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Observation of pair tunneling and coherent destruction of tunneling in arrays of optical waveguides
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We report on the experimental realization of a photonic system that simulates the one-dimensional two-particle
Hubbard model. This analogy is realized by means of two-dimensional arrays of coupled optical waveguides,
fabricated using femtosecond laser inscription. By tuning the analogous “interaction strength,” we reach the
strongly interacting regime of the Hubbard Hamiltonian, and demonstrate the suppression of standard tunneling
for individual “particles.” In this regime the formation of bound states is identified through the direct observation
of pair tunneling. We then demonstrate the coherent destruction of tunneling (CDT) for the paired particles
in the presence of an engineered oscillating force of high frequency. The precise control over the analogous
“interaction strength” and driving force offered by our experimental system opens an exciting route towards
quantum simulation of few-body physics in photonics.
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I. INTRODUCTION

Elucidating the physics of interacting electrons in crys-
talline solids constitutes one of the most challenging prob-
lems in modern physics, with direct implications for our
understanding of quantum magnetism and superconductivity.
Theoretical toy models, such as the Hubbard model [1],
can be used to examine these problems, but challenging
issues can arise, especially in the intermediate to strong
coupling regimes where perturbation theory fails. However,
the one-dimensional Hubbard model is exactly solvable by
means of Bethe ansatz techniques [2,3]. In particular, the
two-particle solution in the singlet sector—the triplet sector
is noninteracting—shows both scattering and bound states for
any value of the interaction strength. Remarkably, bound state
solutions, known as doublons, exist even in the presence of
repulsive interactions. This phenomenon can be understood in
terms of the band gap, or the boundedness of the spectrum
in the Hubbard model, which implies that two repulsively
interacting particles, initially occupying the same lattice well,
will have no available scattering energies to dissociate into.
This can be further explained by an exact symmetry between
attractive and repulsive interactions reported in [4–6]. These
repulsively bound states were experimentally observed using
both bosonic [7] and fermionic [8] particles in optical lattices.
These experiments triggered an intense activity exploring
the physics of few particles in optical lattices, including the
two-body [9–19] and three-body [20,21] problems, in which
certain phenomena that have no analogy in free space occur.
For example, the Mattis-Gallinar effect [22], due to the absence
of Galilean invariance, states that the effective mass of a
lattice bound pair is higher than its free-space analog, and
was observed for excitons [23]. Three-body composites in
bosonic [21] or mass-imbalanced one-dimensional fermionic
systems [20] can also exist due to an effective exchange
mechanism between a bound pair and a neighboring third
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particle. It is of great interest to identify these exotic few-
body properties in the absence of a many-body environment.
This is difficult using solid-state systems and challenging
to probe using traditional cold-atom experiments. Recently,
few-body physics was explored with cold atoms in the
absence of an optical lattice [24,25]; using this approach, a
one-dimensional Heisenberg spin chain [26,27] was realized
using few atoms [28].

Interestingly, the physics of two interacting quantum
particles moving in a one-dimensional lattice can be simulated
using a noninteracting system, such as photonic crystals
operating in the linear optical regime [29–34]. This approach
is based on a mapping, which we now briefly summarize; see
also [35,36]. Let us consider the standard Hubbard model (with
� = 1) in one dimension,

Ĥ = −J
∑

s

(â†
s âs+1 + â

†
s+1âs) + U0

2
n̂s(n̂s − 1), (1)

where â
†
s (âs) is the creation (annihilation) operator for a

particle at the sth lattice site, n̂s = â
†
s âs is the number operator,

J is the nearest-neighbor hopping amplitude, and U0 is the
on-site interaction energy (note that U0 > 0 for repulsive
interactions). Considering only two particles in the system,
one expands the two-body wave function in the position
basis as [37] |ψ(t)〉 = ∑

l,m Cl,m(t) |l,m〉, where Cl,m is the
probability amplitude for finding one particle at site l and the
other one at site m. The time evolution of these coefficients is
then determined by solving the equation

i
dCl,m(t)

dt
= − J (Cl+1,m + Cl−1,m + Cl,m+1 + Cl,m−1)

+ U0Cl,mδl,m, (2)

which results from the Schrödinger equation i∂t |ψ〉 =
Ĥ |ψ〉. Importantly, Eq. (2) can be formally mapped into a
Schrödinger equation that describes the dynamics of a single
particle in a two-dimensional lattice, with sites located at
position r = axl1x + aym1y , where ax,y denote the lattice
constants, and (l, m) are integers labeling the lattice sites
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FIG. 1. (a) Schematic diagram of a photonic square lattice where
the diagonal sites l = m (shown in red) have a shifted propagation
constant �β (≡U0, the on-site interaction energy) compared to the
off-diagonal waveguides. The excitation of a diagonal waveguide at
the input is the optical analog of two interacting particles at the same
potential well of a one-dimensional lattice at time t = 0 (inset 1).
The excitation of the two off-diagonal waveguides corresponds to
the particles located at different lattice sites at t = 0 (inset 2); see
also Ref. [30]. (b) Schematic diagram of two interacting particles
in a one-dimensional lattice driven by a sinusoidal force (Fac).
(c) A modulated photonic square lattice which mimics the dynamics
of (b). (d) Micrograph of the facet of a laser-fabricated photonic
square lattice. The lattice axes were rotated by 45◦ with respect to
the vertical direction (V) to achieve κx ≈ κy = κ (see the Appendix).
The circled waveguide was excited at the input for all measurements.
The red arrow indicates the main diagonal (l = m).

in the 2D plane. In this picture, J denotes the hopping
amplitude along both spatial directions, and U0 corresponds
to an on-site potential, which only affects the sites located
along the diagonal l = m. As a result, any noninteracting
two-dimensional system described by Eq. (2) can be exploited
to capture the physics of the two-body Hubbard problem
[Eq. (1)].

In this article we explore this mapping by considering a
photonic square lattice (ax,ay = a), a square array of cou-
pled optical waveguides [Fig. 1(a)]. Recently, such photonic
systems have been developed to study single-particle effects
such as CDT in a double well [38,39], Bloch oscillations [40],
dynamic localization [41,42], Landau-Zener tunneling [43],
Anderson localization [44], chiral edge modes [45], and the
localized states associated with flat-band lattices [46–48].
Specific effects related to interacting systems have also been
studied based on photonic lattices, see Refs. [29–34], suggest-
ing an interesting alternative to cold-atom experiments [17,49].

II. IMPLEMENTATION AND MAPPING

We consider a straight photonic square lattice where the
waveguides located along the main diagonal (l = m) have a
shifted propagation constant (�β = βoff-diagonal − βdiagonal) as
compared to all other (off-diagonal) waveguides, see Fig. 1(a).
The propagation of light across this photonic lattice is governed
by the following coupled mode equation [30,31]:

i
dEl,m(z)

dz
= − κ(El+1,m + El−1,m + El,m+1 + El,m−1)

+ �βEl,mδl,m, (3)

where El,m is the envelope of the electric field at the
waveguide (l,m), z is the propagation direction, and κ is the

nearest-neighbor coupling constant. The analogy with the
Hubbard problem in Eq. (2) is obtained by identifying
(up to physical units) t ↔ z, J ↔ κ , and U0 ↔ �β. In
the experiment, we only excite a diagonal site and hence
simulate the dynamics of two interacting particles (either
bosons or fermions with opposite spins [35]) initially placed
in the same potential well. One can, however, simulate the
dynamics of two bosons or two spinless fermions placed
in two different wells, by exciting two off-diagonal waveg-
uides with symmetric (El,m = Em,l) or antisymmetric (El,m =
−Em,l) states, respectively. Although �β is negative in our
experiments, it should be noted that the dynamics of the
correlated particles is independent of the nature or sign of
interactions [4–6].

Using this photonic simulator, we first experimentally
demonstrate the suppression of standard single-particle tunnel-
ing and the emergence of tunneling of pairs, which occurs in the
“strongly interacting” regime (�β � κ). We then analyze how
coherent destruction of tunneling [32] emerges for the paired
particles in the presence of a simulated time-oscillating force,
which is realized by periodically modulating the waveguides
along the main diagonal, see Fig. 1(c). This effect includes a
diagonal term in Eq. (3), of the form [36,50]

An0ω
2a√

2λ
sin(ωz)(l + m)El,m, (4)

where n0 is the refractive index of the medium, λ = 2πλ

is the free-space wavelength, and A (ω) is the amplitude
(frequency) of the sinusoidal modulation. Note that this
modulation corresponds to adding a time-dependent driving
term

Ŵ (t) = K sin(ωt)
∑

s

sn̂s, (5)

in the original Hubbard Hamiltonian [Eq. (1)], with the simple
identification K ↔ An0ω

2a/(
√

2λ).

III. TIME EVOLUTION OF TWO
INTERACTING PARTICLES

In order to observe the effect of the on-site interaction,
we fabricated ten straight (A = 0) square lattices of 15 mm
propagation length (zmax) with ten different values for the
shifted propagation constant �β. The precise tuning of �β

was realized, without affecting κ and waveguide losses, by
changing the translation speed (v) of fabrication; within the
range of our fabrication parameters, the shift in propagation
constant varies almost linearly with translation speed (Fig. 5);
see also [33]. The lattice constant is a = 16.35 μm, the
nearest-neighbor coupling constant is κ = 0.04 mm−1, and
the next-nearest-neighbor coupling was insignificant for the
maximum observable propagation distance (for all lattices).
The off-diagonal waveguides have, in all cases, the same
propagation constant, since they were fabricated with the same
translation speed (vod = 9 mm/s). The diagonal waveguides
in each lattice were fabricated with a different translation
speed, vd = vod − �v, with �v = 0 to 4.5 mm/s in steps of
0.5 mm/s, resulting in a different propagation constant (�β)
along the diagonal; this gives rise to the analogous on-site
“interaction” term [Eq. (3)]. Figure 2(a) shows the observed
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FIG. 2. Experimentally observed output intensity distributions
when light was launched into the l,m = 4,4 site (circled waveguide)
of the 15-mm-long straight photonic square lattices (A = 0). Here the
coupling constant is κ = 0.04 mm−1. The analogous interaction �β is
(a) 0.0, (b) −0.12 mm−1, (c) −0.21 mm−1, and (d) −0.32 mm−1. The
corresponding simulated intensity distributions are shown in (e)–(h).
Each image is normalized such that the total output power is 1. See
also Fig. 6. The red arrow indicates the main diagonal (l = m).

output intensity distribution for �v = 0 (or �β = 0) and for
the input condition: E4,4(0) = 1. Applying the same input
condition, we observed that the output intensity distribu-
tion becomes increasingly localized as �v was increased
[Figs. 2(b)–2(d)]; this is in excellent agreement with the theo-
retical intensity distributions [see Figs. 2(e)–2(h)], which were
obtained by solving the coupled-mode equations [Eq. (3)].
Theoretically, these results can be understood in terms of the
effective mass of the two-body bound state associated with
the Hubbard Hamiltonian Eq. (1), i.e., M∗ ≈ −�

2U0/(4J 2a2),
whose absolute value increases as a function of the interaction
strength in the strongly interacting regime [10]. Note that the
values of κ and zmax were chosen such that the lattice sites at
the edges are never excited; see Fig. 6.

In the strongly interacting regime of the Hubbard model,
standard tunneling for individual particles is replaced by
two-body tunneling processes. Such a pair tunneling cannot
be identified in Fig. 2, due to the very weak pair tunneling
parameter κ2 
 κ and the small propagation length (15 mm)
of the lattices. Hence, in order to reveal pair tunneling, a
longer photonic lattice (70-mm-long) was fabricated; note that
a larger lattice constant (18 μm) was also chosen in order
to inhibit next-nearest-neighbor hopping in this longer lattice.
Here the other lattice parameters are given by κ = 0.027 mm−1

and �β = −0.21 mm−1. When the (4, 4) waveguide was
excited at the input of this lattice, we observe significant
amount of light in the diagonal waveguides [Fig. 3(b)]. This
is a direct demonstration of pair tunneling, and hence, the
formation of a bound state in the strongly interacting regime.
We see good agreement between experimental results, the
full two-body simulation [i.e., the solution of Eq. (3)] and
an effective single-particle simulation; the latter corresponds
to the dynamics of a paired state hopping in a one-dimensional
lattice, with the modified (pair tunneling) constant κ2 =
−2κ2/�β [9,10].

 Experiment              Theory (two-body)(a)                                     (b)                                     (c)

+ +

Theory (effective
 single particle)

00.51
(d)

FIG. 3. (a) Schematic diagram of pair hopping in the strong-
interaction regime (U0 � J ). (b) Experimental observation of pair
hopping in the 70-mm-long straight photonic square lattice for
κ = 0.027 mm−1, �β = −0.21 mm−1. The corresponding two-body
simulation and the effective single-particle simulation with pair
coupling κ2 = −2κ2/�β, are shown in (c) and (d), respectively. Each
image is normalized such that the total output power is 1. The white
circle indicates the waveguide that was excited at the input.

IV. COHERENT DESTRUCTION OF TUNNELING (CDT)

The dynamics of the two interacting particles in the
presence of a sinusoidal driving force is determined by κ , �β,
ω, and K [Eqs. (2)–(5)], and the transport along the array can
be suppressed (CDT) under the following conditions. In the
high frequency regime (ω � �β), the external driving renor-
malizes the hopping amplitude as for the noninteracting case
and causes approximate CDT when the zeroth order Bessel
function [J0(K/ω)] is zero. For ω 
 �β (low frequency
regime) CDT cannot be observed simultaneously for paired
and unpaired particles as the effective sinusoidal force on the
paired particle is twice the force acting on an unpaired particle.
In this context the role of K/�β was elaborated in Ref. [51];
see also [35]. Recently, it was reported in Ref. [32] that CDT
can be simultaneously realized for both paired and unpaired
particles under appropriate driving conditions if ω ∼ �β

and ω � κ , up to the long time scale (∼ω/κ2). It should
also be mentioned that Creffield et al. [52] demonstrated
the possibility of realizing CDT and Mott transition in a
Bose-Einstein condensate using low-frequency square wave
driving [53].

Here we focus on CDT in the high frequency regime
(ω � �β,κ). In the experiment, 15 square lattices (15-mm-
long) were fabricated with sinusoidally modulated waveguides
[Fig. 1(c)]. The amplitude (A) of modulation was varied
from 1 to 15 μm in steps of 1 μm. The on-site interaction
�β = −0.18 mm−1, driving frequency ω = 1.57 mm−1,
and the hopping amplitude κ = 0.04 mm−1 in all cases.
Figures 4(a)–4(d) show the output intensity distributions when
light is launched at the (4, 4) site of each lattice. As A is
increased the output intensity distribution is observed to be
increasingly localized and becomes almost fully localized near
A = 11 μm. As A was further increased, the tunneling is
restored. To quantify the localization, the inverse participation
ratio (IPR) was calculated from the measured output intensity
distributions. The IPR is a measure of localization and is
defined as [50] IPR = ∑

I 2
l,m/(

∑
Il,m)2, where Il,m is the

light intensity at the (l, m) waveguide. The variation of IPR
as a function of z is shown in Fig. 7. The measured IPR
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FIG. 4. (a)–(d) The intensity distributions at the output of
modulated square lattices (15-mm-long) for the input condition:
E4,4(0) = 1. The amplitude of modulation (A) is indicated for each
image. A different color scale was chosen to highlight the low
intensities. (e) The variation of IPR as a function of A. The red circles
show the measured IPR. The dotted red line indicates the theoretically
obtained variation of IPR. Here �β = −0.18 mm−1, κ = 0.04 mm−1,
and ω = 1.57 mm−1. The solid black curve represents the variation
of IPR for �β = 0. (f) Floquet quasienergies (black circles) for
a sinusoidally driven one-dimensional lattice with two interacting
particles. The wider miniband corresponds to the unpaired state and
the narrower miniband is for the paired states. The overlap of the
input state E4,4 = 1 and the eigenstates of the narrower miniband as
a function of A is shown by the dotted blue line.

(at z = 15 mm) as a function of A is shown in Fig. 4(e)
by the red circles, in good agreement with the theoretical
result (dotted red line). To highlight the difference between
the observed IPR for two interacting particles and that for two
noninteracting particles, the theoretical IPR with no interac-
tions (�β = 0) is shown by the solid black line for which
CDT occurs when J0(K/w) = 0 (i.e., A ≈ 11 μm). Note that
site-dependent loss is not important for our lattices (see the
Appendix).

The observed variation of IPR with the amplitude of
modulation can be explained from the Floquet quasienergy
spectrum [51,54]. For the modulated square lattices, the
Hamiltonian is a periodic function of z, i.e., Ĥ (z) = Ĥ (z +
z0). In this situation, using Floquet theory, the solution of the
Schrödinger equation can be written as |�(z)〉=e−iεz |φ(z)〉
with |φ(z)〉=|φ(z + z0)〉, where |φ(z)〉 is a Floquet state and ε

is the quasienergy. To obtain the quasienergies we diagonalize
the evolution operator defined as

U = T exp

[
−i

∫ z0

0
H (z′)dz′

]
, (6)

where T indicates the time ordering. The normalized
quasienergy (ε/ω) is plotted in Fig. 4(f) as a function of A

for fixed values of �β and κ . As can be seen in Fig. 4(f), the
quasienergies for two interacting particles in a periodically
driven one-dimensional lattice form two minibands. The
wider miniband corresponds to the states in which the two
particles are in separate wells (unpaired state) and the narrower
miniband corresponds to the paired states. The minibands
are separated by a gap ∼�β, corresponding to the (anti-)
binding energy. Both minibands (pseudo) collapse near A =

11 μm which causes (approximate) CDT. The calculation of
the overlap of the input state E4,4 = 1 and the eigenstates
of the narrower miniband as a function of A is shown
by the dotted blue line in Fig. 4(f). The overlap is more
than 80% irrespective of the value of A. Importantly, since
the narrower miniband is less dispersive compared to the
Floquet band of two noninteracting particles (not shown in
the figure), the localization (IPR) of the interacting system
is stronger than in the case of a noninteracting system [i.e.,
the dotted red line in Fig. 4(e) lies above the solid black
line].

V. CONCLUSIONS

We have experimentally implemented the photonic re-
alization of two interacting particles in a one-dimensional
tight-binding lattice with only nearest-neighbor tunneling. The
suppression of independent tunneling of individual particles
and the evidence of second order pair tunneling was observed
in the strong interaction regime. We then showed the effect of
an engineered sinusoidal force on the paired state. Coherent
destruction of tunneling was observed as the amplitude of
the force is varied. Our experiment paves the way for
simulating few-body physics in low-dimensional lattices with
a clean nearest-neighbor-only hopping, for both static and
periodically driven (or Floquet) Hamiltonians. Successful
implementation of similar photonic setups will enable us to
experimentally simulate other intriguing problems such as N
particles in a double-well potential [29], the dynamics of the
correlated particles in a random potential [55,56], dissipation-
induced correlation [34], and two-body Su-Schrieffer-Heeger
model [57].

Raw experimental data are available [58].
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APPENDIX

In this Appendix we briefly discuss the fabrication pa-
rameters, measurement of coupling constant, and analogous
interaction (or shift in propagation constant) for completeness.
We then present the measured values of waveguide losses
(propagation loss+bend loss) and finally show numerical
simulations related to Fig. 2(a) and Figs. 4(a)–4(d). We show
that within the range of our fabrication parameters �β varies
linearly with translation speed (see also Refs. [33,59]) without
affecting κ and waveguide losses (see also Ref. [60]).

1. Fabrication and characterizations

The coupled optical waveguide arrays were fabricated
using the femtosecond laser inscription technique [61]. The
substrate material (Corning Eagle2000) was mounted on x-y-z
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translation stages (Aerotech: ABL1000) and each waveguide
was fabricated by translating the substrate once through the
focus of a 500 kHz train of circularly polarized subpicosecond
(∼350 fs) laser pulses, generated by a Menlo BlueCut fiber
laser system. The waveguide refractive index profile was
controlled using the slit-beam shaping method [62]. The
white-light-transmission micrograph of the facet of a finite
square lattice is shown in Fig. 1(d). The lattice contains 49
waveguides, each of which supports only a fundamental mode
at 740 nm wavelength. The lattice axes were rotated by 45◦
with respect to the vertical direction (V) to achieve κx ≈ κy ,
where κx and κy are the coupling strengths along the two axes
of the lattice.

The parameters that describe a photonic lattice are the
coupling constants between the lattice sites and the propaga-
tion constant of each waveguide. To estimate the variation of
nearest-neighbor coupling constant (κ) with translation speed,
ten symmetric evanescently coupled two-waveguide couplers
(both waveguides with identical fabrication parameters) were
fabricated with translation speeds 9 to 4.5 mm/s in steps of
0.5 mm/s. As can be seen from Fig. 5, the variation of κ with
translation speed can be ignored as it is comparable to the ran-
dom variation of κ (i.e., the off-diagonal disorder). To measure
next-nearest neighbor coupling (κn), two-waveguide evanes-
cent couplers were fabricated with waveguide-to-waveguide
separation D = √

2a, a is the lattice constant of the square
lattices, and it was found that κn ≈ 0 for the maximum
observable propagation distance. To estimate the variation of
the waveguide refractive index (nwg) with translation speed, we
fabricated ten one-dimensional diffraction gratings with 15 μm
grating period, using translation speeds of 9 to 4.5 mm/s. The
physical depth of each grating was measured (using an optical
microscope) to be d = 5 ± 0.5 μm, and it is reasonable to
assume that for our inscription parameters, the variation of
writing speed only changes the magnitude of the refractive
index contrast, not its spatial extent. By measuring the absolute
diffraction efficiency of these gratings at the first order (η1),
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FIG. 5. Experimentally measured variation of shift in propagation
constant [β(v) − β(v = 9 mm/s)] as a function of translation speed v

(filled circles). The solid line is the linear fit. Blue stars: The variation
of hopping amplitude (κ) with translation speed can be ignored as
it is comparable to the random variation of κ (i.e., the off-diagonal
disorder).
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FIG. 6. Variation of light intensity along the propagation direction
z for a photonic square lattice. Here �β = 0, A = 0, and κ =
0.04 mm−1. The red curve is for the central waveguide that was
excited at the input (z = 0). The black, green, and the blue curves in-
dicate intensities at the nearest-neighbor (NN), next-nearest-neighbor
(NNN), and next to next-nearest-neighbor waveguides. Figure 2(a)
shows the measured output intensity distribution at z = 15 mm.

and assuming that the diffraction gratings are sinusoidal phase
gratings, nwg is calculated from [63] as

η1 = J 2
1

(
2π (nwg − n0)

λ
d

)
, (A1)

where n0 is the refractive index of the substrate, and J is
the Bessel function of the first kind. The quantity of our
interest is the shift in propagation constant (i.e., 2π

λ
�neff) as

the translation speed is changed. Assuming that the difference
in the effective indices of the modes (�neff) is very close to
the difference in waveguide refractive indices (�nwg) for two
waveguides fabricated with two different translation speeds,
we plot the shift in propagation constant [β(v) − β(v =
9 mm/s)] as a function of translation speed; see Fig. 5. The
filled circles in Fig. 5 are the measured values and the solid
line is the linear fit.
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FIG. 7. Variation of inverse participation ratio (IPR) as a function
of propagation distance z for the modulated photonic lattices
presented in Figs. 4(a)–4(d). The solid black line indicates the z

value where the output intensities were experimentally measured.
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2. Loss measurement

To measure the variation of propagation loss with transla-
tion speed, ten isolated straight waveguides (translation speeds
9 to 4.5 mm/s in steps of 0.5 mm/s) were fabricated in
a 15-mm-long substrate. We estimated propagation loss by
subtracting the coupling losses from the measured insertion
loss for each waveguide. The propagation loss of the waveg-
uide fabricated with 9 mm/s was found to be 0.92 dB/cm.
The variation of propagation loss with translation speed was
insignificant, with a maximum fluctuation of ≈0.04 dB/cm.
To estimate bend loss, two sets of sinusoidally modulated
waveguides were fabricated with translation speeds of 9 and
6.5 mm/s. For each set, 15 waveguides were fabricated with
1 � A � 15 μm in steps of 1 μm. Now the quantity of interest
is the difference in total loss (propagation loss+bend loss) for
two waveguides fabricated with equal amplitude of modulation
and two different translation speeds, which was measured

to be <0.15 dB for 15-mm-long waveguides. Therefore the
site-dependent loss can be ignored.

3. Numerical simulations

In Fig. 6 we have shown the numerically calculated
evolution of intensity distribution as a function of z for a 7 × 7
photonic square lattice with �β = 0 and A = 0, for which the
effective tunneling is maximal, see also Fig. 2(a). It should be
mentioned that for all the experiments presented in the main
text, the waveguides at the edges are not excited. We then
show (Fig. 7) how the inverse participation ratio (IPR) varies
as a function of z for four different values of A. Note that
the evolution of light intensity along the propagation direction
can be experimentally measured by detecting the fluorescent
emission if the waveguide arrays are fabricated inside fused
silica instead of Corning Eagle2000; see Ref. [33].

[1] J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963).
[2] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[3] M. Caffarel and R. Mosseri, Phys. Rev. B 57, R12651 (1998).
[4] R. Mosseri, J. Phys. A: Math. Gen. 33, L319 (2000).
[5] M. Valiente, Phys. Rev. A 81, 042102 (2010).
[6] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S.

Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch et al.,
Nat. Phys. 8, 213 (2012).

[7] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. H. Den-
schlag, A. Daley, A. Kantian, H. Büchler, and P. Zoller, Nature
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