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We propose an alternative framework for quantifying coherence. The framework is based on a natural property
of coherence, the additivity of coherence for subspace-independent states, which is described by an operation-
independent equality rather than operation-dependent inequalities and therefore applicable to various physical
contexts. Our framework is compatible with all the known results on coherence measures but much more flexible
and convenient for applications, and by using it many open questions can be resolved.

DOI: 10.1103/PhysRevA.94.060302

Quantum coherence is a fundamental feature of quantum
mechanics, describing the capability of a quantum state to
exhibit quantum interference phenomena. It is an essential
ingredient in quantum information processing [1], and plays
a central role in emergent fields, such as quantum metrology
[2–4], nanoscale thermodynamics [5–11], and quantum biol-
ogy [12–16]. Although the theory of quantum coherence is
historically well developed in quantum optics [17–19], it is
only in recent years that the quantification of coherence has
attracted a growing interest [20–24] due to the development of
quantum information science.

By following the approach that has been established for
entanglement resource [25,26], Baumgratz et al. proposed a
seminal framework for quantifying coherence as a resource
in Ref. [22]. The framework comprises four conditions,
of which the first two are based on the notions of free
states and free operations in the resource theories, while the
third and fourth conditions are two constraints imposed on
coherence measures. Based on this framework, a number of
coherence measures, such as the relative entropy of coherence,
the l1 norm of coherence, and the coherence of formation
[20,22,27,28], have been put forward. With the coherence
measures, various properties of quantum coherence, such
as the relations between quantum coherence and quantum
correlations [29–33], the freezing phenomenon of coherence
[34,35], and the distillation of coherence [28,36], were
investigated. Hereafter, we refer to the framework proposed
by Baumgratz et al. as the BCP framework for simplicity.

Although the BCP framework has been widely used as an
approach to coherence measures, there are arguments against
the necessity of its last two conditions [29,37], and researchers
have different opinions on the definition of free operations. Be-
sides the incoherent operations defined in the BCP framework,
there have been many different suggestions on the definition of
free operations, such as maximally incoherent operations [20],
translationally invariant operations [23], and others [38–40].
These arguments against the conditions and free operations
imply that the frameworks for quantifying coherence are not
unique. There can be other frameworks different from the BCP
framework. For instance, the framework proposed by Marvian
and Spekkens in Ref. [23], called the MS framework for
simplicity, is based on the translationally invariant operations,
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and it comprises only two conditions, which correspond to the
first two of the BCP framework.

Possibly, based on different physical contexts, various
frameworks for quantifying coherence can be constructed,
and each of them may be with different conditions. The
question is then: What basic conditions should be included in a
well-defined framework for quantifying coherence, or is there a
framework consisting of the basic conditions that can avoid the
arguments against the previous conditions and are applicable
to various physical contexts? In this Rapid Communication,
we address this issue. We will put forward an alternative
framework for quantifying coherence. It consists of three basic
conditions, which are applicable to various physical contexts
and can avoid the arguments against the previous frameworks.
Our framework is compatible with all the known results on
coherence measures but much more flexible and convenient
for applications, and by using it, many open questions or
arguments can be easily resolved.

To present our framework clearly, it is instructive to
recapitulate some notions in resource theories, such as free
states and free operations. In general resource theories, the
notions of free states and free operations are, respectively,
for the states that contain no resource and the operations
that are unable to create the resource [41,42]. Specifically
to the coherence, a free state means a quantum state with
no coherence, known as an incoherent state in general, and a
free operation means a special quantum operation under which
coherence does not increase, known as an incoherent operation
in the BCP framework. Noting that the coherence of a state is
with respect to a fixed basis, known as the incoherent basis, we
hereafter use {|i〉,i = 0,1, . . . ,d − 1} to denote the incoherent
basis of a d-dimensional quantum system S. An incoherent
state can then be written as ρ = ∑

i ρii |i〉〈i|, and a general
state can be written as ρ = ∑

i,j ρij |i〉〈j | with coefficients ρij

being the elements of the density matrix. We further use C(ρ)
to denote the coherence of a state ρ, and � to denote a free
operation, which can be an incoherent operation or any other
operations as mentioned above. With these notions, we may
now be able to develop our framework consisting of three
essential conditions.

The first two of the three conditions are based on the
resource theories, just like those in the previous frameworks.
One of them originates from the notion of incoherent states. By
definition, an incoherent state means a state with no coherence.
It is natural to set the coherence of an incoherent state to
zero and let the coherence of a nonincoherent state (coherent
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state) be positive. That is, C(ρ) = 0 for the incoherent states
and C(ρ) > 0 for all other states. The other condition comes
directly from the notion of free operations. By definition, the
coherence of a state does not increase under a free operation.
We then have C(ρ) � C(�(ρ)).

Our third condition is based on a characteristic of coherence
itself. To develop it, we consider a special family of states,
which is with the form of block-diagonal matrices, ρ =
p1ρ1 ⊕ p2ρ2, i.e., ρ = (p1ρ1 0

0 p2ρ2
), where density operators

ρ1 and ρ2 are defined on the two independent subspaces
S1 and S2, respectively, and p1 and p2 are two possibility
coefficients with p1 + p2 = 1. Note that the coherence of
a state stems from the correlations or superpositions of the
incoherent basis states. Since there is no correlation between
the two subspace-independent states ρ1 and ρ2, the coherence
of ρ only comes from the inside correlations of each ρi ,
i = 1,2. Therefore, the coherence of ρ should not be more than
the total coherence of ρ1 and ρ2. Similarly, it should not be
less than the latter either, since ρ contains all the information
of ρ1 and ρ2. By noting that ρ is the mixture of ρ1 and ρ2

with weights p1 and p2, a reasonable condition can then be
expressed as

C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) + p2C(ρ2). (1)

Expression (1) is derived from the characteristic of quantum
coherence. It is a display of a basic property of coherence, to
which we refer as the additivity of coherence for subspace-
independent states.

The above three conditions form a general framework
for quantifying coherence. If we further specify incoherent
operations for free operations, our framework can be expressed
as follows. A functional C can be taken as a coherence measure
if it satisfies the following three conditions:

(C1) C(ρ) � 0 for all states, and C(ρ) = 0 if and only if ρ

are incoherent states;
(C2) C(ρ) � C(�(ρ)) if � is an incoherent operation;

and (C3) C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) + p2C(ρ2) for block-
diagonal states ρ in the incoherent basis.

The third condition in our framework is described by
only an operation-independent equality rather than operation-
dependent inequalities. This is the key to our framework. Many
advantages of the framework, such as the compatibility, flex-
ibility, and applicability, originate from this simple equality.
The following discussions will further elucidate the merits of
our framework.

First, we show that the additivity of coherence for subspace-
independent states, i.e., our third condition, is fulfilled by all
the coherence measures based on the BCP framework. To make
the proof clear, we recall the BCP framework. A functional C

can be taken as a coherence measure if it satisfies the following
four conditions:

(B1) C(ρ) � 0 for all states, and C(ρ) = 0 if and only if ρ

is an incoherent state;
(B2) C(ρ) � C(�(ρ)) if � is an incoherent operation, i.e.,

a completely positive trace-preserving (CPTP) map �(ρ) =∑
n KnρK

†
n with the Kraus operators Kn satisfying KnIK

†
n ⊂

I, where I is the set of incoherent states [43];
(B3) C(ρ) �

∑
n pnC(ρn), where pn = Tr(KnρK

†
n), ρn =

KnρK
†
n/pn, and Kn are the Kraus operators of an incoherent

CPTP map �(ρ) = ∑
n KnρK

†
n; and

(B4)
∑

n pnC(ρn) � C(
∑

n pnρn) for any set of states {ρn}
and any probability distribution {pn}.

We aim to show that any C satisfying the condi-
tions (B1)–(B4) will necessarily satisfy C(p1ρ1 ⊕ p2ρ2) =
p1C(ρ1) + p2C(ρ2). To this end, we consider an inco-
herent CPTP map, �(·) = P1 · P

†
1 + P2 · P

†
2 , where P1 =

|0〉〈0| + · · · + |N1 − 1〉〈N1 − 1| and P2 = |N1〉〈N1| + · · · +
|N1 + N2 − 1〉〈N1 + N2 − 1| are projectors onto S1 and
S2, with N1 and N2 being the dimensions of S1

and S2, respectively. It is easy to verify PnIP
†
n ⊂

I. According to (B3), since Tr[P1(p1ρ1 ⊕ p2ρ2)P †
1 ] =

p1, Tr[P2(p1ρ1 ⊕ p2ρ2)P †
2 ] = p2, P1(p1ρ1 ⊕ p2ρ2)P †

1 /p1 =
ρ1 ⊕ 0, and P2(p1ρ1 ⊕ p2ρ2)P †

2 /p2 = 0 ⊕ ρ2, we obtain

C(p1ρ1 ⊕ p2ρ2) � p1C(ρ1 ⊕ 0) + p2C(0 ⊕ ρ2). (2)

On the other hand, according to (B4), since p1ρ1 ⊕ p2ρ2 =
p1(ρ1 ⊕ 0) + p2(0 ⊕ ρ2), we have

C(p1ρ1 ⊕ p2ρ2) � p1C(ρ1 ⊕ 0) + p2C(0 ⊕ ρ2). (3)

However, C(ρ), as a valid coherence measure based on the
BCP framework, must satisfy both Eqs. (2) and (3). This results
in an equality,

C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1 ⊕ 0) + p2C(0 ⊕ ρ2). (4)

To obtain (C3), we need to prove C(ρ1 ⊕ 0) = C(ρ1). To
this end, we consider two incoherent CPTP maps, �a(·) =
Ka

0 · K
a†
0 with 〈i|Ka

0 |j 〉 = δij and �b(·) = ∑�N2/N1�
n=0 Kb

n · K
b†
n

with 〈j |Kb
n |i〉 = δi,j+nN1 , where 0 � i � N1 + N2 − 1, 0 �

j � N1 − 1, and �N2
N1

� is the smallest integer greater than

or equal to N2
N1

. It is easy to verify that both �a and �b

are incoherent CPTP maps, and there are �a(ρ1) = ρ1 ⊕ 0
and �b(ρ1 ⊕ 0) = ρ1. Thus, according to condition (B2),
we should have C(ρ1) � C(ρ1 ⊕ 0) � C(ρ1), which results
in C(ρ1 ⊕ 0) = C(ρ1). Similarly, we can prove C(0 ⊕ ρ2) =
C(ρ2). By substituting these relations into Eq. (4), we finally
obtain C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) + p2C(ρ2).

Second, we show that the BCP framework can be derived
from our framework. That is, each of the four conditions (B1)–
(B4) can be derived from (C1), (C2), and (C3). To prove it, we
only need to derive (B3) and (B4) from conditions (C1), (C2),
and (C3), since (B1) and (B2) are just corresponding to (C1)
and (C2).

We first derive (B3). To this end, we introduce an auxiliary
system A of dimension N , of which the incoherent basis is
denoted as {|n〉,0 � n � N − 1}. The auxiliary system A and
the system S form a combined system AS, of which the
incoherent basis is {|n〉 ⊗ |i〉}. We suppose that the whole
system is initially in the state,

ρAS = |0〉〈0| ⊗ ρ, (5)

and undergoes an incoherent CPTP map,

�AS (ρAS ) =
N−1∑
n=0

(Un ⊗ Kn)ρAS (Un ⊗ Kn)†, (6)
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where Un ⊗ Kn are the Kraus operators of �AS with Un =∑N−1
k=0 |k + n (mod N )〉〈k|, and Kn are the Kraus operators

of the incoherent CPTP map �. It is easy to verify that (Un ⊗
Kn)I(Un ⊗ Kn)† ⊂ I. Note that � has been defined as an
incoherent CPTP map. Substituting Eq. (5) into Eq. (6), we
have

�AS (ρAS ) =
N−1∑
n=0

pn|n〉〈n| ⊗ ρn, (7)

where pn = Tr(KnρK
†
n) and ρn = KnρK

†
n/pn.

According to condition (C3), we have

C(ρAS ) = C(|0〉〈0| ⊗ ρ) = C(ρ ⊕ 0) = C(ρ), (8)

and

C(�AS (ρAS )) = C

(
N−1∑
n=0

pn|n〉〈n| ⊗ ρn

)

= C(p0ρ0 ⊕ p1ρ1 ⊕ · · · ⊕ pN−1ρN−1)

=
N−1∑
n=0

pnC(ρn). (9)

According to condition (C2), from Eqs. (8) and (9) we
immediately derive

C(ρ) �
∑

n

pnC(ρn), (10)

i.e., the condition (B3).
By the way, one may find that the first equality in Eq. (9) im-

mediately leads to the condition C(ρ) � C(
∑N−1

n=0 pn|n〉〈n| ⊗
ρn), i.e., the classical flag monotonicity [22]. It implies that
the classical flag monotonicity, which was proved only for the
relative entropy of coherence and l1 norm of coherence, is
actually valid for all coherence measures satisfying our third
condition and therefore for all the coherence measures based
on the BCP framework.

We now derive (B4). We again consider the combined
system comprising the auxiliary system A and the system S,
as stated above. Now, we suppose the whole system is initially
in the state

ρAS =
N−1∑
n=0

pn|n〉〈n| ⊗ ρn, (11)

where {ρn,0 � n � N − 1} is a set of states and {pn,0 �
n � N − 1} is a probability distribution, and undergoes an
incoherent CPTP map,

�AS (ρAS ) =
N−1∑
n=0

(|0〉〈n| ⊗ I)ρAS (|0〉〈n| ⊗ I)†, (12)

where |0〉〈n| ⊗ I are the Kraus operators of �AS , satisfying
(|0〉〈n| ⊗ I )I(|0〉〈n| ⊗ I )† ⊂ I. Substituting Eq. (11) into
Eq. (12), we have

�AS (ρAS ) = |0〉〈0| ⊗
N−1∑
n=0

pnρn. (13)

According to condition (C3), we have

C(ρAS ) = C

(
N−1∑
n=0

pn|n〉〈n| ⊗ ρn

)
=

N−1∑
n=0

pnC(ρn), (14)

and

C(�AS (ρAS )) = C

(
|0〉〈0| ⊗

N−1∑
n=0

pnρn

)
= C

(
N−1∑
n=0

pnρn

)
.

(15)

According to condition (C2), from Eqs. (14) and (15) we
immediately derive

N−1∑
n=0

pnC(ρn) � C

(
N−1∑
n=0

pnρn

)
, (16)

i.e., condition (B4).
Third, our framework is efficient and convenient for

applications, and it can help to resolve some open questions
and arguments. For instance, our framework can help to resolve
the argument about the necessity of the last two conditions in
the BCP framework. As mentioned above, the two conditions
(B3) and (B4) have been suspected of necessity. Here, our
discussion shows that these conditions can be derived from the
natural property of coherence described by Eq. (1), and there-
fore they are reasonable requirements in the BCP framework.
Furthermore, our framework can simplify the calculations in
examining whether a functional C is qualified as a coherence
measure. Generally speaking, it is relatively easier to examine
whether a candidate of coherence measure satisfies (C3) than
to examine whether it satisfies (B3) and (B4), since (C3) is only
an equality and does not involve operations. For example, the
proof of the relative entropy of coherence can be significantly
simplified by using our framework, since condition (C3)
follows directly from the well-known relation for entropy
S(p1ρ1 ⊕ p2ρ2) = H (p1,p2) + p1S(ρ1) + p2S(ρ2), where S

is von Neumann entropy and H is Shannon entropy [1]. In the
following, we would like to give one more example, i.e., the
trace norm of coherence, to further show the efficiency of our
framework.

The trace norm of coherence is defined as

Ctr(ρ) = min
δ∈I

‖ρ − δ‖tr, (17)

where ‖ρ − δ‖tr = Tr |ρ − δ| is the trace norm between the
state ρ and the incoherent states δ [22]. Ctr has been expected
to be a coherence measure, but it is quite difficult to prove
it to satisfy all four conditions in the BCP framework. So
far, whether the trace norm of coherence is a legitimate
coherence measure is still an open question. Previous works
have proved that Ctr satisfies (B1), (B2), and (B4) [22,34].
Recently, it was further proved that (B3) is fulfilled at least
for qubit and X states [44,45]. Yet, it remains unknown
whether (B3) is fulfilled for all other states. By using our
framework, the open question is resolved, since Ctr does not
satisfy our third condition. To illustrate this, we need first to
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prove

Ctr(|�d〉〈�d |) = min
δ∈I

‖|�d〉〈�d | − δ‖tr = 2(d − 1)

d
, (18)

where |�d〉 = 1√
d

∑d−1
n=0 |n〉, d � 1. For this, we let Un =∑d−1

k=0 |k + n (mod d)〉〈k|, n = 0,1, . . . ,d − 1. By using the
relations ‖UAU †‖tr = ‖A‖tr and ‖A‖tr + ‖B‖tr � ‖A + B‖tr,
which are valid for all the same dimensional matri-
ces A,B and unitary operators U [46], we can ob-
tain ‖|�d〉〈�d | − δ‖tr = 1

d

∑d−1
n=0 ‖Un(|�d〉〈�d | − δ)U †

n‖tr �
1
d
‖∑d−1

n=0 Un(|�d〉〈�d | − δ)U †
n‖tr. Noting that Un|�d〉 = |�d〉

and
∑d−1

n=0 UnδU
†
n = Id , we further obtain ‖|�d〉〈�d | − δ‖tr �

‖|�d〉〈�d | − 1
d
Id‖tr. This inequality necessarily leads to

minδ∈I ‖|�d〉〈�d | − δ‖tr = ‖|�d〉〈�d | − 1
d
Id‖tr, which fur-

ther gives the result in Eq. (18). We then consider a special
state, ρ = 1

2ρ1 ⊕ 1
2ρ2, with ρ1 = 1

2 (|0〉 + |1〉)(〈0| + 〈1|) and
ρ2 = 1

3 (|2〉 + |3〉 + |4〉)(〈2| + 〈3| + 〈4|). By definition, there
is Ctr(ρ) = minδ∈I ‖ρ − δ‖tr � ‖ρ − δ0‖tr = 1, where δ0 =
diag( 1

2 , 1
2 ,0,0,0). On the other hand, from Eq. (18), we have

Ctr(ρ1) = 1, Ctr(ρ2) = 4
3 , and hence 1

2Ctr(ρ1) + 1
2Ctr(ρ2) = 7

6 ,
which shows that

Ctr
(

1
2ρ1 ⊕ 1

2ρ2
) �= 1

2Ctr(ρ1) + 1
2Ctr(ρ2). (19)

Therefore, the trace norm of coherence is not a legitimate
coherence measure, and it must violate (B3) too.

In passing, we would like to add that the modified trace
norm of coherence, C ′

tr(ρ) = minλ�0,δ∈I ‖ρ − λδ‖tr, can be
proved to satisfy (C1), (C2), and (C3), and therefore provides
a legitimate coherence measure [47]. However, it is quite
difficult to prove this result without using our framework.

All the above discussions show that our framework,
compared with the seminal BCP framework, has many
interesting features. (1) An operation-independent equality in
our framework takes the place of both an operation-dependent
inequality and an operation-independent inequality in the BCP
framework. This makes our framework simple in form and
convenient for applications. (2) Our third condition is fulfilled
by all the coherence measures based on the BCP framework,
and the BCP framework can be derived from our framework.
This compatibility can greatly simplify many calculations
by using our framework instead of the BCP framework. (3)
Our framework can help to resolve some open questions or
arguments about quantifying coherence. For instance, the open
question whether the trace norm of coherence is a legitimate
coherence measure is immediately resolved by using our
framework.

Before concluding, we would like to stress that our
framework, as an approach for quantifying coherence, is
generally applicable to various physical contexts. Although
we have used the notion of incoherent operations in the
expression of our framework in order to compare with the
BCP framework, our framework is still valid if the incoherent
operations are replaced by any other free operations as needed.
For instance, the incoherent operations can be replaced by
the translationally invariant operations defined in Ref. [23],

which leads to another expression of our framework. Note that
the translationally invariant operations, developed from the
resource theories of asymmetry [21,48–52], are described with
the help of a fixed observable H , of which the eigenstates just
correspond to the fixed basis in our framework. By definition, a
functional CH can be taken as a coherence measure relative to a
fixed observable H , if it satisfies the following two conditions:

(M1) CH (ρ) � 0, and CH (ρ) = 0 if and only if ρ is a
translationally invariant state, i.e., satisfying e−iH tρeiHt = ρ;
and

(M2) CH (ρ) � CH (�(ρ)) if � is a translationally invariant
operation, i.e., a CPTP map satisfying e−iH t�(ρ)eiHt =
�(e−iH tρeiHt ) for all states ρ.

Comparing the MS framework and our framework, one may
find that (M1) and (M2) are just equivalent to (C1) and (C2)
if the incoherent operations in our framework are replaced
by the translationally invariant operations. However, there is
one more condition in our framework. In the language of a
fixed observable H , an equivalent expression of Eq. (1) can be
rewritten as

(M3) CH1⊕H2 (p1ρ1 ⊕ p2ρ2) = p1CH1 (ρ1) + p2CH2 (ρ2),
where Hi represent the components of observable H in the
subspaceSi on which the density operators ρi are defined. Such
expression of our framework is applicable to the translationally
invariant operations. It is interesting to note that all the
known coherence measures based on the MS framework,
such as Dyson-Wigner-Yanase skew information [23,53], the
trace norm of commutator [23], and the quantum Fisher
information [54], fulfill our third condition. The coherence
measures fulfilling our third condition automatically satisfy
the monotonicity of coherence under selective measurements
on average and the nonincreasing of coherence under mixing
of states, while the coherence measures fulfilling only the
MS framework but not the third condition cannot have these
features.

In conclusion, we have put forward a property of coherence,
called the additivity of coherence for subspace-independent
states, which is applicable to various physical contexts,
and based on it, an alternative framework for quantifying
coherence is constructed. Our framework, consisting of three
basic conditions, is compatible with all the known results on
coherence measures but much more flexible and convenient
for applications, and it can significantly improve the theories
of quantifying coherence.

Our finding leads to a much simpler and more practical
expression of the seminal BCP framework if the incoherent
operations are specified for free operations. Many open
questions, which have been proved difficult to resolve by
using the previous frameworks, can be resolved by using our
framework.
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[20] J. Åberg, arXiv:quant-ph/0612146.
[21] G. Gour and R. W. Spekkens, New J. Phys. 10, 033023 (2008).
[22] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.

113, 140401 (2014).
[23] I. Marvian and R. W. Spekkens, Nat. Commun. 5, 3821 (2014).
[24] F. Levi and F. Mintert, New J. Phys. 16, 033007 (2014).
[25] M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1 (2007).
[26] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[27] X. Yuan, H. Zhou, Z. Cao, and X. Ma, Phys. Rev. A 92, 022124

(2015).
[28] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
[29] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso,

Phys. Rev. Lett. 115, 020403 (2015).
[30] Y. Yao, X. Xiao, L. Ge, and C. P. Sun, Phys. Rev. A 92, 022112

(2015).
[31] Z. Xi, Y. Li, and H. Fan, Sci. Rep. 5, 10922 (2015).

[32] J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Phys. Rev.
Lett. 116, 160407 (2016).

[33] C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T.
Byrnes, Phys. Rev. Lett. 116, 150504 (2016).

[34] T. R. Bromley, M. Cianciaruso, and G. Adesso, Phys. Rev. Lett.
114, 210401 (2015).

[35] X.-D. Yu, D.-J. Zhang, C. L. Liu, and D. M. Tong, Phys. Rev. A
93, 060303 (2016).

[36] E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and
M. Lewenstein, Phys. Rev. Lett. 116, 070402 (2016).

[37] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston,
and G. Adesso, Phys. Rev. Lett. 116, 150502 (2016).

[38] B. Yadin, J. Ma, D. Girolami, M. Gu, and V. Vedral, Phys. Rev. X
6, 041028 (2016).

[39] A. Streltsov, arXiv:1511.08346.
[40] E. Chitambar and G. Gour, Phys. Rev. Lett. 117, 030401 (2016).
[41] B. Coecke, T. Fritz, and R. W. Spekkens, Inf. Comput. 250, 59

(2016).
[42] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett. 115, 070503

(2015).
[43] An incoherent operation can be a CPTP map with Kn being

(M × N )-dimensipnal matrices, which satisfy KnINKn ⊂ IM ,
not confined to M = N . Here IN (IM ) is the set of incoherent
states of the N (M)-dimensional space.

[44] L.-H. Shao, Z. Xi, H. Fan, and Y. Li, Phys. Rev. A 91, 042120
(2015).

[45] S. Rana, P. Parashar, and M. Lewenstein, Phys. Rev. A 93,
012110 (2016).

[46] R. Bhatia, Matrix Analysis (Springer-Verlag, New York, 1997).
[47] Condition (C2), i.e., C ′

tr (ρ) � C ′
tr (�(ρ)), immediately

follows from the fact that ‖A‖tr � ‖�(A)‖tr for all Hermite
matrices A and CPTP maps � [55]. To prove (C3), we
rewrite λδ as λ1δ1 ⊕ λ2δ2, and then we can derive the
following relations, C ′

tr(p1ρ1 ⊕ p2ρ2) = minλ1�0,λ2�0,δ1∈I,δ2∈I‖
p1ρ1 ⊕ p2ρ2 − λ1δ1 ⊕ λ2δ2‖tr = minλ1�0,δ1∈I‖p1ρ1−λ1δ1‖tr +
minλ2�0,δ2∈I‖p2ρ2 − λ2δ2‖tr = p1minλ′

1�0,δ1∈I‖ρ1 − λ′
1δ1‖tr +

p2minλ′
2�0,δ2∈I‖ρ2 − λ′

2δ2‖tr = p1C
′
tr(ρ1) + p2C

′
tr(ρ2).

[48] J. A. Vaccaro, F. Anselmi, H. M. Wiseman, and K. Jacobs,
Phys. Rev. A 77, 032114 (2008).

[49] G. Gour, I. Marvian, and R. W. Spekkens, Phys. Rev. A 80,
012307 (2009).

[50] B. Toloui, G. Gour, and B. C. Sanders, Phys. Rev. A 84, 022322
(2011).

[51] M. Skotiniotis and G. Gour, New J. Phys. 14, 073022 (2012).
[52] I. Marvian and R. W. Spekkens, New J. Phys. 15, 033001

(2013).
[53] D. Girolami, Phys. Rev. Lett. 113, 170401 (2014).
[54] B. Yadin and V. Vedral, Phys. Rev. A 93, 022122 (2016).
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