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Generating a perfect quantum optical vortex
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In this article we introduce an interesting quantum state, the perfect quantum optical vortex state which exhibits
a highly localized distribution along a ring in the quadrature space. We examine its nonclassical properties using
the Wigner function and the negativity volume. Such a quantum state can be a useful resource for quantum
information processing and communication.
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I. INTRODUCTION

Implementation of quantum information protocols using
the various tools at the disposal of quantum optics has always
resulted in intriguing study. This field of research has seen
intense activity for quite some time and became even more
interesting ever since the seminal proposal of Knill, Laflamme,
and Milburn [1]. One of the most potent tools used by
researchers in this field for the generation of entangled pairs of
particles, namely photons, is the spontaneous parametric down
conversion (SPDC) using nonlinear crystals. In this unique
process, a single photon splits into two, leading to the forma-
tion of hyperentangled pairs of photons. In hyperentanglement,
the pair of particles is entangled in all the available degrees of
freedom (DOF) [2]. The uniqueness of SPDC lies in the fact
that the photon pair can be treated to be entangled in any partic-
ular degree of freedom as required by the application protocol
irrespective of the other DOF. For example, the output from
type II SPDC can be described by the following expression:

|�〉SPDC = 1√
2

(|H1〉|V2〉 + |V1〉|H2〉), (1)

where H,V denote the polarization state of the photons
arriving in diametrically opposite points of the SPDC ring.
It means that if the first photon is found to be horizontally
polarized, the second photon would be vertically polarized
and vice versa. The same output can be also written as

|�〉 =
∑
l1,l2

Cl1,l2 |l1〉|l2〉, (2)

where li denotes the orbital angular momentum (OAM) value
of the ith photon. If the pump beams carry an OAM l then l, l1,
and l2 are related by the condition l = l1 + l2 and the state is
seen to be entangled in OAM [3]. Since OAM values can range
from −∞ to +∞, such a state can exhibit very high degree
of entanglement. Moreover, systems like this can be used in
the implementation of complete Bell state analysis [4,5] with
100% efficiency using only linear elements [6]. Besides, hyper-
entangled systems exhibit significant advantages in quantum
communication protocols like superdense coding [7] and
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quantum crytography [8]. In general, photon pairs produced
in SPDC output belong to the larger class of Gaussian states
and has been subjected to detailed study and scrutiny over
the years in the context of quantum information [9]. Lately
though, there has been increasing focus on another class of
states being generated from SPDC photons called the quantum
vortex states [10–16]. These are non-Gaussian quantum states
exhibiting phase singularity or topological defect. A vortex
state of topological index l carries with it an orbital angular
momentum l�. It has also been reported that as the order is
higher, the entanglement is also higher [14]. Although l can
range from 0 to ∞, neglecting the handedness, in practice,
it is observed that as the order is higher, the spread of the
vortex core is larger. A way out of this is the generation of
perfect quantum optical vortex states (PQOVS), where the
spread of the vortex core does not change with the order
of OAM. The concept of perfect optical vortex was first
introduced in Ref. [17]. Subsequent articles [18–20] have
reported generation of perfect optical vortex using improved
techniques. But all these articles deal with classical perfect
vortex beams. In this article we introduce the concept of perfect
quantum optical vortex state, which differs from the classical
analog due to fact that a quantized radiation field is used in
place of classical light fields. We study its various properties
through the use of quadrature distribution and Wigner function.

In order to generate the PQOVS, we begin with one of
the simplest non-Gaussian state, the pair coherent states.
Pair coherent states, introduced by Agarwal in Ref. [21], are
coherent states with a fixed difference in the number of photons
between the modes. The difference in the number of photons
fixes the order or topological charge of the state. These states
are Bessel-Gaussian in nature. We perform a Fourier transform
on pair coherent states to generate the perfect vortex.

The article is organized as follows. In Sec. II we present a
detailed mathematical study on the generation of PQOVS. In
Sec. III, we derive the Wigner function associated with PQOVS
explicitly and present our interpretations of the results obtained
therein. We conclude the article in Sec. IV with a brief review
of the results and directions for future work.

II. GENERATING A PERFECT QUANTUM VORTEX

A perfect optical vortex, in theory, is best represented by
the equation

EPV (ρ,φ) = il−1

kr

δ(ρ − rc) exp (ilφ) (3)
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in cylindrical coordinates (ρ,φ,z) at the z = 0 plane. Equa-
tion (3) represents an ideal perfect optical vortex beam with
the central dark core having a radius rc. Such a vortex beam
can be generated by Fourier transforming an ideal Bessel beam
using a simple lens [19]. But, as noted by the authors in the
same work, generation of an ideal Bessel beam is not possible
experimentally. A way out of this is by using a Bessel-Gauss
beam in place of ideal Bessel beam of the form

EBG(ρ,φ) = Jl(kr ,ρ) exp(ilφ) exp

(
−ρ2

σ 2

)
, (4)

where Jl(kr ,ρ) is the lth-order Bessel function of the first kind.
kr is the radial wave vector and the second exponential term on
the right represents the Gaussian wave packet that confines the
Bessel beam. In order to generate a perfect quantum optical
vortex, one should begin with a state that reduces to the form
of Eq. (3) in the quadrature distribution. To that end, we begin
with one of the simplest non-Gaussian quantum states, often
referred to as pair coherent states [21] in the literature. In the
coherent state representation, these states can be written as

|ζ,q〉 = eq

2π
√

ζ qI0(2ζ )

∫ 2π

0
(
√

ζeiθ )−q |
√

ζeiθ 〉|
√

ζe−iθ 〉dθ,

(5)

where I0 represents the modified Bessel function of the first
kind of order 0. ζ is the complex amplitude. The meaning of
q becomes clear when Eq. (5) is written in the Fock basis as
follows:

|ζ,q〉F = 1√
ζ qI0(2ζ )

∞∑
n=0

ζ n

√
n!(n + q)!

|n + q,n〉. (6)

As is evident from the above equation, q is the number of
photons added to one of the modes of a two-mode state. In other
words, it is the difference in the number of photons present in
each mode. Under conditional parametric conversion process,
a pair coherent state evolves to a vortex state as observed in
Ref. [22]. The Hamiltonian describing such a process has the
following form:

H = ωaa
†a + ωbb

†b + κ(a†beiηt + ab†e−iηt ), (7)

where η is the difference in frequencies ωa and ωb and κ is the
coupling constant. a and b are the bosonic mode annihilation
operators. Under this Hamiltonian, Eq. (5) evolves into

|ψ〉 = N
∫ 2π

0
eiqθ |ζ cos θ〉|ζ sin θ〉dθ, (8)

which has a vortex structure in the quadrature distribu-
tion. Equation (8) represents a Bessel-Gaussian (BG) vortex
state [22] of topological charge q. It carries with it orbital
angular momentum q�. N is the normalization factor and is
written as

N = 1√
4π2e−α2

Iq(α2)
, (9)

where Iq is the qth-order modified Bessel function of the first
kind. In cylindrical coordinates (at z = 0 plane), this state has

the form

ψ(ρ,φ) = 2iq
√

πN exp

(
−ρ2

2

)
Jq(

√
2αρ) exp (iqφ),

(10)
where α = |ζ | and Jq is the qth-order Bessel function of the
first kind. Any arbitrary optical beam can be Fourier trans-
formed by passing it through a simple lens. The transformation
equation corresponding to such a process for an arbitrary beam
E(ρ,φ) can be expressed as [23]

E(r,θ ) = k

2πif

∫ ∞

0

∫ 2π

0
E(ρ,φ)ρdρdφ

× exp

[
− ik

f
ρr cos (θ − φ)

]
(11)

in a cylindrical coordinate system. Here f is the focal length
of the lens used and k is the wave vector. Such a transformation
on an ideal Bessel beam gives rise to a perfect vortex beam.
Arguing that a simple lens transforms the quadratures in a
similar manner, with k interpreted as the momentum of the
incident state, we substitute E(ρ,φ) with Eq. (10) to obtain
the Fourier transform of the BG vortex state as follows:

ψ(r,θ ) = kiq−1

√
πf

N
∫ ∞

0

∫ 2π

0
exp

(
−ρ2

2

)
Jq(

√
2αρ)

× exp (iqφ)ρdρdφ exp

[
− ik

f
ρr cos (θ − φ)

]
.

(12)

Evaluating the integration in Eq. (12) using standard integral
techniques [24] and applying the properties of the Bessel
function, we arrive at the following form:

ψ(r,θ ) = N 2
√

2π

σ
i2q−1 exp (iqθ )

× exp

[
− r2

c + r2

σ 2

]
Iq

(
2rcr

σ 2

)
, (13)

where r2 = x2 + y2, θ = tan−1 (y/x), and σ = √
2f/k. rc =√

2αf/k is the radius of the central dark core. It is dependent
on the amplitude of the coherent state, the focal length of the
lens used in the Fourier transformation, and the momentum
of the initial state. This equation resembles the one obtained
in Ref. [19] with one vital difference. The core radius rc

is a function of the coherent state amplitude and resembles
the role played by the axicon parameter in Ref. [19]. On
further comparison, we note that σ can be likened to the
Gaussian beam waist at the focus. Equation (13) represents
the quadrature distribution associated with the perfect quantum
optical vortex state.

We study the perfect quantum optical vortex (PQOVS) state
in Fig. 1. We have used λ = 810 nm and focal length of the lens
f = 70 cm for all the figures. In the case of α, it was observed
that a higher value resulted in more stability of the core radius
for higher order PQOVS. It is important to note that the role
of axicon parameter in case of classical perfect vortex beam is
played by the coherent state amplitude α in our case. Whereas
the axicon parameter has to be modified in the classical scheme
of things to keep the core radius fixed with changing order of
the vortex, in the quantum analog, α needs to be altered to keep
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(a) q=1 (b) q=10 (c) q=15 (d) q=20

(e) q=1 (f) q=10 (g) q=15 (h) q=20
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FIG. 1. Intensity distribution of perfect quantum optical vortex states for various orders (e)–(h) in comparison with the corresponding BG
vortex states, in arbitrary units. q represents the topological charge or order of the vortex state. Details are in the text.

the core radius from changing with the order of the vortex. In
our study, we have used α = 15. We observe that the radius of
the dark core remains almost constant for different orders of
the vortex or topological charge. In contrast, the central core
radius of a standard BG vortex varies quite substantially with
changing values of q. Slight variation in the core radius might
be observed for the PQOVS and can be attributed to the rate of
change of Iq with q as noted in Ref. [19]. But this is negligible
when compared to a standard BG vortex. The order or the
topological charge of the generated PQOVS can be confirmed
by studying the phase of the associated quadrature distribution
of Eq. (13), which we study in Fig. 2. We observe a single
discontinuity for q = 1, ten discontinuities for q = 10, fifteen

(a) q=1 (b) q=10

(c) q=15 (d) q=20
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FIG. 2. Phase of the generated PQOVS for various orders. Details
are in the text.

for q = 15, and twenty for q = 20, which corresponds to the
order of the PQOVS.

III. WIGNER FUNCTION OF THE PQOVS

In this section, we derive the Wigner function [25] associ-
ated with a PQOVS. The Wigner function is a quasiprobability
distribution. It differs from a classical probability distribution
due to the fact that it takes negative values for which there are
no classical analogs. It provides direct evidence of nonlocality
for EPR systems [26]. It can also be interpreted as the Fourier
transform of the two-point correlation function. The marginals
of the Wigner function should be interpreted as partial trace
operations. The reduced Wigner function, that is the case when
any one (two) quadrature(s) is (are) taken as the argument
while the other one (two) is (are) treated as parameter(s)
for a single-mode (two-mode) state, should be interpreted
as a conditional probability distribution where the outcome
of one is conditioned upon the outcome of the other. It is
in this respect, the negativity of the Wigner function, which
has been interpreted as a signature of nonclassicality [27],
assumes greater importance. Here we would like to quote
Feynman: “If a physical theory for calculating probabilities
yields a negative probability for a given situation under certain
assumed conditions, we need not conclude the theory is
incorrect. Two other possibilities of interpretation exist. One
is that the conditions (for example, initial conditions) may
not be capable of being realised in the physical world. The
other possibility is that the situation for which the probability
appears to be negative is not one that can be verified directly.
A combination of these two, limitation of verifiability and
freedom in initial conditions, may also be a solution to the
apparent difficulty” (p. 238, [28]). In this context, studying the
Wigner function associated with our proposed state seems all
the more interesting. The Wigner function for any arbitrary
state ψ(�r) of two modes is defined as

W = 1

(2π )2

∫ ∞

−∞
ψ(�r + �R/2)ψ∗(�r − �R/2)

× exp{i(R1p1 + R2p2)}dR1dR2, (14)
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(a) W (x, y)px =0
p y =0 (b) W (x, px )p y =0

y =0

(c) W (x, py )px =0
y =0 (d) W (y, py )px =0

x=0

(e) W (y, px )p y =0
x=0 (f) W (px , py )y =0

x=0

FIG. 3. Wigner function W associated with the PQOVS for q = 2.

where �r = x + iy and �R = R1 + iR2. Rewriting Eq. (13) in
terms of coordinates x and y, where x stands for mode a and
y stands for mode b, we get

ψ(x,y) = Ai2q−1[x + iy]q exp

(
−x2 + y2

σ 2

)

× Iq

(
B

√
x2 + y2

)
, (15)

where A = N2
√

2π
σ

exp (−r2
c /σ 2) and B = 2rc/σ

2. Substitut-
ing Eq. (15) in Eq. (14) and evaluating the integral using
standard techniques [24], we can write the Wigner function
associated with PQOVS as follows:

W = |A|2
4π2

e−2|r|2/σ 2
e−|p|2σ 2/2(−1)q

q∑
k=0

k!21−qπσ 2q+2Iq(B|r|2)

×Lq

[
4|r|2 + |p|2σ 4 + 4(pxy − pyx)σ 2

2σ 2

]
, (16)

where |p|2 = p2
x + p2

y and px and py are conjugate momenta
of the two modes. Lq represents the Laguerre polynomial of
order q. We observe that the final form of the Wigner function
consists of a Gaussian factor composed of quadratures of both
the modes, a modified Bessel function of order q only in
r and a Laguerre polynomial, also of order q, which takes
a combination of the components of �r and �p as arguments.
We study the properties of Eq. (16) in more detail in Fig. 3.
Since W is four dimensional in structure, it is impossible to
reproduce the full form of W on paper. Hence we study the

0 10 20 30 40
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

q

n(
W
)

FIG. 4. Variation of the negative volume of W (x,py) with order
q (y = 0; px = 0).

nature of the Wigner function for six possible combinations
of the quadratures, taking any two as parameters and the other
two as variables at a certain instant in Fig. 3. It is observed that
all the six combinations, i.e., W (x,y), W (x,px), W (x,py),
W (y,py), W (y,px), and W (px,py), show negative regions.
This negativity has often been interpreted as an indicator of
quantum interference. The Wigner function corresponding to
the quadratures x and y, Fig. 3(a), and px and py , Fig. 3(f),
exhibit a similar nature. It consists of concentric rings of
diminishing intensity with the intensity diminishing while
moving outwards from the center. Similar quadratures of the
two modes [spatial quadratures in Fig. 3(a) and momentum
quadratures in Fig. 3(f)] oscillate in orthogonal directions to
give rise to the concentric rings which are bounded by the
Gaussian function and hence the rings decrease in magnitude.
In the case of W (x,px), both quadratures of a mode overlap to
give rise to the pattern seen in Fig. 3(b). A similar explanation
holds for Fig. 3(d). The interesting results appear in Figs. 3(c)
and 3(e). A correlation is observed between the spatial
quadrature of one mode and the momentum quadrature of the
other mode. The spatial quadrature of one mode interacts with
the momentum quadrature of the other mode in the absence of
the spatial quadrature of the latter and momentum quadrature
of the former to give rise to interference like structure with
negative regions. These structures have often been referred to
as quantum interference pattern and the associated negative
volume used to study nonclassical correlations. The negative
volume of the Wigner function is defined as

n(W ) = 1

2

∫∫
|W (x,py)|dxdpy − 1. (17)

We study the variation of n(W ) in Fig. 4. It is observed
that the negative volume associated with W (x,py) increases
sharply with increasing order of the vortex q before reaching
a peak value of 1.287 for q = 2, after which it decays
asymptotically. This can be explained by the fact that the
interference decreases with increasing value of q. For q = 0
there is only peak with no interference. The interference pattern
first appears for q = 1 and is the most prominent for q = 2.
With further increase in q, the interference pattern starts to
separate out, becoming sparse and localized in two distinct
regions with the separation distance increasing with increasing
order of the vortex. This is evident from Fig. 5. The study of
the negative volume can thus be used to state conclusively
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(a) W (x, py )y =0 ,p x =0
q= 0 (b) W (x, py )y =0 ,p x =0

q=1

(c) W (x, py )y =0 ,p x =0
q= 2 (d) W (x, py )y =0 ,p x =0

q=3

(e) W (x, py )y =0 ,p x =0
q= 4 (f) W (x, py )y =0 ,p x =0

q=5

FIG. 5. Wigner function W (x,py) for different orders of the
PQOVS. The subscript q denotes the order of the vortex.

that the quantum interference effect decreases with increasing
order of the vortex.

IV. CONCLUSION

To conclude, we have introduced and theoretically studied
the generation of a non-Gaussian state with strong underlying
nonclassical properties. We call this state PQOVS. We have
shown that a standard BG quantum vortex evolves into a
PQOVS under Fourier transformation using a simple lens.
The PQOVS thus generated has a fixed core radius which can
be controlled by varying the initial conditions to suit specific
applications. As an advantage over recently introduced BG
vortex states, the central dark core of PQOVS does not change
noticeably with increasing order or topological charge of the
vortex. Slight change in the radius can be offset by slightly
altering the coherent state amplitude of the initial pair coherent
state. We have also calculated the Wigner function of the
PQOVS. It is observed that all the six combinations of the
4-D Wigner function exhibit negative values, which is a strong
indication of nonclassical behavior. Interesting patterns are
also observed in the study of W (x,py) and W (y,px), which can
be interpreted as a signature of quantum interference between
the two modes of the PQOVS state. The negative volume of
W (x,py) is calculated for various orders of the vortex. It is
observed that the negative volume peaks for q = 2, after which
it decays asymtotically with increasing order. The negativity
of the Wigner function can therefore be used as a measure of
the quantum correlation or interference between constituent
modes; however, no conclusion can be drawn on the behavior
of nonclassicality of the PQOVS with increasing order of the
vortex.
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