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The effect of a Kerr nonlinearity on dynamical tunneling is studied, using coupled whispering gallery modes
in an optical microcavity. The model system that we have chosen is the “add-drop filter,” which is comprised
of an optical microcavity and two waveguides coupled to the cavity. Due to the evanescent fields scattering
on the waveguide, the whispering gallery modes in the microcavity form doublets, which manifest themselves
as splittings in the spectrum. As these doublets can be regarded as a spectral feature of dynamical tunneling
between two different dynamical states with a spatial overlap, the effect of a Kerr nonlinearity on the doublets is
numerically investigated in the more general context of the relationship between cubic nonlinearity and dynamical
tunneling. Within the numerical realization of the model system, it is observed that the doublets show a bistable
transition in their transmission curve as the Kerr nonlinearity in the cavity is increased. At the same time, one
rotational mode becomes dominant over the other one in the transmission, since the two states in the doublet
have uneven linewidths. By using coupled-mode theory, the underlying mode dynamics of the phenomena is
theoretically modeled and clarified.
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I. INTRODUCTION

A whispering gallery mode (WGM) in a microcavity is
recognized for its easy experimental realization and high cavity
quality factor (Q factor). Using such properties of WGMs,
high intensity can be easily induced in a micrometer-scale
optics, and the induced high intensity allows for χ (3)-nonlinear
optical effects [1]. Recently, the nonlinear optical effect
of microcavities has demonstrated various applications. In
particular, the optical frequency comb generation, which is
enabled by the χ (3)-nonlinear optical effect of a microcavity,
has attracted researchers’ interest [2,3] because of its wide
range of applications.

It is thus interesting to understand other phenomena related
to the χ (3)-nonlinearity, which can occur in a microcavity
experiment. The Kerr effect is a manifestation of the χ (3)-
nonlinear effect, by which the refractive index is tuned
proportional to the squared value of the electric field. A
pronounced effect of the Kerr nonlinearity is the bistability
of an optical resonant mode. If a resonant mode is excited
in an optical resonator filled with a Kerr-nonlinear material,
every point on the resonance profile sees a different refractive
index due to the enhanced intensity. This difference in the
refractive index results in the shift of the resonant frequency.
If the shift surpasses a certain threshold, the whole reso-
nance profile appears to lean to one side, and a part of it
becomes bistable, i.e., two stable amplitudes correspond to a
given driving frequency [1]. This process is called “bistable
transition.”

A microcavity filled with a Kerr-nonlinear material can
exhibit bistability and the bistable transition of a WGM. Up
to now, the bistability of a WGM has been studied for various
applications such as optical switches or filters [4,5]. In this
work, however, we are going to focus on another aspect of
the Kerr effect in a microcavity, namely its relationship with
dynamical tunneling.

“Dynamical tunneling” refers to a transition of dynamical
states in quantum and wave mechanics that is forbidden in
classical ray dynamics [6,7]. It hereby extends the usual
concept of quantum (or wave) mechanical tunneling across
potential barriers in configuration space to the more general
phase-space domains. In the past decade, the phenomena
relevant to the dynamical tunneling have been actively ex-
plored, using various systems including cold-atom systems
and WGMs [8–13].

As a solution of Maxwell’s equations, a WGM has an
intrinsic time-reversal symmetry, which manifests itself in
two counterpropagating waves. Owing to the high Q factor
again, the degeneracy of a WGM can be lifted by a small
perturbation, such as Rayleigh scattering [14,15]. The doublet
of a WGM can be interpreted as a state resulting from tunneling
between two different dynamical states, namely clockwise
and counterclockwise propagating waves. Since these two
coupled waves occupy the same spatial domain, we can find
an analogy with dynamical tunneling [7,8], in contrast to a
conventional tunneling between spatially separate domains.
The bistable transition of such a WGM doublet has already
been experimentally observed [15,16].

For a conventional resonant tunneling which occurs be-
tween spatially separate regions, it is well known that a cubic
nonlinearity such as the Kerr nonlinearity can suppress the
tunneling rate. For instance, if the population of two spatially
separate symmetric potential wells are unevenly excited, the
excited population can break the symmetry of the system
through the nonlinearity and leads to the suppression of the
resonant tunneling between the separate wells. Such effects of
the cubic nonlinearity are referred to as “self-trapping.” Since
the cubic nonlinearity appears in the nonlinear Schrödinger
equation, i.e., the governing equation of a bosonic many-
body system by mean-field approximation, such self-trapping
processes have been well studied in Bose-Einstein conden-
sates [17]. Recently, the effect of the cubic nonlinearity has also
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been investigated by using WGMs in microcavities [18,19]. In
particular, Ref. [18] shows that coupled WGMs of two or more
microcavities can exhibit self-trapping, if the microcavities
have a Kerr nonlinearity.

Contrary to Ref. [18], we address the effect of the cubic
nonlinearity on the dynamical tunneling by using the doublet
of a WGM. In this work, the two modes of a WGM doublet are
coupled in a single microcavity by perturbing the evanescent
field. Because the coupled modes are excited in the same
mode volume, the change of the refractive index by the Kerr
nonlinearity affects both of the modes in the same way.
Therefore, different effects of the Kerr nonlinearity are
expected, compared to those occurring for the conventional
tunneling.

With this motivation, we investigate how the Kerr non-
linearity affects the doublet of WGMs, using numerical and
theoretical models. As a model system, we choose an “add-
drop filter” [20–29], which is comprised of a microcavity and
two waveguides coupled to the cavity. Using this system,
we can pick up a certain component from the incoming
wave in one waveguide, which is resonant to a WGM of
the microcavity, and redirect it to the other guide. This
feature of the add-drop filter is valuable because it can be
applied to channel dropping. Therefore, the add-drop filters
have been experimentally realized with diverse test bathes,
including photonic crystals and silica microspheres [21–23].
Also various aspects of this device has been investigated
numerically and theoretically [24–29].

In this work, the transmission and the mode dynamics of
the add-drop filter are numerically and theoretically analyzed,
varying the Kerr nonlinearity of the microcavity. In the
numerical simulation of the add-drop filter, it is observed that
one directional whispering gallery mode becomes dominant
when the Kerr nonlinearity is increased. The reason behind
this is mainly that the perturbation that lifts the degeneracy
between the states also leads to uneven linewidths of the
doublet, and they result in different bistable transitions.
Using the theoretical model based on “coupled-mode theory
(CMT)” [20,28,29], we analyze the details of the mode
dynamics behind the phenomena. The theoretical model of
CMT has also been proven to be applicable to the optical
frequency comb experiments [30].

In the next section, the add-drop filter will be introduced,
and the numerical simulation of its transmission and WGM
doublets will be presented. In Sec. III, the effect of the
nonlinearity on the transmission and the WGMs will be
investigated. To analyze the properties of the mode dynamics,
such as the rotation and the stability of WGMs, a theoretical
model will be built on the basis of CMT [20,28,29]. By
analyzing the mode dynamics, the physical background behind
the observed phenomena will be clarified. The results of the
numerical simulations in this work will first be presented with
nondimensionalized units. Then, the experimental realizability
of our work will be discussed with the realistic units at the end
of Sec. III.

II. ADD-DROP FILTER AND CMT MODELING

The add-drop filter consists of a microcavity and two optical
fibers that are side coupled to the cavity through an evanescent
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FIG. 1. Structure of the add-drop filter: a circular microcavity
with radius R is coupled to two waveguides. The four branches given
by the waveguides are indexed by i = 1, 2, 3, and 4. The coupling
is through the scattering of evanescent fields on the waveguides. The
width of the waveguides is 0.04R and the closest gap between the
cavity and the waveguides is 0.1R. The transmission from channel 1
to channel 2 are numerically computed by the ratio of the outgoing
wave S2− to the incoming wave S1+.

field. The two waveguides effectively provide four channels.
In Fig. 1, the four channels are indexed by i = 1, 2, 3, and 4.
In this work, the field in the lower waveguide is not analyzed.
However, we keep it in the scheme for two reasons. First, the
lower waveguide makes the geometry of the system twofold
symmetric, which helps lift the degeneracy of WGMs more
easily. Second, if the waveguide which has the incoming wave
is not experimentally available for the measurement of the
outgoing wave, the mode dynamics presented in this work can
be investigated by measuring the outgoing wave in the lower
waveguide.

In this add-drop filter, the shortest distance between the
cavity boundary and the waveguide is set equal to 0.1R,
where R is the radius of the cavity. The refractive index of
the cavity and the waveguide is chosen to be n0 = 2.0. In
order to induce a strong backscattering of evanescent field
and to thereby lift the degeneracy of a WGM more easily,
very narrow waveguides with the width of 0.04R are put at
the upper and lower sides of the cavity. To investigate the
transmission, a continuous-wave source with frequency � is
set at channel 1, which provides the incoming wave S1+. In
the numerical analysis, the amplitude of the source S1+ is
set equal to 10, and the wave arriving in channel 2, S2−,
is computed by means of the finite-difference time domain
(FDTD) method [31,32]. The numerical computation is first
performed with the units of length and time that are scaled by
0.2R and 0.2R/c, respectively, where c is the speed of light.

If a mode with an extremely high cavity-Q factor is
excited in the microcavity, the coupling via scattering can
lift the intrinsic degeneracy of the doublet state and split
the modes [4,14]. The scattering on the two waveguides
attached to the cavity is adjusted to be strong enough to lift
the degeneracy. By the FDTD simulation, such a coupling is
observed. Figure 2 shows that a whispering gallery mode with
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FIG. 2. (a) Transmission amplitude at channel 2 without Kerr
nonlinearity. Due to the scattering on the waveguides and the high
Q factor of the resonance, the transmission dip is split. The excited
waves in the cavity on the left-hand side and the right-hand side of the
split dips (denoted by 1 and 3) exhibit clockwise rotation, whereas the
wave between the split dips (denoted by 2) shows counterclockwise
rotation. The result of the comparison with Eq. (9) is superimposed
as a dotted curve. Each dip exhibits different parity [(b) odd, (c) even]
with respect to the symmetry axes of the system.

the radial mode number l = 1 and the azimuthal mode number
m = 28 is coupled to the waveguide. As the cavity modes have
extremely high Q factors, the transmission curve exhibits two
split dips, and each dip corresponds to a different parity with
respect to the reflectional symmetric axis. In Fig. 2(a), it is
noted that the transmission amplitude of each dip reaches 0.5.
This implies that this device transfers 25% of the incoming
flux from the upper waveguide to the lower as a channel-
dropping filter. Figures 2(b) and 2(c) show the two modes
corresponding to the left and the right dips in the transmission
curve in Fig. 2(a), which display odd and even symmetry,
respectively.

Another noteworthy feature can be found in the rotation
of the excited wave, which depends on the relative position
to the split peaks. As the incoming wave runs from the left-
hand side to the right-hand side of the upper waveguide in
Fig. 1, it is intuitively expected that the wave in the cavity
would be launched on the upper side of the cavity parallel to
the incoming wave, and thus the excited field in the cavity
would rotate in the clockwise direction. However, they exhibit
the counterclockwise field rotation in between the split dips,
contrary to the intuitive expectation, whereas on the right-hand
and the left-hand sides of the split dips, they show the more
intuitive clockwise rotation [14].

The splitting of the WGMs is analyzed by using “coupled-
mode theory.” For the sake of intuitive modeling, two counter-

rotating modes with the same resonant frequency ω are initially
adopted as a basis, and the following equations are derived:

dac

dt
= [

i(ω + g) − γ − 1
2�

]
ac + (

ig − 1
2�

)
acc + ηcS1+,

(1)

dacc

dt
=

[
i(ω + g) − γ − 1

2
�

]
acc +

(
ig − 1

2
�

)
ac

+ ηccS1+. (2)

Here the subscripts c and cc stand for clockwise and coun-
terclockwise modes, and g is the coupling parameter given
by the scattering. γ is the characteristic attenuation of the
WGM, given by the mode configuration [33,34], and � is
the additional attenuation induced by the scattering. Although
the source is put only in channel 1, it is necessary to assume the
driving ηcc because the counterclockwise mode is also driven
by scattering on the waveguides.

Since the modes associated with the two transmission dips
are two standing-wave modes, the basis is transformed to

ψ+ = ψc + ψcc

2
and ψ− = ψc − ψcc

2i
. (3)

For the circular microcavity, these modes are represented by
the product of a Bessel function Jm and a sin or cos function,
as follows:

ψ+(r,θ ) = Jm(nkr) cos(mθ ),
(4)

ψ−(r,θ ) = Jm(nkr) sin(mθ ),

where n is the refractive index of the cavity and the waveguide,
and k is the resonant wave number of the microcavity with
the azimuthal mode number m. The resonant wave number
is determined by solving Maxwell equations with the given
microcavity boundary and mode numbers. Corresponding to
the change of basis, the mode equations in Eqs. (1) and (2) are
also rearranged in the form

da+
dt

= [i(ω + 2g) − γ − �]a+ + η+S1+, (5)

da−
dt

= (iω − γ )a− + η−S1+, (6)

where the driving strengths are given by

η+ = ηc + ηcc

2
and η− = ηc − ηcc

2i
. (7)

Then, the transmission amplitude at channel 2 can be formu-
lated as

t = 1 − η∗
+a+
S1+

− η∗
−a−
S1+

(8)

= 1 − |η+|2
i(ω + 2g − �) − γ − �

− |η−|2
i(ω − �) − γ

. (9)

Because some parameters in Eq. (9) cannot be analytically
evaluated, the values of the couplings and attenuations are
obtained by taking them as free parameters and comparing
Eq. (9) with the numerical result from the FDTD simulation
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in Fig. 2. This yields

|η+|2 = 5.043 × 10−5, |η−|2 = 1.159 × 10−4,

γ = 1.118 × 10−4, � = 1.135 × 10−4. (10)

To obtain these values, the contributions of the neighboring
modes to the transmission are carefully considered. In the
spectrum of a circular microcavity, the (m,l) = (20,3) and the
(24,2) modes (m: azimuthal mode number; l: radial mode
number) are standing on the left-hand and the right-hand
sides of the doublet, respectively. Their contributions to the
transmission are extracted prior to the comparison.

With the values in Eq. (10), Q factors of the spilt modes can
be computed by

Q+ = ω + 2g

2(� + γ )
, Q− = ω

2γ
, (11)

which yields the order of 105. These computed Q factors are
lower, by a factor of 10−3, than the experimentally available
values, which can be of the order of 108 [2,3]. This is mainly
attributed to the low wave numbers kR that are considered in
the computation. Due to computational limitation concerning
the number of lattice grid points and time steps that we can
account for in the numerical simulation, the computed modes
have smaller wave numbers as well as smaller mode numbers
than WGMs in experiments. This leads to a larger geometrical
damping and a higher coupling with the waveguide modes,
which inevitably results in such low Q factors.

III. KERR NONLINEARITY IN NUMERICAL
COMPUTATION AND CMT MODELING

In a Kerr medium, the electric field and the electric
displacement are related by the nonlinear equation [1]

D = ε0(1 + χ (0))E + ε0χ
(3)E3. (12)

By substituting a monochromatic electromagnetic wave E =
Eω exp(iωt) into Eq. (12), the third-order nonlinear term in
Eq. (12) leads to

[Re(Eωe−iωt )]3 = 1

4
Re

(
E3

ωe−3iωt
) + 3

4
|Eω|2Re(Eωe−iωt ).

(13)

By neglecting the third-harmonic term, the effective refractive
index can be written in the well-known form

n = n0 + 3χ (3)

4n2
0

|E|2. (14)

The effect of the Kerr nonlinearity on the split whisper-
ing gallery modes is first numerically investigated. In this
simulation, the pumping power is set equal to |S1+|2 = 100
and the unit of χ (3) is accordingly scaled. Figure 3 presents
the FDTD computation of the transmission amplitude through
the add-drop filter and its evolution with the increase of χ (3).
As the nonlinearity increases, the resonance profiles in the
transmission curves lean more toward the left-hand side. When
the nonlinearity exceeds a certain value, it is noticed that an
abrupt upward shift occurs in both of the transmission dips.
This is an evidence of the bistable transition because unstable
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FIG. 3. FDTD simulation of the transmission amplitude associ-
ated with the split whispering gallery modes. (a) χ (3) = 1.0 × 10−7,
(b) 2.0 × 10−7, (c) 3.0 × 10−7, (d) 4.0 × 10−7, (e) 5.0 × 10−7, and
(f) 6.0 × 10−7. The intensity of the whispering gallery modes lies in
the range of |E|2 = 2 ∼ 6 × 104.

mode dynamics is involved in the parts where the abrupt shifts
occur.

The bistable transition progresses gradually with the in-
crease of χ (3). The remarkable feature in this transition is the
difference in the bistable transition of the two dips. Namely,
the broader a dip is, the slower it goes bistable with increase
of the nonlinearity. For instance, at χ (3) = 1.0 × 10−7, the
left-hand-side dip shows the bistability, whereas the right-
hand-side dip does not yet. Obviously, this difference results
from the uneven linewidth of the doublet. As seen in the
previous section, the two dips of the doublet states have
different damping rates in the linear regime, which are given by
γ and � + γ , respectively, for the right- and the left-hand-side
dips. This uneven transition to bistability leads to two uneven
depths of the dips in the transmission profile, as shown in
Fig. 3. Another noticeable observation in this computation is
that the clockwise rotation of the field gets dominant when
the value of χ (3) is sufficiently large, such as 5 × 10−7. As the
transmission dips lean to the left-hand side, the spectral region
between the two dips which shows the counterclockwise field
rotation shrinks, and the transmission dip on the left-hand
side vanishes. In contrast, the right-hand-side curve of the dip
remains and keeps the clockwise field rotation as it has in the
linear optical regime.

Using the CMT model, this numerical observation can
be reconstructed and the underlying mode dynamics behind
the observation can be addressed more clearly. To apply the
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CMT model to the system, the Kerr-nonlinear effect can be
incorporated in the model by treating it as a perturbation. For
other values necessary for the model, such as attenuations and
resonant frequencies, those in Eq. (10) are used. The electric
field in the cavity has to be first represented with the basis
functions, ψ+ and ψ−, as follows:

E = a+(t)ψ+(r) + ia−(t)ψ−(r), (15)

where an imaginary number i is multiplied to the term of
ψ− to reveal both the relationship to the rotational basis more
explicitly and consistency with Eq. (3). Then, the field intensity
formed in the cavity is proportional to

|E|2 = (a∗
+ψ+ − ia∗

−ψ−)(a+ψ+ + ia−ψ−). (16)

By applying the perturbation approach to Eq. (14) [35], the
mode equations in Eqs. (5) and (6) are modified to

da+
dt

= [i(ω + 2g) − γ − �]a+ + iωκ++|a+|2a+

+ iωκ+−(2a+|a−|2 − a∗
+a2

−) + η+S1+, (17)

da−
dt

= (iω − γ )a− + iωκ−−|a−|2a−

+ iωκ+−(2a−|a+|2 − a∗
−a2

+) + η−S1+, (18)

where κ++,κ+− and κ−− are given by

κpq = 3χ (3)

4n2

∫ |ψp|2|ψq |2dV∫ |ψ+|2 + |ψ−|2dV
, where p,q = + or − .

(19)

The integral in Eq. (19) is conducted for the area of the
microcavity. If the standing wave modes in Eq. (4) are
substituted into the above equation, the κ’s are related by

κ++ = κ−− = 3κ+−. (20)

Due to the overlapped mode volume of dynamical tunneling,
κ+− is considerably large in comparison to a system involving
a spatial tunneling, such as two microcavities coupled through
evanescent field overlap.

In order to search for stationary states of the mode
equations, the following Ansätze are first introduced:

a+ = A+ei(�t+φ+), (21)

a− = A−ei(�t+φ−). (22)

By substituting Eqs. (21) and (22) into Eqs. (17) and (18), the
mode equations are reduced to

i�A+ = [i(ω + 2g) − γ − �]A+ + i3ωκA3
+

+ iωκ[2A+A2
− − A+A2

−e−i2(φ+−φ−)] + K+e−iφ+ ,

(23)

i�A− = (iω − γ )A− + i3ωκA3
−

+ iωκ[2A−A2
+ − A−A2

+ei2(φ+−φ−)] − iK−e−iφ− ,

(24)
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FIG. 4. Results of the CMT analysis for the split transmission
under χ (3) nonlinearity. With increasing nonlinearity, stationary
states are identified and plotted. Stable and unstable branches of
the profile are denoted by blue and red colors, respectively. (a)
χ (3) = 1.0 × 10−7, (b) 2.0 × 10−7, (c) 3.0 × 10−7, (d) 4.0 × 10−7,
(e) 5.0 × 10−7, and (f) 6.0 × 10−7. The superimposed black dotted
lines are connecting the branches that are most likely to be observed
in numerics and in an experiment. They show good agreement with
Fig. 3.

where K± are given by |η±|K and the amplitude K of the
source is set equal to 10, as the source amplitude in the
numerical computation.

By numerically determining self-consistent solutions of
Eqs. (23) and (24), stationary states are identified at a given
nonlinearity κ and a driving frequency. To facilitate the
comparison with the full numerical solution, the obtained
stationary states are converted to transmission amplitude by
using Eq. (8). The result of the computation reveals the
underlying bistability profile of the full numerical solution.
Figure 4 shows a bistable transition in the transmission profiles,
following the increase of nonlinearity.

As mentioned in Sec. I, when the χ (3) nonlinearity exceeds
a certain threshold, three stationary states correspond to one
frequency in a bistable range. In this case, the two states
with the highest and the lowest amplitudes have stable mode
dynamics around themselves, whereas the one in the middle
has unstable dynamics.

As the resonance profile is tilted by the bistable transition,
there arises naturally a possibility that the profile can have
an overlap with the nearest mode on the leaning side of the
bistability. For the WGM doublet under the investigation,
the nearest mode on the leaning side of the bistability, i.e.,
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the left-hand side on the spectrum, is the mode with the mode
numbers (l,m) = (20,3), and its resonant wave number is given
by kR = 16.225. Figure 5 shows that this neighboring mode
is still far away from the WGM mode under consideration,
compared to the width and the tilt of the leaning peaks. The
latter is determined by

δkR = κkRRe[3A2
− + A2

+(1 − ei(φ+−φ−))]. (25)

Thus, the possibility of a coupling to this mode can be
neglected.

In order to measure the stability of stationary states, Ansätze
are introduced for a+ and a−:

a+ = (α+ + iβ+)ei�t and a− = (α− + iβ−)ei�t , (26)

where the real and the imaginary parts of the complex
amplitudes α and β are time dependent, unlike A+ and A−
in Eqs. (21) and (22).

By substituting a+ and a− in Eq. (26) into Eqs. (17)
and (18) and by separating the real and the imaginary parts,
the following four coupled equations are derived:

dα+
dt

= −(γ + �)α+ − (ω + 2g − �)β+ − 3ωκ(α2
+ + β2

+)β+ − 2ωκ(α2
− + β2

−)β+ + κω(2α−β−α+ − α2
−β+ + β2

−β+) + K+,

dβ+
dt

= (ω + 2g − �)α+ − (γ + �)β+ + 3ωκ(α2
+ + β2

+)α+ + 2ωκ(α2
− + β2

−)α+ + κω(α+β2
− − α+α2

− − 2α−β−β+),

dα−
dt

= −γα− − (ω − �)β− − 3ωκ(α2
− + β2

−)β− − 2ωκ(α2
+ + β2

+)β− + κω(2α+β+α− − α2
+β− + β2

+β−),

dβ−
dt

= (ω − �)α− − γβ− + 3ωκ(α2
− + β2

−)α− + 2ωκ(α2
+ + β2

+)α− + κω(α−β2
+ − α−α2

+ − 2α+β+β−) − K−. (27)

The stability at given amplitudes can be inferred from the
Jacobian matrix of the above four equations. If the eigenvalues
of the Jacobian matrix are all negative, the associated stationary
state has a stable mode dynamics around it, while an unstable
dynamics is inferred otherwise [36–38]. The result of the
stability computation is encoded on the resonance profile with
a color code. In Fig. 4, stable and unstable branches are denoted
by blue and red colors, respectively.

If the stability of a stable branch is quantified by the smallest
absolute value of the eigenvalues of the Jacobian matrix, the
higher stable branch in the transmission curve has a larger
stability that the lower one. Therefore, the upper branch is
more likely to be numerically converged and experimentally
observed. In Fig. 4, the curves connecting upper stable
branches are superimposed as black dotted lines. These
curves show a good agreement with the numerical results in
Fig. 3.

In this computation, the difference in the bistable transition
of the two dips is also observed. As seen in Fig. 3, the
right-hand-side dip in Fig. 4 is still completely monostable
at χ (3) = 1 × 10−7, whereas the left-hand-side dip already
gets into the bistable regime. This is apparently caused by
the uneven damping of the doublet. Since the two dips have
different dampings, namely γ and γ + � in the linear regime,
the right-hand-side dip with higher damping shows slower
bistable transition. In the end, the right-hand-side dip takes
up the most part of the dotted curve in Fig. 4, whereas the
left-hand-side dip is strongly suppressed when it goes to
the bistable regime. At the same time, the spectral region
between the two dips which shows the counterclockwise
field rotation, shrinks. In the bistable transition, each part of
the transmission dip keeps the field rotation. Hence, WGMs
dominantly show a clockwise rotation over the transmis-
sion dips when the system gets into the strongly bistable
regime.

To more clearly render the mode dynamics behind this phe-
nomenon, the associated rotating amplitudes are reconstructed

by CMT modeling, again. For this purpose, the basis functions
are transformed back to the rotational basis by reversing
Eq. (3). Figure 5 shows the result of the transformation.
In Fig. 5, the amplitude of the clockwise rotating mode is
displayed by a dotted curve, and that of the counterclockwise
rotating one is represented by a solid curve. In the bistable
transition, one of these curves exhibits a twist of the peak,
whereas the other one shows a leaning peak to the left-hand
side. By comparing the amplitude of the clockwise and
the counterclockwise modes, the part of the curve where
the counterclockwise rotation is dominant is identified and
shaded with gray color in Fig. 5. In this comparison, the
amplitude in the lower stable branch is chosen in the bistable
region because the lower branch has the higher stability. The
figure shows an apparent tendency, namely that the region
of the counterclockwise rotation shrinks with the increase
of nonlinearity. In other words, the clockwise becomes
dominant over the resonant profile, as is also numerically
observed.

Let us finally discuss the relevance of this work to
practical experiments. If the model system is experimentally
incorporated by a silicon-dioxide microcavity with a diam-
eter of 100 μm and the intracavity intensity of 1 GW cm−2

is induced, the investigated range of χ (3) corresponds
to

χ (3) = 5 ∼ 15 × 10−16 cm2/W. (28)

The χ (3) value of a silicon-dioxide material lies in the lower
part of this range.

The magnitude of the pumping power in the simulation can
be obtained by the squared amplitude S1+ in Eqs. (1) and (2)
with the same scaling for the magnitude of χ (3). This yields the
intensity of 103 W, which is much higher than the pumping
power in experiments [2,3]. However, this discrepancy can be
justified by the large leakage of the WGM in the simulation. As
the WGMs in our simulation have smaller wave numbers and
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FIG. 5. Relative amplitudes of clockwise (dotted line) and coun-
terclockwise (solid line) rotating modes with respect to the driving
amplitude S+. The stability of each branch is denoted by the same
color code as in Fig. 4 (stable: blue; unstable: red). (a) χ (3) = 1.0 ×
10−7, (b) 2.0 × 10−7, (c) 3.0 × 10−7, (d) 4.0 × 10−7, (e) 5.0 × 10−7,
and (f) 6.0 × 10−7. The range where the counterclockwise rotating
mode is dominant is shaded by gray color, and the corresponding
amplitude that is likely dominant in this range is denoted by a thick
line.

lower Q factors than those in experiments, the leakage of the
mode intensity is inevitably higher. In order to compensate for
such a high leakage and induce the intracavity intensity which
is comparable to the experimental value and high enough
for the Kerr effect, it is necessary to assume a high enough
pumping power.

As the CMT model is verified by the good agreement
with the FDTD simulation, our theoretical model is applied
to realistic values of wave numbers with a practical pumping
power, such that nkR ∼ 100 with 0.1 W for pumping. For
the mode damping γ and �, values are chosen of the order
of 10−8, where the values deduced from experimental Q

factors of WGMs lie. As Fig. 6 shows, the result confirms
the same behavior of the split resonance, i.e., that one
rotational wave gets dominant in a doublet with increase of
the Kerr nonlinearity. Since the bistable transition of a WGM
doublet under Kerr nonlinearity have been experimentally
observed [15,16] and, in particular, it is shown that the
symmetry breaking can occur at powers below the threshold
for frequency comb generation [16], the underlying mode
dynamics presented in this work can also be experimentally
verified and the result of this study can be applied to frequency
comb generation.
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FIG. 6. The same computation as in Fig. 5 with practical
parameters. For this computation, we set ω = 48.901725 and g =
4.63 × 10−7 with 0.1 W for pumping. For each mode, dampings
are set equal to γ = 4.22 × 10−8 and � = 3.38 × 10−8. As the Kerr
nonlinearity increases from (a) χ (3) = 1.0 × 10−7 to (b) 5.0 × 10−7,
the spectral range where the counterclockwise mode is dominant
(shaded by gray color) reduces.

IV. CONCLUSION

The effect of a Kerr nonlinearity on coupled whispering
gallery modes is investigated numerically and theoretically.
In this study, an optical add-drop filter, which consists of
a microcavity and two side-coupled waveguides, is chosen
as a model system. When a whispering gallery mode with
extremely high Q factor is induced in the microcavity, the
intrinsic degeneracy of the whispering gallery mode can be
lifted by scattering of the evanescent field, thus forming a
doublet state. Correspondingly, the transmission curve also
exhibits two split downward peaks. The evolution of these
split peaks with increasing nonlinearity is first numerically in-
vestigated by using the FDTD algorithm. In this computation,
the transmission shows a typical bistable transition under the
influence of the cubic nonlinearity. However, the two peaks of
the doublet show different transition to bistability, since the
two peaks have different dampings. As a result, one side of the
peak with higher damping takes a large part of the transmission
curve as soon as the bistability is induced. Thus, the rotation
of field that is mainly observed on this side of the peak gets
dominant.

These numerically observed phenomena are addressed by a
coupled-mode-theory (CMT) model. Using the perturbation
approach, we incorporate the nonlinear optical effect in
the CMT model and obtain the dynamics of modes in the
microcavity. This theoretical modeling shows a quantitative
consistency with the numerical observations and reveals how
the one-directional rotation of field becomes dominant with
increasing nonlinearity.

Using the theoretical analysis developed in this work, we
anticipate that the various experiments which exhibit cubic-
nonlinear phenomena in a microcavity, such as optical circuits
and optical frequency comb generators, can be addressed.
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