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We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D)
waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the
effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate
the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to
a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected
in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the
output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can
also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy
shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around
the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find
important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon
frequency comb generator.
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I. INTRODUCTION

Photonic structure with reduced dimensions, such as one-
dimensional (1D) photonic waveguides, cannot only enhance
the photon-emitter interaction but also guide photons, which
may find important applications in quantum devices and
quantum information [1,2]. A number of systems can be treated
as a 1D waveguide such as optical nanofibers [3], photonic
crystals with line defects [4], surface-plasmon nanowires [5],
and superconducting microwave transmission lines [6–10].
These 1D systems are also excellent platforms for studying
many-body physics since the interaction between the emitters
induced by the waveguide modes can be long range [11].
Strong photon-photon interactions may be also achieved in
these systems [12–16]. In analogy with “cavity quantum
electrodynamics (QED),” this system is usually termed as
“waveguide QED” [17].

The stationary results of the photon transport in a
waveguide-QED system, including a single photon or mul-
tiple photons interacting with a single emitter or multiple
emitters, have been extensively studied based on the Bethe-
ansatz approach [18–23], Lippmann–Schwinger scattering
theory [24,25], input-output theory [26–28], the Lehmann–
Symanzik–Zimmermann reduction approach [29], and the
diagrammatic method [30,31]. In addition, dynamical theories,
which allow us to study the real-time evolution of the emitter
excitations and photon pulse, have also been studied [32–36].
Many applications of the waveguide-QED system have been
proposed, such as highly reflecting mirrors [37–39], single-
photon diodes [40–42], efficient single-photon frequency con-
verters [43–46], single-photon transistors [47–51], photonic
quantum gates [52–54], and single-photon frequency comb
generator [55].

*zeyangliao@physics.tamu.edu

In the previous calculations [17–22,24–30,32–36], the ef-
fect of the non-waveguide vacuum modes is included by simply
adding a phenomenological decay factor in the Hamiltonian.
This approximation is valid when the emitter separation is of
the order of or larger than the resonant wavelength. However,
it was recently shown that cold atoms can be trapped around
a 1D waveguide even in the subwavelength region [56–58].
Quantum dots array with subwavelength separation can be
also engineered [59]. If the emitter separation is much smaller
than the resonance wavelength, the emitter dipole-dipole
interaction induced by the non-waveguide vacuum modes
cannot be neglected [60–63]. In addition, the emitters may
have different transition frequencies due to the inhomogeneous
local fields or nonuniform impurities [64], which is seldom
considered in this system.

In this paper, going beyond earlier works, we develop a dy-
namical theory for single-photon transport in a 1D waveguide-
QED system where the emitters can be either identical or
nonidentical and both the effects of the waveguide and the
non-waveguide vacuum modes are included. When the emitter
separation is much smaller than the resonant wavelength, the
emitter dynamics and emission spectra can be significantly
modified by the dipole-dipole interaction induced by the
non-waveguide vacuum modes. From the modifications of the
reflection and transmission spectra, we can clearly compare the
results with and without the dipole-dipole interaction induced
by the non-waveguide vacuum modes. We find that the dipole-
dipole interaction induced by the non-waveguide vacuum
modes can induce photon transparency in the waveguide
system. In addition, we also show that emitters with different
transition frequencies can also significantly couple to each
other and induce remarkable coherence effects. From the
emission spectra we can quantify the effects of the dipole-
dipole interaction between emitters with different transition
frequencies, and we show the transition from coupled emitters
to independent emitters as their energy difference increases.
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FIG. 1. Single-photon transport in a 1D waveguide coupled to
multiple identical or nonidentical emitters. The emitters can couple
to each other via the waveguide and non-waveguide photon modes.
Black solid curve is the incident field, red dotted curve is the reflected
field, and blue dashed curve is the transmitted field.

Interestingly, when the energy difference between the emitters
is close but nonzero, a very narrow transparency window can
occur around the resonance frequency. A similar effect has
been studied in an ensemble of atoms based on semiclassical
and mean-field theory and is named dipole-dipole induced
electromagnetic transparency (DIET) [65]. Here, we provide
an ab initio calculation for the DIET and this phenomenon
may be easier to experimentally observe in our system. Our
theory here may provide an important tool for studying many-
body physics and designing new waveguide-based quantum
devices.

This paper is organized as follows: In Sec. II, we de-
rive dynamical equations for single-photon transport in a
1D waveguide coupled to identical or nonidentical emitters
including the effects of the non-waveguide photon modes.
We also derive the reflection and transmission photon spectra
of this system. In Sec. III, we compare the results with
and without including the dipole-dipole interaction induced
by the non-waveguide photon modes in the cases that one
emitter is initially excited or a one single-photon pulse is
incident. By calculating the emission-spectrum difference, we
quantify the effects of the dipole-dipole interaction induced
by the non-waveguide photon modes. In Sec. IV, we study the
photon transport in the case of nonidentical emitters where we
show that DIET can occur in this system. We also show the
transition from coupled emitters to independent emitters by
increasing the emitter energy difference. In Sec. V, we study
the results beyond the two-emitter system where we show that
very narrow single-photon frequency combs can be generated.
Finally, we summarize our results.

II. MODEL AND THEORY

A. Emitter excitation dynamics

We consider a single-photon transport in a 1D waveguide
coupled to multiple quantum emitters which may have differ-
ent transition frequencies (Fig. 1). The emitters can interact
with the waveguide and non-waveguide photon modes. The
interaction Hamiltonian in the rotating wave approximation is
given by [66]

H = �

Na∑
j=1

∑
k

(
g

j

k e
ikzj σ+

j ake
−iδω

j

k t + H.c.
)
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, (1)

where the first term is the coupling between the quantum
emitters and the waveguide photon modes, and the second
term is the coupling between the quantum emitters and the
non-waveguide photon modes. Here, Na is the number of
quantum emitters, δω

j

k = ωk − ωj (δω�qλ
= ω�qλ

− ωj ) is the
detuning between the transition frequency of the j th emitter
ωj and the frequency ωk (ω�qλ

) of the guided photon with wave
vector k (non-waveguide photon modes with polarization λ and
wave vector �q). If ωj is far away from the cutoff frequency
of the photonic waveguide and the waveguide photon has a
narrow bandwidth, we can linearize the waveguide photon
dispersion relation as δω

j

k = (|k| − kj )vg where kj is the wave
vector at frequency ωj and vg is the group velocity [67]. σ+

j =
|e〉j 〈g| (σ−

j = |g〉j 〈e|) is the raising (lowering) operator of the
j th emitter with position rj (zj is its z component along the
waveguide direction). a

†
k (a−

k ) and a
†
λ,�q (a−

λ,�q) are the creation
(annihilation) operators of a guided photon and a non-guided
photon. g

j

k = �μj · �Ek(�rj )/� is the coupling strength between
the j th emitters and the guided photon modes, with �μj being
the transition dipole moment of the j th emitter and � being
Planck’s constant, and g

j

λ,�q = �μj · �Eλ,�q(�rj )/� is the coupling
strength between the j th quantum emitter and the non-guided
photon modes.

For a single-photon excitation, the quantum state of the
system at an arbitrary time can be expressed as

|�(t)〉 =
Na∑
j=1

αj (t)|ej ,0k,0�qλ
〉 +

∑
k

βk(t)|g,1k,0�qλ
〉

+
∑
�qλ

γ�qλ
(t)|g,0k,1�qλ

〉, (2)

where |ej ,0k,0λ,�q〉 is the state in which only the j th emitter
is excited with zero waveguide and non-waveguide photons,
|g,1k,0λ,�q〉 is the state in which all the emitters are in the
ground state and one waveguide photon is generated with zero
non-waveguide photons, and |g,0k,1�qλ

〉 is the state where all
the emitters are in the ground state and one non-waveguide
photon is generated with zero photons being in the waveguide.
αj (t), βk(t), and γ�qλ

(t) are the corresponding amplitudes at
time t .

From the Schrödinger equation i�∂t |�(t)〉 = H |�(t)〉 with
Hamiltonian given by Eq. (1) and the quantum state given by
Eq. (2), we obtain the following dynamical equations for the
probability amplitudes:

iα̇j (t) =
∑

k

g
j

k e
ikzj −iδω

j

k tβk(t) +
∑
�qλ

g
j

�qλ
e
i �q·�rj −iδω

j

�qλ
t
γ�qλ

(t),

(3)

iβ̇k(t) =
Na∑
j=1

g
j∗
k e−ikzj eiδω

j

k tαj (t), (4)

iγ̇�qλ
(t) =

Na∑
j=1

g
j∗
�qλ

e−i �q· �rj e
iδω

j

�qλ
t
αj (t). (5)

Integrating Eqs. (4) and (5), we obtain the formal
solutions of the photon amplitudes which are given
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by

βk(t) = βk(0) − i
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g
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∫ t

0
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where βk(0) is the initial guided-photon amplitude, and γ�qλ
(0)

is the initial non-guided-photon amplitude. In this paper, we
assume that there is no photon in the non-waveguide photon
modes initially, i.e., γ�qλ

(0) = 0. Inserting Eqs. (6) and (7) into
Eq. (3), we obtain
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t
,

(8)

where the first term is the excitation by the incident waveguide
photon, the second and third terms are the coupling between
the emitters induced by the waveguide vacuum modes and
non-waveguide vacuum modes, respectively.

By summing over the second and third terms of Eq. (8)
using the Weisskopf–Wigner approximation, we can obtain
closed dynamical evolution equations of the emitters given by
(see appendix)

α̇j (t) = bj (t) −
Na∑
l=1

[
V

(w)
j l eiklzjl αl

(
t − zjl

vg

)
(9)

+V
(nw)
j l eikl rjl αl

(
t − rjl

vg

)]
ei�ωjl t , (10)

with j = 1, . . . ,Na . In Eq. (9),

bj (t) = −i

2π

√
jvgL

2
eikazj ei�kj vgt

∫ ∞

−∞
β0(δk)eiδk(rj −vgt)dδk

(11)

is the incident photon excitation, V
(w)
jj = j/2 with j =

2L|gj

ka
|2/vg being the decay rate of the j th emitter due to

the waveguide vacuum modes (L is the quantization length of
the waveguide,) and V

(nw)
jj = γj/2 with γj = k3

jμ
2
j /3π�ε0V

are the spontaneous decay rate of the j th emitter due to the
non-waveguide vacuum modes (ε0 is vacuum permittivity and
V is the quantization volume). For j �= l, V

(w)
j l = √

jl/2
is the dipole-dipole coupling strength due to the waveguide
vacuum modes with zjl = |zj − zl| and

V
(nw)
j l = 3

√
γjγl

4

[ −i

karjl

+ 1

(karjl)2
+ i

(karjl)3

]
(12)

is the dipole-dipole interaction due to the non-waveguide
photon modes with rjl = |�rj − �rl| where we assume the

emitter dipole moment is perpendicular to the emitter chain.
�kj = kj − ka where ka can be chosen as the average emitter

wave vector. The term ei�ω
jl
a t is due to the energy difference

between the j th and lth emitters with �ωjl = (kj − kl)vg . If
the emitters have the same transition frequencies, the equation
describes the case for identical emitters. By using Eq. (9) and
the given initial conditions, we can calculate the real-time
evolution of the emitter system with arbitrary configurations.

B. Emission spectra

In addition to the emitter excitation, we can also calcu-
late the emission photon spectrum. The waveguide photon
spectrum at arbitrary time can be also calculated by Eq. (6)
after obtaining the emitter excitation αj (t). For simplicity,
we assume j =  and γj = γ in the following calculations.
Particularly, long time after the interaction, i.e., t → ∞, the
reflection and transmission waveguide photon spectra are
given by

βR(δk) = −i

√
vg

2L

Na∑
j=1

eikzj

∫ ∞

0
αj (t ′)ei(δk−�kj )vgt

′
dt ′,

(13)

βT (δk) = β0(δk) − i

√
vg

2L

Na∑
j=1

e−ikzj

×
∫ ∞

0
αj (t ′)ei(δk−�kj )vgt

′
dt ′, (14)

where k = ka + δk.
We can perform the Fourier transformation and define

χj (δk) =
∫ ∞

−∞
αj (t)�(t)eiδkvgt dt, (15)

where �(t) is the unit step function with �(t) = 1 for t � 0
and �(t) = 0 for t < 0. The photon spectra shown in Eqs. (12)
and (13) can then be rewritten as

βR(δk) = −i

√
vg

2L

Na∑
j=1

eikzj χj (δk − �kj ), (16)

βT (δk) = β0(δk) − i

√
vg

2L

Na∑
j=1

e−ikzj χj (δk − �kj ). (17)

Therefore, to calculate the photon spectrum we need to
first calculate χj (δk). For this purpose, we perform the inverse
Fourier transform

αj (t)�(t) = vg

2π

∫ ∞

−∞
χj (δk)e−iδkvgt dδk. (18)

Next, by using the relation d/dt[αj (t)�(t)] = α̇j (t)�(t) +
αj (0)δ(t), we obtain a set of linear equations for χj (δk) from
Eq. (9) which are given by

−i(δk − �kj )vgχj (δk − �kj )

= Aj (δk − �kj ) −
Na∑
l=1

Vjle
ikzjl χl(δk − �kl). (19)
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Here, for simplicity, we assumed that the emitters are all
aligned with the waveguide and we have rjl = zjl and Vjl =
V

(w)
j l + V

(nw)
j l . In Eq. (18), Aj (δk) = αj (0) + bj (δk) where

αj (0) is the initial excitation of the j th emitter, and

bj (δk) = −i

√
L

2vg

β0(δk + �kj )ei(kj +δk)zj (20)

is the initial waveguide photon spectrum.
The solution of Eq. (18) can be calculated as

χj (δk − �kj ) =
Na∑
l=1

[M(δk)]−1
j l Al(δk − �kl), (21)

where M(δk) is an Na × Na matrix with matrix element given
by

[M(δk)]pq = Vpqe
ikzpq − i(δk − �kp)vgδpq . (22)

From Eqs. (15), (16), and (20), we can calculate the reflection
and the transmission spectra. For the case with one emitter
excitation but without incident photons, we have the photon
spectra to the left (“−”) and to the right (“+”) given by

β±(δk) = −i

√
vg

2L

Na∑
j,l=1

αl(0)[M(δk)]−1
j l e∓ikzj . (23)

For a single incident photon pulse without any initial emitter
excitation, we have the reflection and transmission spectra
given by

βR(δk) = −

2
β0(δk)

Na∑
j,l=1

[M(δk)]−1
j l eik(zj +zl), (24)

βT (δk) = β0(δk)

⎧⎨
⎩1 − 

2

Na∑
j,l=1

[M(δk)]−1
j l eik(zl−zj )

⎫⎬
⎭. (25)

For a single-emitter case, it is readily obtained from Eq. (20)
that

χ1(δk) = α1(0) + b1(δk)

V11 − iδkvg

, (26)

where V11 = ( + γ )/2. When the emitter is initially excited
and there is no input photon, i.e., α1(0) = 1 and b1(δk) = 0,
the spontaneous emission spectrum has the usual Lorentzian
lineshape. For a single-photon input with the emitter being
initially in the ground state, i.e., αl(0) = 0 and b1(δk) �= 0, the
emission spectrum is a Lorentzian function modulated by the
input photon spectrum.

In the following sections, we first study the effects of
the dipole-dipole interaction induced by the non-waveguide
vacuum modes with the two-emitter example. Then we study
the effects of nonidentical emitters with the two-emitter
example. Finally we study the case of beyond the two-emitter
system.

III. EFFECTS OF DIPOLE-DIPOLE INTERACTION
INDUCED BY NON-WAVEGUIDE VACUUM MODES

In this section, we consider the emitters to be identical and
compare the results with and without including the dipole-

dipole interaction induced by the non-waveguide vacuum
mode. For identical emitters, we have kj = ka for all emitters.

For a two-emitter system, the evolution of the emitters is
given by

α̇1(t) = b1(t) − V11α1(t) − V12e
ikaz12α2

(
t − z12

vg

)
, (27)

α̇2(t) = b2(t) − V22α2(t) − V21e
ikaz12α2

(
t − z12

vg

)
, (28)

where V11 = V22 = ( + γ )/2, V12 = V21 = V
(w)

12 + V
(nw)

12 ,
and b1,2(t) are given by Eq. (10). Due to the dipole-dipole
coupling, the one excitation subspace is split into two eigen-
states [|+〉 = (|eg〉 + |ge〉)/√2 and |−〉 = (|eg〉 − |ge〉)/√2]
with the energy shifts given by ±Im[V12e

ikaz12 ] and the decay
rates given by V11 ± Re[V12e

ikar12 ]. The M(δk) matrix for
calculating the emission spectra is given by

M(δk) =
[
V11 − iδkvg V12e

ikaz12

V21e
ikaz12 V22 − iδkvg

]
. (29)

A. Emitter excitation propagation

In this section, we consider the propagation of emitter
excitation without incident photon pulse. We assume that the
emitter on the left is initially in the excited state while the
emitter on the right is initially in the ground state, α1(0) =
1, α2(0) = b1,2(δk) = 0. In this case, the photon emission
spectra to the left and to the right are given by

β−(δk) = −i

√
vg

2L
eikz1

V11 − iδkvg − V12e
2ikz12

(V11 − iδkvg)2 − V 2
12e

2ikz12
, (30)

β+(δk) = −i

√
vg

2L
e−ikz1

V11 − iδkvg − V12

(V11 − iδkvg)2 − V 2
12e

2ikz12
,

(31)

where k = ka + δk.
We compare the emitter dynamics and the emission spectra

in the cases with and without including the dipole-dipole
interaction induced by the non-waveguide vacuum modes
(V (nw)

dd ). Here we study the cases of two emitter separations,
i.e., a = 0.5λ and a = 0.05λ. The emitter excitations and the
emission spectra when a = 0.5λ and γ = 0.2 are shown
in Figs. 2(a) and 2(b), respectively. In this case, Vii =
0.6, V

(w)
12 = 0.5, and V

(nw)
12 = 0.015 − 0.043i. Without

including V
(nw)

12 , Im(V12e
ikar12 ) = 0 which gives zero energy

shifts for the two eigenstates. The two decay rates are given
by 1.1 and 0.1 corresponding to a superradiant and a
subradiant state, respectively. With V

(nw)
12 , the energy shifts

are given by ±0.043 and the decay rates are given by 1.115

and 0.085. The difference between the cases with and without
V

(nw)
12 is very small. Indeed, from Figs. 2(a) and 2(b), we

see that both the emitter excitations and the photon spectra
are almost the same with (solid curves) and without (dotted
curves) including V

(nw)
12 . The spectra in two directions are the

same and they have Lorentzian lineshapes. Hence, when the
emitter separation is relatively large, we can safely neglect the
effect of V

(nw)
12 [34].
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FIG. 2. (a), (c) Emitter excitation dynamics as a function of time. (b), (d) Emission photon spectra. Emitter 1 is initially excited and there
is no incident photon. α1(0) = 1, α2(0) = b1,2(δk) = 0, γ = 0.2. (a), (b) a = 0.5λ. (c), (d) a = 0.05λ. Dotted lines are the results without
V

(nw)
12 , and the solid curves are the results with V

(nw)
12 .

However, when the emitter separation is very small com-
pared with the resonant wavelength, the results are quite
different. The emitter excitations and the photon spectra
when a = 0.05λ with γ = 0.2 are shown in Figs. 2(c) and
2(d), respectively. In this case, Vii = 0.6, V

(w)
12 = 0.5, and

V
(nw)

12 = 1.52 + 4.36i. Without including V
(nw)

12 the energy
shifts are ±0.15 and the decay rates are given by 1.08 and
0.12. With V

(nw)
12 , the energy shifts are ±4.77 and the decay

rates are given by 1.17 and 0.03. There are large differences
due to V

(nw)
12 which can also be seen from Figs. 2(c) and 2(d).

Without including V
(nw)

12 , the emitter excitation dynamics are
similar to the case when a = 0.5λ. However, with the effect of
V

(nw)
12 the two emitters exchange energy many times until they

have the same excitation probability and then decay slowly
to the ground state. Since the decay rate of the subradiant
eigenstate with V

(nw)
12 (0.03) is smaller than that without V (nw)

12

(0.12), the emitter excitations last much longer with V
(nw)

12

than those without V
(nw)

12 . The spectra are also quite different.
Without including V nw

12 , the emission spectra are peaked
close to the resonance frequency with Fano-like lineshapes
[68,69]. With V nw

12 , the emission spectra are far away from the
resonance frequency. The spectra of the left-moving and the
right-moving fields are almost the same with one superradiant
peak and one subradiant peak. Therefore, V (nw)

12 can be a crucial
factor to determine the characteristics of the waveguide system
if the emission to the non-waveguide modes γ is not too small

and the emitter separation is much smaller than the resonance
wavelength.

B. Single-photon transport

Next, we consider the case when both emitters are initially
in the ground state and there is a single incident photon pulse.
The emitter dynamics are given by Eqs. (26) and (27). The
reflection and transmission photon spectra are given by

βR(δk) = −

2
e2ikz1β0(δk)

× (V11 − iδkvg)(1 + e2ikz12 ) − 2V12e
2ikz12

(V11 − iδkvg)2 − V 2
12e

2ikz12
, (32)

βT (δk) = β0(δk)

[
1 − 

2

2(V11 − iδkvg) − V12(1 + e2ikz12 )

(V11 − iδkvg)2 − V 2
12e

2ikz12

]
,

(33)

where k = ka + δk. If the waveguide is so good that the non-
waveguide modes are inhibited (i.e., γ = 0), we have Vii =
Vij = /2 with i,j = 1,2. In this case, it is not difficult to see
that for resonance frequency we have βR(0) = −e2ikz1β0(δk)
and βT (0) = 0. Thus, without non-waveguide vacuum modes,
the resonance frequency is completely reflected with a π phase
shift [34].

For illustration with the numerical examples, we assume
that the photon pulse has a Gaussian shape with a spectrum
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FIG. 3. (a) Emitter excitation probabilities as a function of time excited by an incident photon pulse with (solid lines) and without (dotted
lines) V

(nw)
12 . (b) Emission photon spectra with and without V

(nw)
12 . The green dashed-dotted lines are the incident photon spectrum, the solid

curves are the results with V
(nw)

12 , and the dotted curves are the results without V
(nw)

12 . The parameters are as follows: α1(0) = α2(0) = 0, γ =
0.2, �0vg = 10, z1 = 10/, and a = 0.05λ.

given by

β0(δk) = (8π )1/4

√
�0L

e
− δk2

�2
0 , (34)

where �0 is the width in k space with the full width at half
maximum of the spectrum being

√
2 ln 2�0vg . The single-

photon condition requires that (L/2π )
∫ ∞
−∞ |β0(δk)|2dδk = 1.

With this Gaussian photon pulse, we have

bj (t) = −i(8π )−1/4
√

�0vge
ik0zj e− 1

4 �2
0(zj −vgt)2

(35)

in Eq. (9). The emitter excitation as a function of time
when a = 0.05λ, γ = 0.2 is shown in Fig. 3(a) where
we assume that �0 = 10. The two dotted curves are the
two-emitter excitations without including V

(nw)
12 and the two

solid curves are those with V
(nw)

12 . We can see that, without
V

(nw)
12 , the two emitters are first exited and then deexcited with

almost the same excitation dynamics. However, with V
(nw)

12 the
excitations of the two emitters can oscillate coherently after
being excited by the photon pulse due to the strong dipole-
dipole interaction between the two emitters. The emission
spectra with and without V

(nw)
12 are also quite different, as

shown in Fig. 3(b). In the figure, the two dotted curves are
the reflection and transmission spectra without V

(nw)
12 while

the solid curves are those with V
(nw)

12 . Without V
(nw)

12 , the
resonant frequency is significantly reflected with negligible
transmission. However, with V

(nw)
12 , the resonant frequency can

almost transmit with two reflection peaks far away from the
resonant frequency. This is the phenomenon of dipole-dipole-
induced electromagnetic transparency (DIET). Compared to
the usual electromagnetic-induced transparency (EIT), where
the transparency is caused by a strong pumping field [70],
here the transparency is induced by the strong dipole-dipole
interaction between the emitters. The strong dipole-dipole
interaction can significantly shift the eigenenergy of the system
and therefore the resonance frequency can be transmitted.
This phenomenon may be used as optical switch [47–49].
By controlling the emitter separation, we can control the
dipole-dipole interaction between the emitters to control the
transmission of the photons. However, in practice it is not
easy to tune the emitter separation. In Sec. IV A, we show

that DIET can be achieved by simply tuning the emitter
transition frequency which should be more convenient. The
reflection occurs at the frequencies far away from the resonant
frequency with one peak being the superradiant peak while
the other being the subradiant peak similar to Fig. 2(d).
This example again shows that, for small emitter separation,
the dipole-dipole interaction induced by the non-waveguide
vacuum modes can play a nontrivial role if γ is not too small
compared with .

C. Spectrum difference with and without V (nw)
dd

In the last two sections, we have seen that the dipole-dipole
interaction induced by the non-guide vacuum modes can
significantly affect the emitter dynamics and emission spectra
when the emitter separation is much smaller than the resonance
wavelength. To further quantify the effects of the dipole-dipole
interaction induced by the non-guide vacuum modes, we define
the normalized spectrum difference with and without V

(nw)
dd as

�SD = 1

2

{ ∑
k

∣∣I 1
R(k) − I 2

R(k)
∣∣∑

k

[
I 1
R(k) + I 2

R(k)
]

+
∑

k

∣∣I 1
T (k) − I 2

T (k)
∣∣∑

k

[
2 − I 1

T (k) − I 2
T (k)

]
}

, (36)

where I 1
R(k) [I 1

T (k)] is the reflection (transmission) spectrum
with V

(nw)
dd and I 2

R(k) [I 2
T (k)] is the reflection (transmission)

spectrum without V
(nw)
dd . Since the background transmission is

1, in the second term of Eq. (35) the quantity 1 − I
1,2
T (k) is

used instead of I
1,2
T (k) to avoid divergence in the numerator.

If the emission spectra with and without V
(nw)
dd are completely

identical, �SD = 0. On the contrary, if the emission spectra
with and without V

(nw)
dd are completely different (i.e., have no

overlaps), �SD = 1. Therefore, the quantity shown in Eq. (35)
is a good measure of the spectrum difference with and without
V

(nw)
dd .

In Fig. 4, we plot the spectrum difference for different
emitter separations with two different γ (γ = 0.1 and γ =
0.5). When the emitter separation r12 approaches zero, the
spectrum difference �SD approaches 1 which means that the
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FIG. 4. The normalized spectrum difference between the cases
with and without V

(nw)
dd for different emitter separations. The curve

with the cross symbols is the result when γ = 0.1, and the
curve with the circle symbols is the result when γ = 0.5.

spectra with and without V (nw)
dd for small emitter separation are

almost completely different. When the emitter separation r12 is
of the order of or larger than the resonant wavelength, �SD is
close to zero which indicates that the spectra with and without
V

(nw)
dd for large emitter separation are almost the same. These

observations are consistent with the results shown in previous
sections.

For γ = 0.1, the spectrum difference is 0.5 when r12 �
0.05λ. For γ = 0.5, the spectrum difference is 0.5 when
r12 � 0.08λ. For both cases, the spectrum difference is 0.5
when |V (nw)

dd | ≈ 2. When |V (nw)
dd | ≈ 0.2, i.e., r12 � 0.1λ

for γ = 0.1 and r12 � 0.3λ for γ = 0.5, the spectrum
difference is about 10%. Therefore, when |V (nw)

dd | < 0.2, we
can safely neglect the effect of V

(nw)
dd . Otherwise, the effect of

V
(nw)
dd should be taken into account.

IV. NONIDENTICAL EMITTERS

In this section, we consider the two-emitter case to illustrate
the effects of nonidentical emitters. For this purpose, we let
their transition frequencies be different, i.e., ω

j
a �= ωl

a or kj �=
kl if j �= l.

For a two-emitter system, the excitation dynamics of the
emitters are given by

α̇1(t) = b1(t) − V11α1(t) − V12e
ikar12ei�ω12tα2

(
t − z12

vg

)
,

(37)

α̇2(t) = b2(t) − V22α2(t) − V21e
ikar12ei�ω21tα2

(
t − z12

vg

)
,

(38)

where �ωij = ωi − ωj with i,j = 1,2. The coupling matrix
between these two single-emitter excited states reads

V (t) =
[

V11 V12e
ikaz12ei�ω12t

V12e
ikaz12e−i�ω12t V22

]
, (39)

which is time dependent. It is seen that the coupling between
the two emitters is modulated by the energy difference
between these two emitters. When �ω12 = 0, it reduces to
the case of identical emitters. When �ω12 = ∞, the rapid
oscillations can erase the off-diagonal terms in Eq. (39) and
thus eliminate the coupling between the two emitters. The
instantaneous single-emitter excited eigenstates are |ψ±(t)〉 =
(|eg〉 ± e−i�ω12t |ge〉)/√2 and their corresponding eigenvalues
are E± = V11 ± V12e

ikar12 . Although the eigenvalues are the
same as those with identical emitters, the eigenstates here
are time dependent, which is quite different from those with
identical emitters. Due to the time modulation factor, the two
states |ψ+〉 and |ψ−〉 can interchange with each other as time
evolves.

For the two-emitter system, M(δk) in Eqs. (23) and (24) is
given by

M(δk) =
[
V11 − i(δk − �k1)vg V12e

ikz12

V21e
ikz12 V22 − i(δk − �k2)vg

]
. (40)

For a single incident photon pulse, we obtain the reflection and transmission photon spectra given by

βR(δk) = 

2
e2ikr1β0(δk)

2M12(δk)eikz12 − M11(δk)e2ikz12 − M22(δk)

M11(δk)M22(δk) − M2
12(δk)

, (41)

βT (δk) = β0(δk)

{
1 − 

2

M11(δk) + M22(δk) − 2M12(δk)cos(kz12)

M11(δk)M22(δk) − M2
12(δk)

}
. (42)

It is seen that βR(δk) and βT (δk) depends on β0(δk) but
not other frequency components. Therefore, no frequency
conversion can occur here.

A. Without non-waveguide modes

In this section, we first consider the case without non-
waveguide modes, i.e., γ = 0. In this case, V11 = V22 = V12 =
/2. Here, we compare the excitation dynamics [Figs. 5(a)–
5(c)] and emission photon spectra [Figs. 5(d)–5(f)] when r12 =

0.5λ for three different emitter energy differences, i.e., �ω12 =
0, 0.2, and 2. In these numerical examples, we assume that
the input single-photon pulse has a Gaussian shape, as shown
in Eq. (33) with �0 = . For r12 = 0.5λ, V (w)

12 eikar12 = −0.5.
The energy shift by the dipole-dipole interaction induced by
the waveguide photon modes is zero, and the decay rates for
the two single-emitter excited eigenstates (|+〉 and |−〉) are
given by  and 0 with one being superradiant and the other
being subradiant.
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FIG. 5. (a)–(c) Emitter excitation probabilities as a function of time for different emitter energy gaps with single Gaussian photon pulse
input. The red solid line is the excitation for emitter 1, and the blue dotted line is the excitation for emitter 2. (d)–(f) Emission spectra for
different emitter energy gaps. The green dashed-dotted line is the input photon spectrum, the red and blue solid lines are the reflection and
transmission photon spectra of the two-emitter system, and the black and gray dotted lines are the reflection spectrum of the independent emitter
case. The parameters are as follows: �0vg = , γ = 0, z1 = 20/�0, z12 = 0.5λ, (a), (d) �ω12 = 0, (b), (e) �ω12 = 0.2, (c), (f) �ω12 = 2.

When the two emitters are identical (�ω12 = 0), both
emitters are excited and then deexcited together as the incident
pulse propagates through [Fig. 5(a)]. From Eqs. (40) and (41),
it is readily seen that βR(0) = −e2ikr1β0(δk) and βT (0) = 0,
i.e., the resonant frequency is completely reflected. Although
the independent-emitter model can also explain the total
reflection of the resonance frequency (black dotted line),
it cannot explain the broader reflection linewidth for the
two-emitter system (red solid line). The broader linewidth is
the signature of the superradiant state induced by the collective
interaction between the two emitters [Fig. 5(d)].

The results when the two emitters have close but nonzero
energy difference (e.g., �ω12 = 0.2 with �ω(1,2)

a = ±0.1)
are shown in Figs. 5(b) and 5(e). From Fig. 5(b), we see
that the two emitters are also excited and then deexcited
together. However, different from the case of identical emitters
[Fig. 5(a)], the emitter excitations when �ω12 = 0.2 can last
much longer [Fig. 5(b)]. This indicates that the subradiant
state can be populated when there is a small energy difference
between the two emitters. This can be explained by the fact
that the superradiant and subradiant states can interchange
with each other when there is a time modulation factor in the
coupling matrix, as shown in Eq. (38). In contrast, for two
identical emitters, the subradiant state will never be populated
when r12 = 0.5λ. The emission photon spectra also become
very distinctive [Fig. 5(e)]. Instead of being completely
reflected at the resonant frequency as in the identical-emitter
case, a very narrow transmission window appears around the

resonance frequency when the two emitters have close but
nonzero energy difference. This transparency can be seen
from Eqs. (40) and (41). For δkr12 � 1, we can see from
Eq. (40) that when δkvg = (�ω1 + �ω2)/2, we have βR(0) =
0 which means the resonance frequency can be completely
transparent. However, if we neglect the dipole-dipole coupling
between the two emitters (V12 = 0), we have |βR(0)/β0(0)| =
1/[1 + (2�ω12/)2] which is close to 1 when �ω12 � .
Therefore, the dipole-dipole interaction here is critical for the
transmission of the resonance frequency and the phenomena
here can also be called dipole-dipole-induced electromagnetic
transparency (DIET). Actually, the transparency is the result of
destructive interference between two emission channels. DIET
has been studied in an atomic ensemble where semiclassical
and mean-field theory are applied [65]. Here we provide an
ab initio calculation for this phenomenon and the system here
can be easier to realize in experiment. The DIET here may be
used as single-photon switch by tuning the emitter energy.

When the energy difference of the two emitters is large, e.g.,
2 and one emitter has a transition frequency resonant with
the center frequency of the incident photon, we can see that
one emitter is excited as a single-emitter case, but the other
one is rarely excited by the input photon pulse due to large
detuning [Fig. 5(c)]. The emission spectra are also similar to
those of the independent-emitter case. Therefore, when the
two emitters have a large energy difference (i.e., much greater
than their dipole-dipole interaction energy), they behave as
independent emitters.
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FIG. 6. Emission photon spectrum for different emitter energy gaps including the effects of non-waveguide modes. The green dashed-dotted
line is the input photon spectrum, the red (blue) solid lines are the reflection (transmission) photon spectra. The parameters are as follows:
�0vg = 10, γ = 0.1, z1 = 20/�0, z12 = 0.05λ, (a) �ω12 = 0, (b) �ω12 = 2, (c) �ω12 = 10.

B. With non-waveguide modes

In this section, we study how the emission spectra change
when the emitter energy difference increases in the presence of
non-waveguide modes, i.e., γ �= 0. The numerical results when
a = 0.05λ and γ = 0.1 are shown in Fig. 6. In this case, the
dipole-dipole interaction is V12e

ikar12 = 0.52 + i2.46. The
energy shifts due to the dipole-dipole interaction are ±2.46,
and the decay rates of the two eigenstates are + = 1.07

and − = 0.03, respectively. In the numerical results, we
assume that the incident photon pulse has a Gaussian shape
with �0 = 10.

The emission spectra when the two emitters are identical
are shown in Fig. 6(a). There are two reflection peaks around
±2.46 with one being very broad and the other being very
sharp. The peak positions are the same as the energy shifts
due to the dipole-dipole interaction. The broad peak has a
width of about 2.13 which is 2+ due to the reflection from
the superradiant state. The sharp peak has a width of about
0.06 which is 2− due to the reflection from the subradiant
eigenstate.

When the two emitters have different transition frequencies;
for example, �ω12 = 2, there are also two reflection peaks
with one being the superradiant peak and the other one being
the subradiant peak [Fig. 6(b)]. The positions of the peaks
are about ±2.61 which are slightly larger than the energy
shifts due to the dipole-dipole interaction. The superradiant
peak has a width of about 2.04 which is slightly narrower
than that of the identical emitters, and the subradiant peak has
a width of about 0.12 which is slightly broader than that of
the identical emitters. Although the difference between these
two peaks decreases, the dipole-dipole interaction still plays
an important role when the energy difference is of the order of
the dipole-dipole-induced energy shift.

If we continue to increase the energy difference such that
the energy difference between the two emitters is much larger
than the dipole-dipole-induced energy shift; for example,
�ω12 = 10, the emission spectra are quite different from
those in Figs. 6(a) and 6(b). The two reflection peaks become
more similar to each other with one peak having a width
of about 1.56 and the other one having a width of about
0.66. The positions of the two peaks are about ±5.5

which is quite different from the energy shifts due to the
dipole-dipole interaction. The separation between the two
peaks is about 11 which is close to the energy difference

of the two emitters, which indicates that they behave more like
independent emitters.

C. Transition from coupled emitters to independent emitters

In the previous section, we showed that the effective
coupling between the emitters depends on the emitter energy
difference. In this section, we quantify this dependence by
calculating the peak separation and the linewidth difference
of the two reflection peaks as a function of emitter energy
difference. The peak separation as a function of emitter
energy difference when γ = 0.1 and r12 = 0.05λ are shown
in Fig. 7(a). The peak separation increases monotonically
as the energy difference increases. When the two emitters
are identical, i.e., �ω12 = 0, the peak separation is equal
to 2Im(V12) which means that the two emitters are strongly
coupled to each other via the dipole-dipole interaction.
However, when the two emitters have a large energy difference,
e.g., �ω12 = 20, the peak separation is close to �ω12 which
indicates that the two emitters behave mostly as independent
emitters. Thus, the emitters can transit from coupled emitters
to independent emitters by increasing the emitter energy
difference. When �ω12 < 2Im(V12) or �ω12 ∼ 2Im(V12) the
emitters can strongly couple to each other, but when �ω12 �
2Im(V12), the emitters can be treated as independent emitters.

In addition to the peak separation, we also study the
linewidth difference between the two reflection peaks as
a function of emitter energy difference which is shown
in Fig. 7(b). When �ω12 = 0, one reflection peak is a
superradiant peak while the other one is a subradiant peak
and their linewidth difference is about 2.1 which is close to
the maximum value 2( + γ ). This means that when �ω12 =
0, the collective effect plays an important role. However,
when �ω12 is large, the linewidth difference between the
two reflection peaks approach zero, which means that they
behave like independent emitters. When �ω12 = 2Im(V12), the
linewidth difference is about 66% of the maximum linewidth
difference.

V. BEYOND TWO EMITTERS

Our theory shown in Sec. II can be extended to calculate
the single-photon transport in a 1D waveguide coupled to
an arbitrary number of emitters. In this section, we take five
emitters as an example.
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FIG. 7. Transition from coupled emitters to independent emitters. (a) The reflection peak separation as a function of emitter energy
difference. (b) The linewidth difference between the two reflection peaks as a function of emitter energy difference. The parameters are as
follows: γ = 0.1 and z12 = 0.05λ.

In the first example, we assume that the emitters are
identical and the emitter separation is 0.05λ. The emitter
excitation dynamics and the emission spectra are shown in
Figs. 8(a) and 8(b), respectively. Here, we assume a single-
photon pulse with Gaussian shape is incident with 0 = 10

and when γ = 0.2. From Fig. 8(a), we see that the emitters
can exchange excitations rapidly and the coherent population
oscillations can last for an extended period of time. Similar

to the two-emitter case, the coherent population oscillation
is due to the coherent part of the dipole-dipole interactions
between the emitters. From Fig. 8(b) we can see that there
are five reflection peaks with two superradiant peaks on
the higher-frequency parts and three subradiant peaks on
the lower-frequency parts. This indicates that the collective
interactions between the emitters split the single-excitation
states into five eigenstates with two superradiant states and

FIG. 8. (a), (c) Emitter excitation probabilities as a function of time where the red solid line is for emitter 1, the green short-dashed line is
for emitter 2, the blue dash-dotted line is for emitter 3, the black dashed line is for emitter 4, and the violet short-dotted line is for emitter 5.
(b), (d) Emission photon spectrum, where the green dash-dotted line is the input spectrum, the red solid line is the reflection spectrum, and the
blue short-dotted line is the transmission spectrum. (a), (b) The emitters are identical with zj,j+1 = 0.05λ, γ = 0.2, and 0 = 10. (c), (d)
The emitters are nonidentical with zj,j+1 = 0.5λ, �ωj,j+1 = 0.1, γ = 0, and 0 = 1.
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three subradiant states. This may be used as a frequency filter
which can filter out some special frequencies.

In the second example, we consider the case that the emitters
are not identical. These emitters have a spatial separation
0.5λ and the neighboring emitters have an energy difference
�ωj,j+1 = 0.1. The emitter excitation dynamics and the
emission spectra when γ = 0 are shown in Figs. 8(c) and
8(d) where we assume that the incident photon pulse has a
Gaussian shape with 0 = . From Fig. 8(c), we see that the
emitter excitations can oscillate and last for a very long time.
The j th emitter and the (Na − j )th emitter have almost the
same excitation dynamics. The emission spectra are also very
interesting. We can see that most of the photon spectra are
reflected back but there are four very narrow transmission
windows [Fig. 8(d)]. This is the generalization of the DIET
shown in previous sections. This phenomena may be used to
generate a single-photon frequency comb with very narrow
linewidth [17].

VI. SUMMARY

In summary, we have developed dynamical equations and
photon emission spectra for a single-photon transport in a
1D waveguide-QED system. In our generalized theory, the
emitters can be either identical or nonidentical. In addition,
the dipole-dipole interactions induced by both the waveguide
and non-waveguide vacuum modes are included. This theory
allows one to calculate the real-time evolution of the photon
pulse and the emitters in a 1D waveguide-QED system and
study the many-body physics.

We first compare the results with and without including
the dipole-dipole interaction induced by the non-waveguide
photon modes. The emitter dynamics and the scattering
spectrum can be significantly modified by the dipole-dipole
interaction induced by the non-waveguide vacuum modes if
the emitter separation is much smaller than the resonance
wavelength. We introduce a quantity (spectrum difference) to
study the effects of the dipole-dipole interaction induced by the
non-waveguide vacuum modes. We find that, when the emitter

separation is much smaller than the resonant wavelength
(|V (nw)

12 | > ), the dipole-dipole interaction induced by the
non-waveguide photon modes can considerably influence the
photon dynamics. When the emitter separation is of the order
of or larger than the resonant wavelength (|V (nw)

12 | � ), the
effects of the non-waveguide photon modes can be neglected.

We then studied the case of nonidentical emitters. The
results show that, if the energy difference between the
emitters is much larger than the energy shift due to the
dipole-dipole interaction [�ω12 � 2Im(V12)], the emitters
behave like independent emitters. Otherwise, the emitters can
strongly couple to each other. More interestingly, when the
two emitters have close but nonzero energy difference, there
is a very narrow transparency window around the resonance
frequency due to the interference between the two collective
decay channels. This is the demonstration of the dipole-
dipole-induced electromagnetic transparency which may find
important applications in quantum waveguide devices. For the
case of multiple emitters, a single-photon frequency comb with
very narrow comb linewidth can be generated.
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APPENDIX: DERIVATION OF EMITTER
DYNAMICAL EQUATIONS

In this appendix, we derive the dynamical equations of the
emitter system shown in Eq. (9). To derive Eq. (9), we need to
calculate the second and third terms of Eq. (8).

For the second term of Eq. (8), the summation over k can
be replaced by an integration∑

k

→ L

2π

∫ ∞

−∞
dk, (A1)

where L is the quantization length in the propagation direction.
The second term of Eq. (8) can then be calculated as

∑
k

g
j

k g
l∗
k eik(zj −zl )eiδωl

k t
′
e−iδω

j

k t

= L

2π

∫ ∞

−∞
g

j

k g
l∗
k eik(zj −zl )eiδωl

k t
′
e−iδω

j

k t dk (A2)

� L

2π
g

j

ka
gl∗

ka
e−i�klvgt

′
ei�kj vgt

[∫ ∞

0
eik(zj −zl )ei(k−ka )vg(t ′−t)dk +

∫ 0

−∞
eik(zj −zl )ei(−k−ka )vg(t ′−t)dk

]
(A3)

= L

2π
g

j

ka
gl∗

ka
e−i�klvgt

′
ei�kj vgt

{
eika (zj −zl )

∫ ∞

−ka

eiδk[(zj −zl )+vg (t ′−t)]dδk + e−ika (zj −zl )
∫ ∞

−ka

e−iδk[(zj −zl )−vg (t ′−t)]dδk

}
(A4)

� L

2π
g

j

ka
gl∗

ka
e−i�klvgt

′
ei�kj vgt

{
eika (zj −zl )

∫ ∞

−∞
eiδk[(zj −zl )+vg (t ′−t)]dδk + e−ika (zj −zl )

∫ ∞

−∞
e−iδk[(zj −zl )−vg (t ′−t)]dδk

}
(A5)

= Lg
j

ka
gl∗

ka
e−i�klvgt

′
ei�kj vgt {eika (zj −zl )δ[(zj − zl) + vg(t ′ − t)] + e−ika (zj −zl )δ[(zj − zl) − vg(t ′ − t)]} (A6)

= Lg
j

ka
gl∗

ka

vg

e−i�klvgt
′
ei�kj vgt

{
eika(zj −zl)δ

[
t ′ −

(
t − zj − zl

vg

)]
+ e−ika(zj −zl)δ

[
t ′ −

(
t + zj − zl

vg

)]}
(A7)
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= jl

2
e−i�klvgt

′
ei�kj vgt eika |zj −zl |δ

[
t ′ −

(
t − |zj − zl|

vg

)]
(A8)

= jl

2
ei�ωjl t eikl |zjl |δ

[
t ′ −

(
t − |zjl|

vg

)]
, (A9)

where �ωjl = (kj − kl)vg is the energy difference between two emitters, �kj = kj − ka , with ka being a reference wave vector
which can be chosen as the average wave vector (i.e., ka = ∑

j kj /Na), and jl = 2Lg
j

ka
gl∗

ka
/vg . From Eq. (A2) to Eq. (A3), we

rewrite the integration into the left-propagation and right-propagation parts and assume that the coupling strength is uniform for
the modes close to ka . From Eq. (A4) to Eq. (A5), for ka � 0 we can extend the lower bound of the integration from −ka to
−∞ and use the identity

∫ ∞
−∞ eikxdx = 2πδ(x). In Eq. (A7), since t ′ � t , when rj > rl only the second term survives. On the

contrary, when rj < rl only the first term survives. Therefore, Eq. (A7) can be rewritten as Eq. (A8). By inserting Eq. (A9) into
the second term of Eq. (8) we can obtain

−
N∑

l=1

jl

2
ei�ωjl t eikl |zjl |αl

(
t − |zjl|

vg

)
, (A10)

where i = 2L|gi
ka

|2/vg is the decay rate of the ith emitter due to the guided photon modes and |zjl| = |zj − zl| is the emitter
separation along the waveguide direction.

To calculate the third term in Eq. (8), we first rewrite the summation over the wave vector �q as an integration

∑
�q

= V

(2π )3

∫ 2π

0
dφ

∫ π

0
sinθdθ

∫ ∞

0
q2dq, (A11)

and the summation over the two polarizations as

∑
λ

g
j

�q,λ
gl∗

�q,λ = νqμ
j

abμ
l
ab

2�ε0V

[(
μ̂ab · ê1

�q
)2 + (

μ̂ab · ê2
�q
)2

]
, (A12)

where νq is the photon frequency with wave vector �q, μab is the amplitude of the transition dipole moment with direction
μ̂ab, and ê1

�q and ê2
�q are the two polarization directions of the photon. Without loss of generality, we can assume the

direction of the atomic transition dipole moment to be μ̂ab = (sinϕ, 0, cosϕ). The unit wave vector of the photon can
be written as q̂ = (sinθcosφ, sinθsinφ, cosθ ) and the two polarization directions are given by ê1

�q = (sinφ, − cosφ,0) and

ê2
�q = (cosθcosφ, cosθsinφ, − sinθ ). Thus, we have

∑
λ

g
j

�q,λ
gl∗

�q,λ = νqμ
j

abμ
l
ab

2�ε0V
[sin2ϕsin2φ + (sinϕcosθcosφ − cosϕsinθ )2]. (A13)

For j = l, using the Weisskopf–Wigner approximation and
∫ ∞
−∞ dνqe

i(νq−ω)(t ′−t) = 2πδ(t ′ − t), it is not difficult to obtain

∑
�q,λ

∣∣gj

�q,λ

∣∣2
∫ t

0
αj (t ′)eiδω

j

�q t ′
dt ′e−iδω

j

�q t = γj

2
δjlαj (t), (A14)

where γj = k3
aμ

2
j /3π�ε0V is the spontaneous decay rate of the j th atom due to the non-waveguide photon modes.

For j �= l, by integrating out θ and φ, we have

∑
�q,λ

g
j

�q,λ
gl∗

�q,λe
−i �q·(�rj −�rl ) = νka

μjμl

4π2�ε0V

∫ ∞

0
q2

{
sin2ϕ

sin(qrjl)

qrjl

+ (1 − 3cos2ϕ)

[
cos(qrjl)

(qrjl)2
− sin(qrjl)

(qrjl)3

]}
dq. (A15)

where we assume that only a narrow band of frequency around resonant frequency can couple to the system, i.e., νq � νka
. We

then have∑
�q,λ

g
j

�q,λ
gl∗

�q,λe
−i �q·(�rj −�rl )eiδω

jl
q (t ′−t)

= νka
μjμl

4π2�ε0V
e−i�klvgt

′
ei�kj vgt

∫ ∞

0
q2

{
sin2ϕ

sin(qrjl)

qrjl

+ (1 − 3cos2ϕ)

[
cos(qrjl)

(qrjl)2
− sin(qrjl)

(qrjl)3

]}
ei(q−ka )vg (t ′−t)dq. (A16)
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The integration over the first term in the curly bracket can be calculated as follows:∫ ∞

0
q2 sin(qrjl)

qrjl

ei(q−ka )vg(t ′−t)dq = 1

2irjl

∫ ∞

0
q(eiqrjl − e−iqrjl )ei(q−ka )vg(t ′−t)dq (A17)

� ka

2irjl

[∫ ∞

−ka

eikarjl eiδq[rjl+vg (t ′−t)]dδq −
∫ ∞

−ka

e−ikarjl eiδq[rjl−vg (t ′−t)]dδq

]
(A18)

� ka

2irjl

[∫ ∞

−∞
eikarjl eiδ[rjl+vg (t ′−t)]dδq −

∫ ∞

−∞
e−ikarjl eiδq[rjl−vg (t ′−t)]dδq

]
(A19)

= 2πka

2irjlvg

{
eikarjl δ

[
t ′ −

(
t − rjl

vg

)]
− e−ikarjl δ

[
t ′ −

(
t + rjl

vg

)]}
(A20)

= πk2
a

vg

1

ikarjl

eika |rjl |δ
[
t ′ −

(
t − |rjl|

vg

)]
. (A21)

According to the Weisskopf–Wigner approximation [66], since the phase varies little around the resonant frequency and has the
major contribution, from Eqs. (A17) to (A18), we use q � ka and move q out of the integration, and change the lower bound of
the integration from −ka to −∞ from Eq. (A18) to Eq. (A19). Similarly, we have the second term and the third term of Eq. (A15),
which are respectively given by∫ ∞

0
q2 cos(qrjl)

(qrjl)2
ei(q−ka )vg(t ′−t)dq = πk2

a

vg

1

(karjl)2
eika |rjl |δ

[
t ′ −

(
t − |rjl|

vg

)]
, (A22)

and ∫ ∞

0
q2 sin(qrjl)

(qrjl)3
ei(q−ka )vg (t ′−t)dq = πk2

a

vg

1

i(karjl)3
eika |rjl |δ

[
t ′ −

(
t − |rjl|

vg

)]
. (A23)

Upon inserting Eqs. (A21)–(A23) into Eq. (A15), we have∑
�q,λ

g
j

�q,λ
gl∗

�q,λe
−i �q·(�rj −�rl )eiδωl

q t ′e−iδω
j
q t

= 3γjl

4
e−i�klvgt

′
ei�kj vgt

{
sin2ϕ

−i

karjl

+ (1 − 3cos2ϕ)

[
1

(karjl)2
+ i

(karjl)3

]}
eika |rjl |δ

[
t ′ −

(
t − |rjl|

vg

)]
(A24)

= 3γjl

4
e−i�ωjl t eikl |rjl |

{
sin2ϕ

−i

karjl

+ (1 − 3cos2ϕ)

[
1

(karjl)2
+ i

(karjl)3

]}
δ

[
t ′ −

(
t − |rjl|

vg

)]
. (A25)

Upon inserting Eqs. (A10) and (A25) into Eq. (8) we can obtain the dynamical equations of the emitters

α̇j (t) = bj (t) −
N∑

l=1

[
V

(w)
j l eikl |zjl |αl

(
t − |zjl|

vg

)
+ V

(nw)
j l eikl |rjl |αl

(
t − |rjl|

vg

)]
ei�ωjl t , (A26)

where

bj (t) = − i

2π

√
vgL

2
eikazj ei�kj vgt

∫ ∞

−∞
βδk(0)eiδk(rj −vgt)dδk, (A27)

V
(w)
jj = j/2 and V

(nw)
jj = γj/2. For j �= l, V

(w)
j l = √

jl/2 is the dipole-dipole coupling due to the waveguide modes and

V
(nw)
j l = 3

√
γjγl

4

[
sin2ϕ

−i

karjl

+ (1 − 3cos2ϕ)
1

(karjl)2
+ i

(karjl)3

]
(A28)

is the dipole-dipole interaction due to the non-waveguide photon modes. The term e−i�ωjl t is due to the energy difference between
the two emitters. If the two emitters are the same, this term becomes unity and the equation returns back to the case for identical
emitters.
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