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Laser and cavity cooling of a mechanical resonator with a nitrogen-vacancy center in diamond
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We theoretically analyze the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure
is also an optical cavity and is coupled with a nitrogen-vacancy (NV) center. The NV center is driven by a laser
and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation
pressure couples the mechanical resonator and cavity field. Starting from the full master equation we derive the
rate equation for the mechanical resonator’s motion, whose coefficients depend on the system parameters and
on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and
the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters,
we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that
the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure
dephasing of the NV center’s electronic transitions can lead to an improvement of the cooling efficiency.
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I. INTRODUCTION

Color centers in diamond are widely studied because of
their exceptional properties as bright solid-state quantum
emitters at room temperature [1,2]. Their dynamics is being
analyzed in a wide variety of setups, which for instance can
achieve the strong coupling with high-finesse optical res-
onators [3–5] and/or the strain coupling with high-Q vibrating
structures [4–10] or standing mechanical waves [11,12]. This
experimental progress makes nitrogen-vacancy (NV) centers
promising candidates for realizing quantum hybrid devices,
namely, devices capable of interfacing photons, phonons, and
spin excitations in a controlled way, and can offer a wide range
of applications for quantum information processing [13–16]
and quantum sensing [13,17–20]. It thus calls for identifying
the perspectives for control of these hybrid devices, which
requires a systematic characterization of their dynamics.

In this work, we theoretically analyze laser cooling of
a high-Q vibrating mode, which is strain coupled to the
electronic transitions of an NV center in diamond and optome-
chanically coupled to an optical cavity. This situation can be
realized, for instance, when the NV center, high-Q mechanical
mode, and optical resonators are assembled in a monolithic
diamond structure, as illustrated in Fig. 1 and recently
discussed in Refs. [9,10]. In this setup the high-Q vibrating
mode can be optomechanically cooled by the coupling with
the cavity and/or laser cooled by the strain coupling with
the NV-center transitions between the state |g〉 ≡ |3A20〉 and
the levels |Ex〉 ≡ |x〉 and |Ey〉 ≡ |y〉, sketched in Fig. 1(b).
The starting point of our study is the theoretical model of
Ref. [21], where the authors investigated the effect of the NV
multilevel structure on the dynamics of a high-Q vibrational
mode. We extend this model by including the high-finesse
mode of an optical cavity, which couples to the electronic
transitions of the NV center and to the mechanical resonator by
means of radiation pressure, and determine the laser-cooling
dynamics. We focus in particular on the regime where the
linewidth of the resonances induced by the coupling with
the cavity is of the same order as the one of the electronic
transitions of the NV center. We further determine the effect

of pure dephasing, which tends to destroy the coherence of the
NV-center excitations, on the cooling dynamics. Surprisingly,
we identify regimes where pure dephasing can improve the
cooling rate.

This article is organized as follows. In Sec. II we review
some general concepts ruling the cooling dynamics in the
presence of the strong coupling with a resonator. In Sec. III
the theoretical model is introduced, and in Sec. IV the
parameter regime is discussed with reference to existing
experimental realization. In Sec. V the rate equations for the
phonon dynamics are derived, and in Sec. VI the cooling rate,
the asymptotic temperature, and the spectrum of resonance
fluorescence are determined and discussed in the presence and
in the absence of the coupling with the optical cavity mode.
Moreover, the cooling efficiency as a function of the dephasing
rate is analyzed. The conclusions are drawn in Sec. VII.

II. GENERAL CONSIDERATIONS

Our study is motivated by an experimentally existing
platform, like the one sketched in Fig. 1. Our purpose is to
investigate whether the optomechanical coupling can help in
achieving lower temperatures than the ones that have been
predicted by sideband cooling using the strain-coupling with
the NV center; see Ref. [21]. In fact, there can be an advantage
by resorting to the optical cavity if the final occupation of
the mechanical oscillator is lower than by just performing
sideband cooling with the NV center, and thus if (i) the
cavity-assisted cooling processes are sufficiently faster than
the thermalization with the external environment and yet (ii)
the final occupation of the oscillator is smaller than the one
obtained by solely employing sideband cooling, according to a
protocol like the one described in Ref. [21]. This analysis draws
from several works where it was studied how the interplay
between the mechanical effects due to the coupling of an
electronic transition with a laser and with a cavity can increase
the cooling efficiency of a mechanical oscillator [22–25].
There it was found that ground-state cooling can be achieved
as long as the mechanical oscillator frequency, here denoted by
ν, is larger than either the linewidth of the electronic transition,

2469-9926/2016/94(5)/053835(10) 053835-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.053835


GIANNELLI, BETZHOLZ, KREINER, BIENERT, AND MORIGI PHYSICAL REVIEW A 94, 053835 (2016)

FIG. 1. (a) A mechanical resonator, which is also a photonic
crystal, interacts with an NV center in a diamond bulk via strain
coupling. (b) The NV-center internal level structure, including the
photonic excitations: the ground state |g〉 ≡ |3A20〉 couples to the
excited states |x〉 ≡ |Ex〉 and |y〉 ≡ |Ey〉, which radiatively decay at
rate �. A mode of the high-finesse optical cavity decays at rate κ and
drives quasiresonantly the transitions |g,n + 1〉 → |x,n〉,|y,n〉 with
n the intracavity photon number. Coefficients gx and gy denote the
corresponding vacuum Rabi frequencies. (c) Sketch of the relevant
frequencies δL,�c,�, as a function of which the cooling efficiency
is characterized, in the presence of a laser driving the transition
|g〉 → |y〉 with Rabi frequency �.

�, or of the optical resonator, κ . The minimal final mechanical
oscillator occupation one can achieve is then controlled by the
ratio between the linewidth of the narrower resonance, which
we denote here by �min = min (κ,�), and ν. Accordingly, the
cooling rate �̃ is slower and scales with �min.

These dynamics can be often illustrated by means of a set
of rate equations for the occupations pn of the oscillator’s state
with n excitations (n = 0,1,2, . . .) [26]:

ṗn = −n(A+ + A−)pn + (n + 1)A−pn+1 + nA+pn−1, (1)

with
∑

n pn = 1 (see Sec. V for details how this equation is
derived). Here, nA+ and nA− are the rates with which the
oscillator in state |n〉 is heated and cooled, respectively, by one
phonon, and can have the form of Lorentz functions, whose
linewidth is determined by the linewidth scattering resonance.

Specific predictions for the relevant quantities, whose
dynamics Eq. (1) describes, can be directly extracted from
the equation for the mean phonon occupation number 〈n〉 =
〈a†a〉 = ∑

n npn [26]:

˙〈n〉 = −(�̃ + γ )(〈n〉 − nf ). (2)

Here γ is the thermalization rate and nf the final phonon
occupation of the mechanical mode. Finally

�̃ = A− − A+ (3)

is the cooling rate when A− > A+, whose maximum ampli-
tude scales as �̃ ∼ (ωr/ν)�min with ωr the frequency scaling
the mechanical effects due to the coupling with light [when
these are due to the phase or intensity gradient of the light wave,
ωr is the recoil frequency; here, ωr ∼ (
/�)2/ν, with 
 the
strength of the strain coupling]. In this regime and for γ = 0
radiation cools the vibrations to the asymptotic occupation N0,

which is given by

N0 = A+
A− − A+

= A+
�̃

, (4)

and whose minimum scales with N0 ∼ (�min/ν)2.
In a solid-state environment, where the heating rate due

to the coupling with the external reservoir is not negligible,
slowing down the cooling dynamics can be detrimental. This
is visible when considering the final occupation:

nf = �̃

�̃ + γ
N0 + γ

�̃ + γ
Nth, (5)

where Nth is the mean phonon occupation at the temperature
of the external reservoir. Thus, maximizing the ratio �min/γ

and minimizing the ratio �min/ν is crucial and limits the
parameter interval where cavity-assisted cooling can improve
the efficiency.

From these considerations one can generally identify the
regime where the coupling with a resonator can increase the
sideband cooling efficiency. In fact, a large cavity decay rate
such that κ > ν > � would increase the cooling rate �̃. Yet
it can also increase the asymptotic occupation number of the
mechanical mode N0. On the other hand, a very good cavity
with κ < � < ν can allow one to achieve smaller values of N0,
but at the price of decreasing �̃, so that the final occupation
number of the mechanical mode nf becomes effectively larger.

The parameter regime to explore is quite large. However
in general we expect that, in the regime where laser sideband
cooling is efficient, the coupling to a resonator at linewidth
κ > � can be of help only if it substantially increases the
cooling rate keeping N0 < 1. The coupling to a resonator
with κ < � < ν can help in reaching ultralow temperatures,
provided thermalization can be neglected. In this article
we limit our analysis by taking the optimal parameters for
sideband cooling of an NV center and adding the coupling
with a cavity with linewidth κ ∼ �, in order to search for
possible effects which cannot be foreseen drawing from these
simple considerations. We refer the reader to Sec. IV where
the choice of the parameter regime is discussed in relation
to existing experimental implementations. The cooling rate,
the asymptotic temperature, and the spectrum of resonance
fluorescence are then determined and discussed in Sec. VI
in the presence and in the absence of the coupling with the
optical cavity mode. The reader who is solely interested in the
resulting cooling efficiency can skip Sec. V and jump directly
to Sec. VI.

III. THE SYSTEM

In this section we introduce the theoretical model which is
at the basis of our study. We describe the interaction of a high-Q
mechanical resonator mode of a phononic crystal cavity, with
a quantum emitter, specifically, an NV center in diamond, and
a high-finesse optical resonator mode of a photonic crystal
cavity. The NV center is strain-coupled with the mechanical
resonator and the electronic dipole transitions strongly couple
with the photonic mode. The mechanical resonator, in turn,
is optomechanically coupled to the photonic cavity. The
interactions in this system are expected to be strongly enhanced
by the co-localization in a single structure ensuring a perfect
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spatial overlap between the different degrees of freedom,
which is achieved by assemblance in a monolithic diamond
structure sketched in Fig. 1(a). The system is intrinsically dis-
sipative due to radiative decay of the electronic excitations and
optical cavity losses. Additionally, the mechanical resonator
couples to an external thermal reservoir. We assume that it is
continuously driven by a laser field, which directly couples
to an electric dipole transition of the defect. In what follows
we define the master equation governing the dynamics of the
density matrix ρ, which describes the state of the composite
system composed by the NV center, and the photonic and
phononic resonators.

A. Basic equations

The dynamics of the hybrid system’s density operator ρ,
describing the state of the system composed by the internal
degrees of freedom of the NV center, of the optical cavity
mode, and of the mechanical oscillator, is governed by the
master equation ∂tρ = Lρ, where superoperator L is defined
as (� = 1):

Lρ = −i[H,ρ] + Ldisρ, (6)

and which will be conveniently reported in the reference frame
rotating with the laser frequency ωL. Below we provide the
detailed form of Hamiltonian H and superoperator Ldis.

1. Unitary dynamics

We first give the detailed form of the Hamiltonian H ,
which generates the unitary part of the time evolution. For
convenience, we decompose it into the sum of Hermitian
operators:

H = Hmec + HI + (a + a†)V, (7)

where a and a† annihilate and create, respectively, a me-
chanical vibration at frequency ν, while V acts on the cavity
and NV-center degrees of freedom and is specified later on.
Operator

Hmec = νa†a (8)

is the internal energy of the mechanical resonator, while
Hamiltonian HI describes the coupled dynamics of the NV
center and the optical cavity:

HI = (
ωy − ωL

)|y〉〈y| + (ωx − ωL)|x〉〈x| + (ωc − ωL)c†c

+
[
�

2
|y〉〈g| + (gx |x〉〈g| + gy |y〉〈g|)c + H.c.

]
. (9)

Here, ωx (ωy) is the frequency splitting in the laboratory
frame between the excited state |x〉 (|y〉) and the ground state
|g〉; operators c and c† annihilate and create, respectively,
a cavity photon at frequency ωc (in the laboratory frame).
The splitting between the |x〉 and |y〉 states is, for instance,
due to a nonzero strain coupling, which is not related to the
mechanical mode we consider. The frequencies appear shifted
by ωL since Hamiltonian HI is reported in the reference frame
rotating at the laser frequency. The second line of Eq. (9)
describes, from left to right, the external laser driving the
transition |g〉 → |y〉 with Rabi frequency �, while the optical
mode drives the transitions |g〉 → |x〉 and |g〉 → |y〉 with

vacuum Rabi frequencies gx and gy , respectively. We note
that the laser polarization can be chosen to selectively drive
one electronic transition, as we do in our model, while in
general the cavity mode’s polarization has a finite projection
to the dipole moment of both transitions, since this depends on
the preparation of the sample. Therefore, we generally assume
gx,gy �= 0 unless otherwise stated. The relevant NV center
and cavity states are reported in Figs. 1(b) and 1(c) with the
relative detunings with respect to the laser frequencies. These
are defined as

δL = ωL − ωy,

� = ωx − ωy,

�c = ωc − ωy.

(10)

Finally, operator V is the sum of the strain and of the
optomechanical coupling of the mechanical resonator with
NV center and optical cavity, respectively. We decompose it
hence into the sum V = Vstrain + Vom, where Vstrain acts on the
NV degrees of freedom and reads [27]

Vstrain =
∑

j=I,X,Z


jAj , (11)

where 
j are the strain coupling constants and the operators
Aj are defined as

AI = |x〉〈x| + |y〉〈y|,
AX = |x〉〈y| + |y〉〈x|,
AZ = |x〉〈x| − |y〉〈y|.

(12)

The optomechanical coupling reads Vom = −χc†c with χ the
optomechanical coupling constant [28,29].

2. Dissipation

The irreversible processes we consider in our theoretical
description are (i) the radiative decay of the NV excitations and
pure dephasing of the electronic coherences, (ii) cavity losses,
and (iii) the mechanical damping rate due to the coupling of
the mechanical resonator with an external thermal reservoir.
We model each of these phenomena by a Born-Markov
process described by the corresponding superoperator, such
that superoperator Ldis in Eq. (6) can be cast in the form

Ldis = L� + Lκ + Lγ . (13)

The individual terms read

L� = �

2

∑
ξ=x,y

D[|g〉〈ξ |] + �φ

2

∑
ξ=x,y

D[|ξ 〉〈ξ |], (14)

Lκ = κ

2
D[c], (15)

Lγ = γ

2
(Nth + 1)D[a] + γ

2
NthD[a†], (16)

where we used the definition

D[o]ρ = 2oρo† − o†oρ − ρo†o, (17)

with o = |g〉〈ξ |,|ξ 〉〈ξ |,c,a,a†. The coefficients are the ra-
diative decay rate � of the NV-center excited states, the
dephasing rate of the electronic coherences �φ , cavity losses
at rate κ , and the damping rate of the mechanical oscillator γ .
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Finally, Nth = [exp(ν/kBT ) − 1]−1 is the equilibrium phonon
occupation number of the bath to which the oscillator couples,
with T the bath’s temperature.

B. Spectrum of resonance fluorescence

In what follows we will use the master equation, Eq. (6),
in order to analyze the cooling efficiency of the mechanical
resonator and the spectrum of the light emitted by the NV
center at the steady state of the cooling dynamics. In order
to better characterize the parameter regime where cooling is
efficient we choose an analytical approach, which is based on
a perturbative expansion of the Liouville operator and allows
us to determine the cooling regime, the corresponding rate,
and the asymptotic temperature. This approach is reported in
one of the following sections.

Moreover, in the regimes of interest we determine the
spectrum of the scattered light, for the purpose of identifying
the relevant features in the photons which are emitted by the
NV center outside of the resonator. The spectrum of resonance
fluorescence is, apart from a constant proportionality factor,
the Fourier transform of the autocorrelation function of the
electric field [30]:

S(ω) ∝ Re
∫ ∞

0
dτ e−iωτ 〈E(−)(τ )E(+)(0)〉st, (18)

where E(−)(t) and E(+)(t) are the negative and positive
frequency components of the electric field at time t and 〈·〉st ≡
Tr{·ρst} denotes the trace taken over the steady-state density
matrix ρst which solvesLρst = 0. The intensity of the scattered
field (away from the forward direction) is proportional to
the source field; hence in the far field the electric field is
proportional to the sum of the operators dj |g〉〈j | + H.c.,
for j = x,y where dx and dy are the dipole moments of
the transitions |g〉 → |x〉 and |g〉 → |y〉, respectively (notice
that |dx | = |dy |). Since the dipole moments are mutually
orthogonal, the spectrum integrated over the full solid angle
4π is the incoherent sum of the two components coming from
the |g〉〈x| and |g〉〈y| operators; i.e., the interference term
integrates to zero. With the help of the quantum regression
theorem [31] one can cast the spectrum into the form

S(ω) ∝
∑

j=x,y

Re Tr {|j 〉〈g|[i(ω − ωL) − L]−1|g〉〈j |ρst}.

(19)

In this work we numerically determine the spectrum for the
parameter regimes of interest.

IV. PARAMETER REGIME

In order to justify the experimental relevance of the cooling
dynamics we discuss in the rest of this article, we now relate
the theoretical model to existing experimental realizations and
identify the parameter regime which we will consider in our
analysis.

Optical resonator. A structure like the one discussed here
can be found for instance in a so-called phoxonic crystal
(PxC), which co-localizes confined optical and mechanical
resonator modes [9]. Photonic crystals are formed by a periodic
modulation of the refractive index (in this case air holes in

diamond), resulting in the formation of optical bands similar
to electronic band structures in solids. A local defect such as a
variation of the hole diameters along the PxC structure perturbs
the perfect periodicity and gives rise to an optical cavity mode.
So far, fabrication imperfections limit experimental quality
factors to 104 at visible wavelengths suitable for the interaction
with color centers in diamond and up to 105 in the telecom
band around 1550 nm [10,32–34]. Nevertheless, simulations
of one-dimensional photonic crystal cavities designed for
visible light predict quality factors up to 107 and mode volumes
around 1 cubic wavelength with cavity loss rate in the range
κ ∼ 10 MHz to 1 GHz [9].

Mechanical resonator. In a PxC a periodic variation of the
elastic modulus creates a mechanical band structure and a
suitable variation of the regular pattern allows for a localized
mode of the mechanical resonator. Recent experiments with
structures at mechanical frequencies of 6 GHz with optical
properties suitable for telecom wavelengths show mechanical
quality factors of 103 [34]. Numerical modeling shows that
modes with frequencies in the range 10–20 GHz with quality
factors reaching 107 can be achieved with an effective mass
of 10−16 kg for structure dimensions matching visible wave-
lengths with the confined optical mode [9]. The parameters we
choose are consistent with assuming mechanical frequencies
of the order of 1–10 GHz and a quality factor of the order of
106–107, giving a damping rate γ of a few kHz. The strain
coupling constants are taken to be of the order of 1–10 MHz
[21,35,36]. The optomechanical coupling constant χ is taken
to be of the order of a few MHz [9].

NV center. Figures 1(b) and 1(c) reports the relevant level
structure of the NV center in diamond. In the absence of strain
coupling, the ms = 0 ground state |3A20〉 can be selectively
coupled to the excited states |Ex,y〉, which have zero spin
angular momentum. While the ground state is much less
sensitive to lattice distortion, these excited states are highly
susceptible to external perturbations [2,35,37]. Axial strain
(parallel to the NV center axis, equivalent to the 〈111〉 crystal
direction) leads to an additional splitting between ground and
excited states as well as between the ms = 0 and ms = ±1
levels in the ground state. Radial strain (perpendicular to the
NV axis) mixes the excited state levels Ex and Ey and leads
to a splitting of the new states E∗

x and E∗
y (ms = +1∗ and

ms = −1∗). The effect of strain coupling on the excited states
is several orders of magnitude larger than on the ground state
and hence dominates the strain-induced modification of the
NV’s optical properties. Therefore, we restrict our model to
the interaction between the mechanical resonator mode and
the transition coupling the ground state |g〉 ≡ |3A20〉 to the
excited states |x〉 ≡ |Ex〉 and |y〉 ≡ |Ey〉. For the excited states
we take the radiative decay rate � ∼ 100 MHz [38,39]. The
interaction between the NV transitions and the 71 meV lattice
phonon modes [40] changes the energy of the |x〉 and |y〉
states and can thus give rise to a dephasing mechanism of
the electronic coherence [3,41]. In our model we neglect the
mixing between the states and consider only pure dephasing
with rates of the order of �φ ∼ 100 MHz, which can be
achieved in bulk diamond at temperatures lower than 10 K
[27,42]. We restrict the frequency of the mechanical resonator
mode to ν = 2π × 1 GHz in order to avoid coupling to NV
excited states other that Ex and Ey . As the optical cavity mode
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should still be near resonant on the optical transition of the NV
at 637 nm this does not correspond to a real structure design
for the full threefold hybrid system. However, we still model
this artificial parameter set in order to obtain qualitative results
on the nature of the interaction.

Cooling regime. The analysis of the cooling efficiency is
performed by determining the cooling rate �̃ and the ideal
asymptotic occupation number of the mechanical mode N0 as
a function of the tunable parameters, which we take here to
be the frequency splitting of the electronic excited states and
the laser frequency, corresponding to changing δL, �c, and
�. The analysis is performed by searching for the parameter
regime where the asymptotic occupation number N0 < 1 and
the cooling rate �̃ is maximized, in order to realize regimes
where the radiative cooling can overcome thermalization by
the external reservoir. This constrains the range of parameters.
A necessary condition for performing ground-state cooling
is the presence of a resonance whose linewidth L is smaller
than the trap frequency [43], which poses an upper bound to L.
Moreover, the cooling rate shall exceed the thermalization rate.
Since the cooling rate is proportional to the effective linewidth
of the cooling transition, this condition sets a lower bound
to L. If one performs optomechanical cooling by driving the
optical resonator, then L = κ . In the absence of the resonator,
the mechanical oscillator can be cooled by driving the NV
center transitions with a laser and L = �. When the NV
center transitions also couple with the optical cavity, then
L is a linear interpolation of the cavity linewidth κ and of
the NV transition linewidth �, and varies between � and κ

[24] (smaller linewidths could be achieved by coupling to
other stable electronic transitions, which in our system are not
considered [44,45]).

In order to get a relatively small phonon occupation of
the bath Nth we take a large mechanical frequency, ν ∼ 2π ×
1 GHz, and thus for our parameter choice � < ν. We then fix
the cavity linewidth κ � �.

V. EFFECTIVE DYNAMICS OF THE MECHANICAL
RESONATOR

For the parameter regime we consider all characteristic
frequencies characterizing the coupling of the mechani-
cal resonator with the NV center and optical cavity are
much smaller than the mechanical resonator eigenfrequency:

I ,
X,
Z,χn̄c � ν (n̄c being the mean intracavity photon
occupation number). This justifies a perturbative treatment,
which allows us to eliminate the degrees of freedom of the
NV and optical cavity from the dynamics of the mechanical
oscillator in second-order perturbation theory. By means of
this procedure we derive an effective master equation for
the mechanical resonator only, which allows us to determine
the parameter regime where the vibrations are cooled, the
corresponding cooling rate, and the asymptotic vibrational
state.

Perturbative expansion

We derive a closed master equation for the mechanical
oscillator starting from Eq. (6) and assuming that the coupling
frequencies, which scale the operator a + a†, are much smaller

than ν. This can be summarized by the inequality α � ν,
with α = 
I ,
X,
Z,χn̄c and n̄c the mean intracavity photon
occupation number. We then perform perturbation theory in
second order in the small parameter α/ν. We further assume
that the incoherent dynamics of the oscillator due to the
coupling with the environment is sufficiently slow that the
occurrence of these processes during a scattering process
can be discarded. This requires that γNth � α, which for
the parameters considered in this work is valid also at room
temperature, so that we treat it in first order.

According to these considerations we split the Liouville
operator as

L = L0 + V + Lγ ,

with L0 = LE + LI, where LE and LI are the Liouville op-
erators that generate the uncoupled mechanical oscillator and
internal (NV center + optical cavity) dynamics, respectively,
while V describes the coupling between mechanical and
internal degrees of freedom. In detail,

LEρ = −i[Hmec,ρ], (20)

LIρ = −i[HI,ρ] + L�ρ + Lκρ, (21)

Vρ = −i[V (a + a†),ρ]. (22)

We formally eliminate the coupling between mechanical
resonator and internal degrees of freedom as done for instance
in Refs. [24,46–48]. We first introduce the superoperators Pk

such that

Pkρ = σst

∞∑
n=0

|n〉〈n + k|〈n|μ|n + k〉, (23)

with μ = TrI{ρ(t)} the reduced density matrix, TrI{·} being the
trace over the internal degrees of freedom, |n〉 the eigenstates of
the mechanical oscillator, k = 0,±1,±2, . . . (k � −n), and σst

the steady state for the internal degrees of freedom: LIσst = 0.
Applying Pk to the master equation (6), with the definitions
of the superoperators (20)–(22), in a second-order perturbative
expansion in parameter α/ν and first order in γ (Nth + 1), leads
to the equation

∂

∂t
Pkρ = {ikν + PkV(ikν − L0)−1QkVPk}Pkρ + LγPkρ,

(24)

withQk = 1 − Pk and 1 is here the superoperator whose action
is the identity on both sides of the density matrix. The master
equation for the reduced density matrix μ is obtained after
tracing out the internal degrees of freedom in Eq. (24) and
reads

μ̇ = −iν̄[a†a,μ] + A−
2

D[a]μ + A+
2

D[a†]μ + Lγ μ. (25)

The rates A± are defined as

A± = 2 Re s(∓ν), (26)

ν̄ = ν + Im s(ν) + Im s(−ν), (27)
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FIG. 2. Predictions on the cooling efficiency extracted from the
rate equation, Eq. (1), for laser cooling of the mechanical resonator
by driving the NV center with a laser (left panels) and by additionally
coupling the dipole transitions to an optical cavity (right panels).
Panels (a) and (b) show the cooling rate �̃, Eq. (3), in units of 
2/ν,
panels (c) and (d) the asymptotic occupation N0 of the vibrational
mode, according to Eq. (4), as a function of the excited level
splitting � and the laser detuning δL (in units of ν). The white
regions are heating regions (�̃ < 0) or where N0 > 1. The parameters
for the left panels are � = 0.1ν, � = 1.6 × 10−2ν, �φ = 0, 
I =
0, 
X = 
Z = χ = 
 = 0.1�, and gx = gy = 0. In the right panels
we take the same parameters except for gx = gy = κ = �. The cavity
frequency is fixed to the value �c = 8.5 × 10−2ν (see text).

with

s(v) =
∫ ∞

0
dt eivt 〈V exp (LIt)V 〉st, (28)

which is the Fourier component at frequency ν of the
autocorrelation function of operator V , where the average 〈·〉st

is taken in the steady state σst.
The diagonal elements of Eq. (25) give a set of rate

equations for the occupation pn = 〈n|μ|n〉 of the phonon state
|n〉, which are reported in Eq. (1).

VI. RESULTS

In this section we characterize the parameter regimes in
which the mechanical resonator is cooled by photon scattering
process in the setup of Fig. 1(a). We focus on the range of
parameters discussed in Sec. IV. We consider laser cooling
of the mechanical resonator by strain coupling with the NV
center and analyze how the cooling dynamics is affected by the
presence of the optical resonator and of dephasing. The results
we report are compared to the predictions in the absence of the
optical resonator and for vanishing dephasing. This latter case
has been extensively discussed in Ref. [21] and we refer the
interested reader to it for a detailed discussion of the predicted
dynamics in that specific limit.

FIG. 3. (a) Cooling rate �̃ and (b) asymptotic occupation N0 of
the vibrational mode as a function of δL for the same parameters
as in Fig. 2 and � = ν. The dashed (solid) line corresponds to the
predictions in the absence (presence) of the coupling to the cavity.
The shaded region indicates the regime where the resonator is heated
by the radiative processes (�̃ < 0) or where N0 > 1.
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FIG. 4. (a) Maximum cooling rate �̃max in the presence of the
resonator as a function of �c. The value �̃max has been calculated
by varying δL and � and keeping �c fixed. Panel (b) displays
the corresponding value of N0 and (c) the mean intracavity photon
number. The parameters are � = 0.1ν, �φ = 0, � = κ = gx = gy =
1.6 × 10−2ν, 
I = 0,
X = 
Z = χ = 
 = 0.1�. The dashed lines
in (a) and (b) indicate the maximum cooling rate and corresponding
value of N0 in the absence of the optical resonator. In the latter case
�̃max is maximum for � ≈ 0.93ν and δL ≈ −3.5 × 10−2ν.
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FIG. 5. Spectrum of light emitted by the NV center at the asymptotics of the laser-cooling dynamics. The upper panels correspond to the
parameter regime of Figs. 2(a) and 2(c) (no cavity), the lower panels to the parameter regime of Figs. 2(b) and 2(d) (cavity-assisted cooling).
The dashed (dashed-dotted) line corresponds to the emission from the transition g ↔ x (g ↔ y); the solid line corresponds to the sum of these
two contributions. Here, we took � = ν and δL = 0. Panels (b), (c), (e), and (f) show the details of the sidebands.

A. Cavity-assisted cooling

We now analyze how laser-cooling dynamics of the me-
chanical resonator by strain coupling with the NV center is
affected by the presence of the optical resonator. In order to
better understand the role of the resonator, we first discard
thermal effects and dephasing (setting γ = �φ = 0).

Figure 2 displays the cooling rate �̃ and the mean
vibrational number at the asymptotics N0 as a function of
δL and � in the absence (left panels) and in the presence
of the optical cavity (right panel). Both plots show that the
cooling rate is maximum, and the final occupation minimum,
along the lines δL = −ν and δL = � − ν. In the first case
cooling is achieved by setting the laser frequency to the value
ωL = ωy − ν, hence resonantly driving the transition |g,n〉 →
|y,n − 1〉 (red sideband). In the second case the laser frequency
is ωL = ωx − ν, so that the transition |g,n〉 → |x,n − 1〉 is
resonantly driven by an effective process, which combines the
laser and the strain coupling. For most values of the detuning �

the excitation of the intermediate state |y〉 is virtual, except for
� = ωx − ωy = ν. This latter case corresponds to the vertical
line visible in both figures, where cooling results in being
efficient. These properties have been identified and discussed
in Ref. [21] and do not depend on the coupling with the
resonator. The curves in Fig. 3 show the cooling rate and the
minimum phonon occupation as a function of δL after fixing
the detuning � = ν. Some (relatively small) differences are
visible close to the values δL = 0 and δL = −ν, which are due
to the level splitting induced by the strong coupling with the
resonator: for this choice of �c, in fact, the cavity drives almost
resonantly the transition |g〉 → |y〉.

We have tested that the value of the detuning �c, and thus
of the cavity frequency, in Figs. 2 and 3 leads to the best
results by comparing the cooling rate and final temperature
for different values of �c. The results of this analysis are

summarized in Fig. 4, which displays (a) the maximum cooling
rate (maximized by varying � and δL by keeping �c fixed).
The mean phonon occupation in (b) and the mean intracavity
photon number in (c) are reported for the corresponding values
of � and δL, at which �̃ is maximum. These plots show that

FIG. 6. Predictions on the cooling efficiency extracted from the
rate equation, Eq. (1), for laser cooling of the mechanical resonator
by driving the NV center with a laser in the absence (left panel)
and in the presence of pure dephasing (right panel). Panels (a) and
(b) show the cooling rate �̃, Eq. (3), in units of 
2/ν, (c) and (d)
the asymptotic occupation N0 of the vibrational mode, according to
Eq. (4), as a function of the excited level splitting � and the laser
detuning δL (in units of ν). The white areas are heating regions (�̃ < 0)
or where N0 > 1. The parameters are � = 0.1ν, � = 1.6 × 10−2ν,

I = 0, 
X = 
Z = χ = 
 = 0.1�, and (left panel) �φ = 0, (right
panel) �φ = �.
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FIG. 7. (a) Cooling rate �̃ and (b) asymptotic occupation N0 of
the vibrational mode as a function of δL for the same parameters as
in Fig. 6 and � = ν. The dashed line corresponds to the predictions
in the absence of dephasing. The solid (dotted) line corresponds to
the predictions when the dephasing rate is �φ = � (�φ = 10�). The
shaded region indicates the regime where the resonator is heated by
the radiative processes (�̃ < 0) or where N0 > 1.

maximal cooling rates are found for �c � 0. We verified that
the curves do not differ substantially if instead we search for
�c by minimizing the mean phonon number. Therefore, the
contour plots in Figs. 2(b) and 2(d) show the optimal cooling
rate and temperature in the presence of the resonator. On the
basis of the comparison with the plots on the left panels, we
can thus conclude that the coupling with the cavity does not
substantially improve the cooling efficiency for the chosen
parameter regime.

We now analyze how the spectrum of resonance fluores-
cence is modified by the coupling with the resonator. We focus
on the light emitted once the system has reached the stationary
state. Figure 5 displays the resonance fluorescence spectrum
in the absence and in the presence of the optical cavity for
the parameters of Fig. 3 with δL = 0. To better understand
how the cavity modifies the dynamics, we first discuss the
spectrum in the absence of the cavity. In this case we observe

the three broad resonances around ω = ωL. These are due to
inelastic processes in which the motion is not involved and
can be interpreted as a Mollow-type triplet [49]. We further
observe the narrow resonances at ω = ωL ∓ ν, which are the
red and the blue motional sidebands of the elastic peak. Figures
5(b) and 5(c) report the details of the sidebands of the elastic
peak. These spectral components correspond to the photons
emitted in the processes where a phonon is created (ωL − ν) or
destroyed (ωL + ν) in the mechanical resonator. The motional
sideband has a width of the order of ∝
2

X, and appears on a
broader background with linewidth ≈�. Our analysis shows
that this structure is due to the fact that mechanical effects
are dominated by the strain coupling AX, which mixes the
two excited states. For our parameter choice, where � = ν,
this coupling is weak but resonant so that the effect of the
strain coupling is particularly enhanced. Figures 5(d)–5(f)
display corresponding spectra of resonance fluorescence in
the presence of the cavity. The significantly different features
are due to the modified dressed state structure because of the
strong coupling between the cavity and NV center, while for
both cases the cooling (heating) processes are dominated by
emission along the transition |x〉 → |g〉 (|y〉 → |g〉).

The summary of this analysis is that the effect of the
optical resonator on the cooling dynamics can consist of
a very small improvement of the cooling efficiency. This
result, which seems to contrast with previous investigations
where the effect of the cavity on the cooling efficiency was
relevant [24,44], can be understood when considering that (i)
the loss rate of the resonator and the radiative decay rate of
the electronic excitations have been chosen to be of the same
order of magnitude, and (ii) the cooperativity C = g2/κ� ∼ 1,
so that the level splitting induced by the coupling with the
resonator is of the order of the loss rate κ . Because of (i)
the coupling with the resonator gives rise to an effective
level structure where the linewidths of all excited levels are
of the same order of magnitude. Since for sideband cooling
the linewidth determines both the cooling rate as well as the
final temperature, the improvement of the cooling efficiency
by coupling this level structure to a resonator is incremental.
Because of (ii), the level splitting induced by the coupling with
the cavity does not exceed the linewidth of the resonances, so
that the regime of optimal detunings is essentially the same as
without the cavity.

FIG. 8. Spectrum of light emitted by the NV center at the asymptotics of the laser-cooling dynamics. The parameters are the same as in
Figs. 6(b) and 6(d) (dephasing-assisted cooling with �φ = �). The dashed (dashed-dotted) line corresponds to the emission from the transition
g ↔ x (g ↔ y); the solid line corresponds to the sum of these two contributions. Here, we took � = ν and δL = 0. Panels (b) and (c) show
the details of the sidebands.
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B. Dephasing-assisted cooling

We now analyze the effect of other noise sources on
the cooling efficiency, and consider in particular dephasing,
which is an important source of loss of coherence in solid-
state systems. We here discard the coupling with the optical
resonator and calculate the cooling efficiency when �φ �= 0.
Figure 6 compares the cooling rate and final occupation for
�φ = 0 (left panel) and �φ = � (right panel). We observe that
pure dephasing decreases the cooling efficiency when cooling
is achieved by tuning the laser to the red sideband of the dressed
states. Nevertheless, the cooling region is larger and the
dependence on the exact values of the experimental parameters
is less pronounced. Moreover, the cooling performance is
enhanced in most parts of parameter landscape. Figures 7(a)
and 7(b) compare the cuts along the line � = ν: one clearly
sees that the case of �φ = � outperforms the case when
�φ = 0. This occurs over almost the full range of δL in
terms of both cooling rate and minimal phonon number. We
have checked that the value �φ = � is close to the optimal
dephasing rate. We also found the range of values in which
the dephasing has a beneficial effect on the cooling spans till
several � (see dotted line, which shows the predictions for
�φ = 10�).

The effect of dephasing is also visible in the spectrum
of resonance fluorescence. We observe in Fig. 8 for δL = 0
a broadening of the background at the motional sidebands,
which now scale with ≈� + �φ . This linewidth is indeed the
cooling rate, which results in being enhanced by the presence
of pure dephasing.

We understand this behavior since pure dephasing increases
the width of the excited states |x〉 and |y〉 without increasing
their decay rate. Thus it increases the excitation probability.
Since this cooling scheme is optimal when the population
is transferred to the excited state, then pure dephasing leads
to larger transition rates, and thus larger cooling rate. This
reasoning works within a certain parameter interval: dephasing
rates exceeding the Rabi frequency, in fact, tend to suppress
population transfer and thus are detrimental.

The beneficial role of pure dephasing on the cooling
efficiency can be best illustrated by analyzing the final mean
occupation for different temperatures of the bath. Figure 9
illustrates how dephasing can improve the cooling efficiency
over a large parameter regime, flattening out the minimum of
nf [Eq. (5)] as a function of the frequency of the driving laser.

VII. DISCUSSION AND CONCLUSIONS

We have analyzed the cooling efficiency of a mechanical
resonator which is laser cooled by the strain coupling with
an NV center. The cooling dynamics is essentially due to the
strain coupling with the NV center and the parameter regime is
such that the resolved-sideband cooling can be performed by

FIG. 9. Final phonon number of the mechanical resonator with
ν = 2π × 1 GHz and a quality factor Q = ν/γ = 107, Eq. (5), for
(a) T = 0.1 K (Nth ≈ 1.6) and (b) T = 4 K (Nth ≈ 83), for the same
parameter regime of Fig. 7(b). The dashed (solid) line corresponds to
the predictions in the absence (presence) of pure dephasing. The black
dotted lines correspond to nf = Nth. The shaded region indicates the
regime where the resonator is heated by the radiative processes.

driving the NV-center electronic resonances. In this regime we
have analyzed the effect of the coupling to an optical resonator,
and found that it does only incrementally improve the cooling
efficiency. We have further shown that pure dephasing can
make the cooling dynamics more robust against parameter
fluctuations, without affecting the overall efficiency, as long
as the dephasing rate does not exceed the driving strength of
the laser.

In our analysis the optomechanical coupling was a small
effect. It can be increased in configurations where the cavity is
driven: in this case the optomechanical coupling would cool the
resonator according to the dynamics explored in Refs. [50,51].
Another interesting possibility is to drive both the optical
cavity and NV center for large cooperativity: In this situation
phonon excitation or absorption can be realized by means
of two excitation paths, that can interfere. This interference
depends on the relative phase between the lasers and could be
a control parameter for realizing multiwave mixing.
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