)
×{ρ̂(t)}sea. (71)

We see that the evolution equation for the distribution {ρ̂(t)}sea
has the form of the Fokker-Planck equation in Stratonovich
form [19], except that it is lacking a number of complex
conjugated terms of the form (see Appendix B of Ref. [18])

∂G∗
p(in){. . .} + ∂G′

p(in){. . .}. (72)

However, since the Grassmann coherent state dyadic is
analytic,

∂G∗
p(in)|g〉〈g′∗| = 0, ∂G′

p(in)|g〉〈g′∗| = 0, (73)

we can add the required terms to the right-hand side of Eq. (71)
(see Appendix B of Ref. [18]). After performing this addition,
we conclude that {ρ̂(t)}sea is a joint probability distribution for
the stochastic process (in a Stratonovich sense),

dGp(in) = −i
∑

q

TpqGq(in)dt + i

4

∑
lq

VlpqlGq(in)dt

+
√

ωγ

2i

∑
γ q

O(γ )
pq Gq(in)dXγ , (74)

dG′
p(in) = −i

∑
q

TpqG
′
q(in)dt + i

4

∑
lq

VlpqlG
′
q(in)dt

+
√

ωγ

2i

∑
γ q

O(γ )
pq G′

q(in)dYγ . (75)

Here we have decomposed the pair potential as [18,20,21]

Vpqrs =
∑

γ

ωγ O(γ )
pr O(γ )

qs . (76)

The real Wiener increments dXγ and dYγ obey the standard
statistics,

E[dXγ ] = E[dYγ ] = E[dXγ dYμ] = 0, (77)

E[dXγ dXμ] = E[dYγ dYμ] = dtδγμ. (78)

We note that Eqs. (74) and (75) actually form a set of
equations for each of the n-point functions Gp(i1, . . . ,in) and
G′

p(i1, . . . ,in), which are uncoupled for different n and for
different values of i1, . . . ,in. We can multiply each equation for
Gp(i1, . . . ,in) and G′

p(i1, . . . ,in) by ei1 , . . . ,ein and e′
i1
, . . . ,e′

in
correspondingly, then sum them up over i1, . . . ,in and over n,
and obtain a system of coupled stochastic equations for odd
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Grassmann numbers g1, . . . ,gM and g′
1, . . . ,g

′
M :

dgp = −i
∑

q

Tpqgqdt + i

4

∑
lq

Vlpqlgqdt

+
∑

γ

√
ωγ

2i

∑
q

O(γ )
pq gqdXγ , (79)

dg′
p = −i

∑
q

Tpqg
′
qdt + i

4

∑
lq

Vlpqlg
′
qdt

+
∑

γ

√
ωγ

2i

∑
q

O(γ )
pq g′

qdYγ . (80)

In fact, these equations are the same as those obtained in
[11], except for the notational difference for Hamiltonian
terms (26) and the fact that our equations are in Stratonovich
form, whereas equations in Ref. [11] are in Ito form. However,
for numerical calculations, we always have to interpret these
equations in the n-point picture [Eqs. (74) and (75)].

C. Simulation procedure

Here we outline the possible scheme of a numerical
simulation. A specific form of ρh(e,e′∗) is selected depending
on the problem. Then, the initial density operator is defined by
P (G,G′∗; t = 0). A Monte Carlo sampling of g(0) and g′∗(0)
is performed from the initial distribution P (G,G′∗; t = 0). For
each realization of g(0) and g′∗(0), the stochastic equations
(79) and (80) are solved. The expected values of observables
are computed according to the formula

〈: o(̂a† ,̂a) :〉(t)

= E

⎧⎨⎩
∫

de′∗
1 . . . de′∗

MdeM . . . de1

× exp

⎛⎝∑
j

ej e
′∗
j

⎞⎠o[−g′∗(t),g(t)]ρh(e,e′∗)

⎫⎬⎭, (81)

where for given ρh(e,e′∗) the Grassmann integral should be
computed analytically.

V. SECOND PROBABILISTIC INTERPRETATION:
STOCHASTIC HOLE EXCITATIONS

OF A FIXED FERMI SEA

A. Definition of representation

In this section, we explore the second opportunity: when
the B function depends on stochastic variables,

ρ̂(t) =
∫

odd
dGdG′∗P (G,G′∗; t)

×
∫

de′∗
1 . . . de′∗

MdeM . . . de1ρh(g,g′∗)|e〉〈e′∗|,
(82)

with the initial condition

P
(
G,G′∗; 0

) = δ(G − E)δ(G′∗ − E′∗). (83)

Our Grassmann representation is equivalent to ordinary c-
number phase-space representation,

ρ̂(t) =
∫

odd
dGdG′∗P (G,G′∗; t)
̂(G,G′∗), (84)

with the overcomplete operator basis


̂(G,G′∗) =
∫

de′∗
1 . . . de′∗

MdeM . . . de1ρh(g,g′∗)|e〉〈e′∗|.
(85)

Physically this corresponds to a description when the back-
ground Fermi sea is fixed, and the hole-excitation field is
stochastically evolving. Therefore, we call this the “stochastic
hole-excitation field representation.”

B. Equations of motion

We denote symbolically the relation (84) as

P (G,G′∗; t) = {ρ̂(t)}exc(G,G′∗). (86)

In Appendix B, it is shown that proceeding analogously to
Sec. IV B, we obtain the following Stratonovich differential
stochastic equations:

dgk = i
∑
pq

(
Tpq − 3

4
Vpllq

)
eq

−→
∂ pgkdt

+
∑

γ

√
ωγ

2i

∑
ip

O
(γ )
ip ep

−→
∂ igkdXγ , (87)

dg′
k = i

∑
pq

(
Tpq − 3

4
Vpllq

)
e′
q

−→
∂ ′

pg′
kdt

+
∑

γ

√
ωγ

2i

∑
ip

O
(γ )
ip e′

p

−→
∂ ′

ig
′
kdYγ . (88)

C. Simulation procedure

A specific form of ρh(g,g′∗) is selected. Then, the initial
density operator is defined by P (G,G′∗; t = 0). A Monte Carlo
sampling of g(0) and g′∗(0) is performed from the initial
distribution P (G,G′∗; t = 0). For each realization of g(0) and
g′∗(0), the stochastic equations (87) and (88) are solved. The
expected values of observables are computed according to the
formula

〈: o(̂a†,̂a) :〉(t)

= E

⎧⎨⎩
∫

de′∗
1 . . . de′∗

MdeM . . . de1

× exp

⎛⎝∑
j

ej e
′∗
j

⎞⎠o(−e′∗,e)ρh[g,(t)g′∗(t)]

⎫⎬⎭.

(89)

For a given form of ρh(g,g′∗), the Grassmann integral in the
last two lines should be evaluated analytically. An example of
actual simulation of this kind can be found in work [10].
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VI. MARKOVIAN DYNAMICS OF OPEN
QUANTUM SYSTEM

In this section, we investigate how to employ the Grassmann
B function in order to describe the dynamics of a system which
is coupled to a reservoir.

Consider a fermionic degree of freedom which is coupled
to a Markovian environment in the ground state. The master
equation for the density operator is given by

∂t ρ̂ = −iωâ†âρ̂ + iωρ̂â†â + γ
(̂
aρ̂â† − 1

2 â†âρ̂ − 1
2 ρ̂â†â

)
.

(90)

First of all, we observe that the term âρ̂â† is nonconserving.
In Grassmann B representation, this term is represented as
e∗

1e
′∗
1 ρh(e1,e

′∗
1 ), and we cannot transform it into a c-number lin-

ear operator for the classical probability {ρ̂(t)}sea or {ρ̂(t)}exc.
Here we propose the two routes to overcome this problem.

A. Mutually inverted vacuums

The term âρ̂â† is nonconserving because it annihilates
particles in ket and in bra states. Now suppose that we invert
the vacuum for the bra state and expand the density operator
over the dyadics |e1〉〈e′∗

1 |′,

ρ̂ =
∫

de′∗
1 de1ρh-p(e1,e

′∗
1 )|e1〉〈e′∗

1 |′, (91)

where the superscript h-p denotes the mixed hole-particle
representation. In this picture, the term âρ̂â† annihilates a
particle in ket and create a hole in bra; therefore, the total
number of particles and holes is conserved in the bra and ket
states, and we can represent it probabilistically. Indeed, using
the properties of particle [Eqs. (5)] and hole [Eq. (13)] coherent
states, we obtain the following rules:

â|g〉〈g′∗|′̂a† = −g
−→
∂ ′

∗|g〉〈g′∗|′, (92)

ââ†|g〉〈g′∗|′ = −g
−→
∂ |g〉〈g′∗|′, (93)

|g〉〈g′∗|′̂aâ† = −→
∂ ′

∗g
′∗|g〉〈g′∗|′. (94)

Employing these rules for the master equation (90), then
introducing c-number probability as in the stochastic Fermi-
sea approach in Sec. IV, we obtain

∂t {ρ̂(t)}sea = −
(
−iω − γ

2

)
∂G(in)G(in){ρ̂(t)}sea

+
(
iω − γ

2

)
∂G′∗(in)G

′∗(in){ρ̂(t)}sea

+
(
iω − γ

2

)
{ρ̂(t)}sea − γ ∂G′∗(in)G(in){ρ̂(t)}sea.

(95)

In the derivation of this equation we have taken into account
that ρh-p(e1,e

′∗
1 ) is odd. In the last line, we see a potential

term (iω − γ

2 ){ρ̂(t)}sea. We absorb it by making the B-function
ρh-p(e1,e

′∗
1 ) time dependent,

ρh-p(e1,e
′∗
1 ; t) = e(iω− γ

2 )t ρ(0)
h-p(e1,e

′∗
1 ). (96)

We get the following Grassmann equations of motion:

∂tg1 = −
(
iω + γ

2

)
g1, (97)

∂tg
′∗
1 =

(
−iω + γ

2

)
g′∗

1 + γg1, (98)

with the initial conditions g1(0) = e1, g
′∗
1 (0) = e′∗

1 . Their
solution is

g1(t) = e1e
−(iω+ γ

2 )t , (99)

g′∗
1 (t) = e′∗

1 e(−iω+ γ

2 )t + 2e1e
−iωt sinh

(γ

2
t
)
. (100)

Now suppose that initially the fermionic degree of freedom is
in the excited state,

ρ
(0)
h-p(e1,e

′∗
1 ) = e′∗

1 . (101)

Let us compute the dynamics of the average population,

〈̂a†â〉(t) =
∫

de′∗
1 de1e

(iω− γ

2 )t e′∗
1 Tr[̂a†â|g1(t)〉〈g′∗

1 (t)|′]

= e−γ t , (102)

i.e., the population of excited state decays with rate γ as
expected. It can also be checked that the normalization is
conserved,

〈1〉(t) =
∫

de′∗
1 de1e

(iω− γ

2 )t e′∗
1 Tr|g1(t)〉〈g′∗

1 (t)|′ = 1. (103)

The approach presented in this section is a rather exotic trick.
We present it here only to demonstrate the various possibilities
offered by B representation.

In the next section, we present a second approach, which
we believe is more “standard” and more suited to treat general
problems.

B. Gaussian B function

We observe that the B function is actually a part of
overcomplete basis 
̂, given by Eqs. (65) and (85). Therefore,
we can introduce parameters into it and use them to modify
the phase-space correspondences for the master equation.
For example, consider the stochastic Fermi-sea representation
(62). Let us take the following ansatz:

ρh(e1,e
′∗
1 ; λ) = ee1λe′∗

1 ρ
(0)
h (e1,e

′∗
1 ), (104)

where λ is the additional parameter of basis 
̂. Then, the terms
â†âρ̂ and ρ̂â†â are represented as earlier, given by Eqs. (68)
and (69). In order to map the nonconserving term âρ̂â†, we
proceed as follows:

â
̂(G,G′∗; λ)̂a† =
∫

de′∗
1 de1e

e1λe′∗
1 ρ

(0)
h (e1,e

′∗
1 )g1g

′∗
1 |g1〉〈g′∗

1 |′.
(105)

Suppose that g1 = Ge1 and g′∗
1 = G′∗e′∗

1 . Then, we obtain

ee1λe′∗
1 g1g

′∗
1 = GG′∗e1e

′∗
1 ee1λe′∗

1 = GG′∗∂λe
e1λe′∗

1 . (106)

We finish Eq. (105),

â
̂(G,G′∗; λ)̂a† = GG′∗∂λ
̂(G,G′∗; λ), (107)
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and after integration by parts, we obtain the rule for the
nonconserving term,

{̂aρ̂(t )̂a†}sea = −GG′∗∂λ{ρ̂(t)}sea. (108)

In the resulting Gaussian B-function representation,

ρ̂(t) =
∫

dGdG′∗{ρ̂}sea(G,G′∗; λ; t)
̂(G,G′∗; λ), (109)

the classical probability {ρ̂}sea depends on parameter λ. The
master equation (90) is represented in this picture as

∂t {ρ̂}sea =
(
iω + γ

2

)
∂GG{ρ̂(t)}sea +

(
−iω + γ

2

)
× ∂G′∗G′∗{ρ̂(t)}sea − γGG′∗∂λ{ρ̂(t)}sea (110)

The corresponding g-number drift process is

∂tg1 =
(
−iω − γ

2

)
g1, ∂tg

′∗
1 =

(
iω − γ

2

)
g′∗

1 , (111)

∂tλ = γGG′∗, (112)

with initial conditions g1(0) = e1, g
′∗
1 (0) = e′∗, and λ(0) = 0.

The solution of these equations is

g1 = e1e
−iωt e− γ

2 t , g′∗
1 = e′∗

1 eiωt e− γ

2 t , (113)

λ = 1 − e−γ t . (114)

Now we evaluate the observables for the initial excited state
for which ρ

(0)
h = 1 and we get the same correct results as in

the previous section.

VII. DISCUSSION

The Grassmann numbers are objects of high computational
complexity, but they are not as abstract as they are usually
considered to be. We can interpret the g number as a physical
many-body state, with a hierarchy of correlations. This leads
to natural notions of size and proximity between them. With
the help of these notions, we were able to develop a c-number
stochastic calculus on Grassmann algebra.

The Grassmann B representation describes the state of the
quantum system as a hole excitation of a certain Fermi sea.
This hole excitation is represented by the B function, and
the Fermi-sea states are generated by coherent state dyadics.
The Grassmann B representation can be converted into
c-number phase-space representation by introducing into it
a probability distribution on Grassmann algebra. There are
two possible ways of doing so. We can consider either that (a)
the coherent state dyadics depends on random variables or (b)
the B function depends on random variables. Physically this
corresponds to the two possible pictures of how the state of a
quantum system evolves: either (a) the fixed hole excitation
on top of a randomly moving Fermi sea or (b) the dual
picture where on a fixed Fermi sea a random hole excitation is
acting.

In these stochastic representations, the B function becomes
a part of the overcomplete operator basis. Therefore, we can
choose a certain parametrized ansatz for the B function in
order to make the phase-space representation more flexible.
This idea is illustrated on the problem of the phase-space
description of Markovian dynamics of fermionic degree of

freedom which is coupled to a reservoir. We choose a Gaussian
ansatz for the B function and this allows us to find a phase-
space representation for the nonconserving Lindblad term. We
believe this technique will be useful in the derivation and in
c-number stochastic unraveling of master equations for open
quantum systems in fermionic environments [22,23].

Other g-number phase-space representations can be written
in the general form

ρ̂ =
∫

de∗
1 . . . de∗

MdeM . . . de1ρ(e,e∗)
̂(e,e∗), (115)

where ρ(e,e∗) is a g-number quasiprobability distribution,
and 
̂(e,e∗) is a certain Grassmann operator basis. From
this relation, it is seen that the technique described in this
work can be applied for other Grassmann representations.
There are also the two ways of inserting c-number probability:
by making either 
̂(e,e∗) or ρ(e,e∗) depending on ran-
dom variables. However, the concrete physical interpretation
will depend on specific details of 
̂(e,e∗). In this way,
the other g-number methods can be made accessible to
computations.
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APPENDIX A: BASIC GRASSMANN CALCULUS

We consider g-numbers ej as linearly independent basis
elements, with anticommuting multiplication law

eiej = −ej ei, (A1)

and which generate algebra of arbitrary g numbers

g = G(0) +
∑

i

G(i)ei +
∑
i1<i2

G(i1i2)ei1ei2 . . .

+
∑

i1<···<iM

G(i1, . . . ,iM )ei1 , . . . ,eiM . (A2)

Every Grassmann number g can be unambiguously decom-
posed into even and odd parts,

g = g+ + g−, (A3)

where even part g+ consists of even powers of ei in the
representation (A2), and odd part g− consists of odd powers
of ei , respectively. We introduce the Grassmann complex
conjugated basis elements e∗

j , which are defined to be lin-
early independent of ej . The elements e∗

j generate arbitrary
conjugated g-numbers g∗, whose general form is given by
a conjugated variant of (A2). Although the most general g

number contains both elements ei and their conjugates e∗
j , we

do not encounter such g numbers in our problem, and thus we
assume that all g numbers contain either ej or e∗

j . To put it
another way, we are dealing only with “analytic” g numbers.
We assume that what we call complex conjugation has the
property that for any g-numbers α, β, γ , we have

(αβγ )∗ = γ ∗β∗α∗. (A4)
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Due to this rule, Grassmann complex conjugation can be
interpreted in a way which is consistent with Hermitian
conjugation; for example,

(αâjγ )† = γ ∗â†
jα

∗. (A5)

By
−→
∂ j and

←−
∂ j , we denote the usual left and right Grassmann

derivative operators with respect to basis element ej . Left and
right derivatives with respect to complex conjugate elements e∗

j

are denoted as
−→
∂ j∗ and

←−
∂ j∗ . In order to maintain consistency

with the properties (A4) and (A5), the complex conjugation of
derivatives is defined as

[
−→
∂ j ]∗ = ←−

∂ j∗ , [
←−
∂ j ]∗ = −→

∂ j∗ . (A6)

For example,

(α
−→
∂ jβγ )∗ = γ ∗β∗←−∂ j∗α∗ (A7)

and

(αâjγ
−→
∂ j )† = ←−

∂ j∗γ ∗â†
jα

∗. (A8)

APPENDIX B: DERIVATION OF MASTER EQUATIONS
FOR THE STOCHASTIC HOLE-EXCITATION

REPRESENTATION

In order to find the master equation for {ρ̂(t)}exc, let us see
how the number-conserving product â

†
i âj acts on 
̂(G,G′∗)

given by Eq. (85):

â
†
i âj 
̂(G,G′∗) =

∫
de′∗

1 . . . de′∗
MdeM . . . de1

× ρh(g,g′∗)ej ∂i |e〉〈e′∗|. (B1)

Next the Grassmann integration by parts is performed,

â
†
i âj 
̂(G,G′∗) =

∫
de′∗

1 . . . de′∗
MdeM . . . de1

× (δij − ej

−→
∂ i)ρh(g,g′∗)|e〉〈e′∗|. (B2)

Now, since ρh depends on basis elements ej only through the
variables gk , we apply the chain rule (55),

ej

−→
∂ iρh(g,g′∗) = ej (

−→
∂ igk)

−→
∂ −

gk
ρh(g,g′∗)

= [[ej

−→
∂ igk]](in)∂Gk(in)ρh(g,g′∗). (B3)

Here, by [[·]](in), we denote the n-point function of the g-
number expression which is inside the brackets. Therefore,

we have

â
†
i âj 
̂(G,G′∗) = (δij − [[ej

−→
∂ igk]](in)∂Gk(in))
̂(G,G′∗).

(B4)

We substitute this relation into the stochastic hole-excitation
representation (84), integrate by parts, and find the correspon-
dence rule,

{̂a†
i âj ρ̂}exc = (δij + ∂Gk(in)[[ej

−→
∂ igk]](in)){ρ̂}exc. (B5)

In the same way, we obtain the conjugated rule,

{ρ̂â
†
i âj }exc = (δij + ∂G′∗

k (in)[[e
′∗
i

−→
∂ ′

j∗g
′∗
k ]](in)){ρ̂}exc. (B6)

Using these rules, the von Neumann equation (27) assumes
the following form:

∂t {ρ̂(t)}exc

=
{

− ∂Gk(in)i

(
Tpq − 3

4
Vpllq

)
[[eq

−→
∂ pgk]](in)

− i

4
∂Gp(i ′

m)[[ek

−→
∂ igp]]

(
i ′
m

)
∂Gq (in)[[el

−→
∂ jgq]](in)Vijkl

+
[

− ∂G′
k(in)i

(
Tpq − 3

4
Vpllq

)
[[e′

q

−→
∂ ′

pg′
k]](in)

− i

4
∂G′

p(i ′
m)[[e

′
k

−→
∂ ′

ig
′
p]](i ′

m)∂G′
q (in)

× [[e′
l

−→
∂ ′

j g
′
q]](in)Vijkl

]∗}
{ρ̂(t)}exc. (B7)

In the same way as in Sec. IV B, using the analyticity of
ρh(g,g′∗), we can interpret this master equation as correspond-
ing to the following stochastic process in the Stratonovich
form:

dGk(in) = i
∑
pq

(
Tpq − 3

4
Vpllq

)
[[eq

−→
∂ pgk]](in)dt

+
∑

γ

√
ωγ

2i

∑
ip

O
(γ )
ip [[ep

−→
∂ igk]](in)dXγ , (B8)

dG′
k(in) = i

∑
pq

(
Tpq − 3

4
Vpllq

)
[[e′

q

−→
∂ ′

pg′
k]](in)dt

+
∑

γ

√
ωγ

2i

∑
ip

O
(γ )
ip [[e′

p

−→
∂ ′

ig
′
k]](in)dYγ . (B9)

Now, if we multiply these equations by ei1 , . . . ,ein and
e′
i1
, . . . ,e′

in
correspondingly, then sum them up over i1, . . . ,in

and over n, we obtain the stochastic equations for g-numbers
gk and g′

k given by Eqs. (87) and (88).

[1] R. Ng and E. S. Sørensen, J. Phys. A 44, 065305 (2011).
[2] P. Deuar and P. D. Drummond, Phys. Rev. Lett. 98, 120402

(2007).
[3] P. Deuar, J. Chwedenczuk, M. Trippenbach, and P. Zin, Phys.

Rev. A 83, 063625 (2011).
[4] Q.-Y. He, M. D. Reid, B. Opanchuk, R. Polkinghorne, L. E. C.
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