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Wave emission and absorption at spectral singularities

P. Wang,1 L. Jin,1,* G. Zhang,1,2 and Z. Song1

1School of Physics, Nankai University, Tianjin 300071, China
2College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China

(Received 18 July 2016; published 17 November 2016)

We studied the critical dynamics of spectral singularities. The system investigated is a coupled resonator array
with a side-coupled loss (gain) resonator. For a gain resonator, the system acts as a wave emitter at spectral
singularities. The reflection probability increased linearly over time. The rate of increase is proportional to the
width of the incident wave packet, which served as the spectral singularity observer in the experiment. For a
lossy resonator, the system acts as a wave absorber. The emission and absorption states at spectral singularities
coalesce in a finite parity-time (PT ) symmetric system that combined by the gain and loss structures cut
from corrresponding scattering systems at spectral singularities; in this case, the PT -symmetric system is at an
exceptional point with a 2 × 2 Jordan block. The dynamics of thePT -symmetric system exhibit the characteristic
of exceptional points and spectral singularities.
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I. INTRODUCTION

A non-Hermitian Hamiltonian can possess peculiar features
that have no counterpart in a closed Hermitian system. For
example, nonreciprocal dynamics have been observed in
experiments [1]. Research indicates that the combination of a
magnetic field and non-Hermitian potential has an unexpected
effect on particle transport behavior [2,3]. The discovery of
non-Hermitian Hamiltonians with parity-time (PT ) symmetry
and a real spectrum [4] has furthered research on the
complex extension of quantum mechanics on a fundamental
level [5–18]. In recent years, following revelations of their
possible physical relevance by the pioneering work of Ali
Mostafazadeh, the spectral singularities of non-Hermitian
systems have received considerable attention [19–27]. Most
studies have focused on non-Hermitian systems with PT
symmetry [21,29–38] and non-Hermitian hopping amplitude
[39–44] .

Spectral singularities are divergences in the continuous
spectrum of scattering systems [36] and differ from excep-
tional points [45–47]. Spectral singularities are attributed
to non-Hermitian terms, leading to transmission and (or)
reflection coefficients that tend to infinity for an incidence.
The steady-states at spectral singularities in scattering systems
have the form of propagating plane wave emission and (or)
absorption [39]. A spectral singularity can represent lasing
with zero linewidth [28,48]. By using Fano resonance in a
PT -symmetric system with a pair of side-coupled balanced
gain and loss resonators, spectral singularity induces unidirec-
tional lasing is determined [49], where spectral singularities
exhibit nonreciprocity. Complex potential induced spectral
singularities in scattering system are intensively investigated
[19–21,48–52].
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Wave packet dynamics at the spectral singularities in a
Friedrichs-Fano-Anderson model was predicted [24]. In this
paper, we qualitatively studied the dynamic phenomena of
wave emission and absorption in the coupled resonator array
through a side-coupled gain (loss) resonator using an exact
solution of a concrete tight-binding system. Spectral singular-
ities occur when the wave vector matches the coupling strength
and gain (loss) rate. The critical behavior associated with the
physics of the spectral singularity was investigated, including
the wave emission and the perfect absorption of the incident
wave. The perfect absorption corresponded to a coherent
perfect absorption induced by loss; for wave emission, the
reflection probability at the gain resonator increases linearly
with time. The secular wave emission forms a platform with
wave amplitude being proportional to the full width at half
maximum (FWHM) of the incident wave packet. This can
serve as the spectral singularity witness in the experiment. We
combined the leads of two semi-infinite scattering systems
into a PT -symmetric system. We demonstrated that the
PT -symmetric system was at an exceptional point with a
2 × 2 Jordan block when the two semi-infinite scattering
systems were at spectral singularities. Thus, we linked the
spectral singularity to the exceptional point. We calculated the
dynamics of a Gaussian wave in the PT -symmetric system.
A quadratic probability increase was seen for the long-time
scale. For the short-time interval, the probability revealed the
emission and absorption behavior of the spectral singularities.

This study is organized as follows. In Sec. II, we present
the model setup and the solutions. In Sec. III, the spectral
singularity of the Hamiltonian is discussed. In Secs. IV
and V, we qualitatively analyze the wave emission and perfect
absorption of a Gaussian wave packet at the spectral singu-
larities. The scaling law of a wave emission is investigated
in detail. In Sec. VI, we compose a PT -symmetric system
at the exceptional point using two semi-infinite scattering
systems at the spectral singularities. We demonstrate that the
spectral singularities absorption and emission states coalesce
in the PT -symmetric system. Quadratic increases of the wave
probability in the PT -symmetric system are shown to reflect
that the system is at the exceptional point, consisting of a 2 × 2
Jordan block. Finally, we present a summary in Sec. VIII.
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FIG. 1. (a) Schematic configuration for the coupled resonator
system. An array of coupled single-mode resonators with a resonator
side-coupled at the center. Initially, a photon wave packet moves from
the left to the center. Each resonator on the chain array has a decay rate
γP and the side-coupled resonator has a decay rate γS. (b) Schematic
illustration of an equivalent system with a discrete tight-binding
model. A tight-binding chain with uniform coupling, side-coupled to a
resonator with an imaginary on-site potential iγ . (c) After symmetric
and antisymmetric combination of the uniform chain, we obtained
a semi-infinite chain array with gain (loss) resonator coupled at the
end.

II. MODEL

A one-dimensional coupled resonator array, consisting of a
side-coupled resonator is schematically illustrated in Fig. 1(a).
The dynamics of the system are characterized by the coupled
mode theory [49], and the system is equivalently described by
the Hamiltonian

H = H0 − ga
†
0aS − ga

†
Sa0 + iγ a

†
SaS,

(1)

H0 = −κ

+∞∑
l=−∞

(a†
l al+1 + a

†
l+1al) − iγP

+∞∑
l=−∞

a
†
l al,

where al (a†
l ) annihilates (creates) a photon at the lth resonator.

γP and γS are the dissipation rates of the cavities in the chain
array and the side-coupled resonator, respectively. The relative
decay rate is set at γ = γP − γS. The chain array is denoted
by H0. The term −iγP has an effect of overall decay on the
eigenstates of H0. On the condition that the overall decay rate is
substantially smaller than the photon tunneling rate, i.e., γP �
κ , the overall decay of the amplitudes is negligible in a finite
time scale, t ∼ γ −1

P . The side coupling strength is g and the
photon hopping strength for the tunneling between the adjacent
cavities is κ . The Hamiltonian H is schematically illustrated in
Fig. 1(b). A candidate realization is using the on-chip coupled
microresonator array produced in optical systems [53,54]. In
previous works, the net gain was created in the microresonator

produced on silicon wafers by pumping the doped erbium ions,
and the additional loss was induced by a chromium-coated
tip [55,56].

On the bases of the wave function ansatz and the mir-
ror symmetry of the Hamiltonian H , the solution of the
Schrödinger equation

H |ψ±
k 〉 = εk|ψ±

k 〉, (2)

can be obtained as

〈j |ψ+
k 〉 =

{
ηke

ikj − η−ke
−ikj , (j ≤ −1)

−η−ke
ikj + ηke

−ikj , (j ≥ 1)
, (3)

and

〈j |ψ−
k 〉 = sin(kj ), (|j | ≥ 1), (4)

where ± represents the parity of the solution, and

ηk = 2iκ sin k(iγ + 2κ cos k) + g2. (5)

The spectrum is εk = −2κ cos k, which is always real for a
scattering state.

According to the theory of pseudo-Hermitian quantum
mechanics [14], a complete biorthonormal set requires the
construction of the eigenfunctions of H †. Similarly, the
solution of the Schrödinger equation

H †|ψk〉 = εk|ψk〉 (6)

can be obtained by taking γ → −γ from 〈j |ψ±
k 〉, i.e.,

〈j |ψ+
k 〉 =

{
η∗

−ke
ikj − η∗

ke
−ikj , (j ≤ −1)

−η∗
ke

ikj + η∗
−ke

−ikj , (j ≥ 1),
(7)

and

〈j |ψ−
k 〉 = sin(kj ), (|j | ≥ 1). (8)

The following equation can readily be confirmed:〈
ψ

λ

k

∣∣ψλ′
k′

〉 = Cλ
k δλλ′δkk′ , (9)

where Cλ
k is a bounded real function. This indicates that

the wave functions can always be renormalized to achieve
a biorthogonal set, except when k = π/2 and 2κγ = ±g2,
which implies the collapse of the biorthonormal relation in
Eq. (9).

III. SPECTRAL SINGULARITY

In this section, we explore the scattering of the system.
We show the dynamic features at the spectral singularity [28].
First, we consider the steady-state solution of the system at
the point (kc,γc) with kc = π/2, where the wave packet has
the fast velocity 2κ and propagates without spreading. The
critical gain (loss) rate is

γc = σg2/(2κ), (10)

where σ = 1 (σ = −1) is for the gain (loss) case. When γ =
γc, the following equations of scattering solution,

〈j |ψ+
c 〉 =

{
e−iσπj/2, (j ≤ −1)

eiσπj/2, (j ≥ 1)
, (11)
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and

〈j |ψ+
c 〉 =

{
eiσπj/2, (j ≤ −1)

e−iσπj/2, (j ≥ 1)
, (12)

have clear physical implications: the non-Hermitian scattering
center acts as a source (σ = 1) or drain (σ = −1) of a k = π/2
plane wave. To represent the system at spectral singularities
according to the transmission and reflection coefficients, we
set a Jost solution for input wave k = π/2:

〈j |ψk〉 =
{
eikj + rke

−ikj , (j ≤ −1)

tke
ikj , (j ≥ 1)

, (13)

where the transmission and reflection amplitudes are obtained
as

rk = −g2/ηk, tk = rk + 1. (14)

This indicates that both tk and rk tend to infinity at the spectral
singularity as ηk = 0, therefore conforming the theorem
proved in Ref. [28].

IV. WAVE EMISSION

This section addresses implications of the spectral singular-
ity from the perspective of wave packet dynamics. In practice,
we consider the time evolution of a Gaussian wave packet with
central vector k to reflect the plane wave with vector kc [61].
The Gaussian wave packet is

�(j,0) = �−1/2e−α2(j−Nc)2/2e−ikj , (15)

where Nc is the Gaussian wave center and � = √
π/α is

the renormalization factor. This factor ensures the Dirac
probability of the initial state is unity. The FWHM of the
Gaussian wave packet is � = 2

√
2 ln 2/α. The velocity is

2κ sin(k) in a uniform chain system with coupling κ .
Hamiltonian H shown in Fig. 1(b) can be further reduced

by symmetric and antisymmetric combination of sites j < 0
and j > 0, i.e., al± = (a−l ± al)/

√
2, as shown in Fig. 1(c).

The system is an N + 1-site coupled resonator array, which
consists of a uniform coupled resonator with N = 800 and the
coupling strength is κ . A resonator with additional loss or gain
is coupled at the second last end of the uniform array at the
strength

√
2κ .

For γ = γc > 0, the resonator at the end is a gain resonator.
We consider a Gaussian wave packet with α = 0.02 and
k = π/2, which was centered at Nc = 400 at time t = 0. The
Gaussian wave packet probability out of region [Nc − �, Nc +
�] vanishes approximately and the probability within the 2�

region around Nc is over 99.9%. As shown in Fig. 2, the profiles
of the Gaussian wave at different times are plotted. The wave
packet dynamics exhibited a persistent wave emission from
the gain resonator, which reflected the steady-state plane wave
emission solution of the system at the spectral singularities.
The wave packet was shape-preserving and propagated toward
the gain resonator at the end of the resonator chain array.
At approximate time t0 = (N − Nc − �)/(2κ) ≈ 141/κ , the
wave packet head reached the gain resonator and the wave
packet probability started increasing. The wave packet was
reflected as a concomitant amplification and finally formed a
platform with the probability height h after the time t0 + �/κ ,
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FIG. 2. Scattering process of an incident photon wave packet
by the non-Hermitian scattering center. The probability distributions
P (j,t) for several instants were obtained according to the time
evolution under the systems of the Hamiltonian H0 with κ = g = 1
and γ = γc = κ/2 at the spectral singularity. The incident wave
packet values were kc = π/2, N = 800, Nc = 400, and α = 0.02.

characterized by a Gaussian error function that was previously
found in systems with complex periodic potentials [36,60].
The details are demonstrated in Sec. VI and calculated in
Appendices A and B. At the instant t � t0 + �/κ , the state
|�(j,0)〉 evolves to |�(j,t)〉 and the wave function has the
form of

�(j,t) = −
√

h

2

{
1 + erf

[
23/4

�
(j − Nt )

]}
e− iπj

2 , (16)

where Nt = 2(N + 1) − Nc − 2κt represents the Gaus-
sian wave packet center after reflection for γ = 0, h =
2(γc/κ)2√π/α shows the platform wave emission probability
spreading out from the gain resonator to infinity. The wave
front of �(j,t) has the velocity 2κ .
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FIG. 3. Scaling of the emission wave probability platform height
h as a function of (a) the FWHM � of a Gaussian wave packet at
g/κ = 1, and as a function of (b) the resonator gain γc at the spectral
singularities at α = 0.02. The green circles were obtained through
numerical simulation and the blue lines were plots from Eq. (17).
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FIG. 4. Scattering process of an incident photon wave packet
by the non-Hermitian scattering center. The probability distributions
P (j,t) for several instants were obtained according to the time
evolution under the systems of the Hamiltonian H0 with κ = g = 1
and γ = −γc = −0.5 at the spectral singularity. The incident wave
packet values were kc = π/2, N = 800, Nc = 400, and α = 0.02.

Figure 3(a) shows the scaling of wave-emission platform
height h as a function of the FWHM �; in Fig. 3(b),
the scaling of h as a function of the resonator gain γ is
shown:

h =
√

π

2 ln 2
(γc/κ)2�, (17)

where the probability height h linearly depends on the FWHM
� and quadratically depends on the resonator gain γc at the
spectral singularity.

V. WAVE ABSORPTION

For γ = −γc < 0, the time evolution of |�(j,0)〉 differs
from the wave emission case (γ = γc > 0). The state |�(j,0)〉
will be absorbed at the lossy site. As shown in Fig. 4, a
Gaussian wave packet with k = π/2, centered at Nc = 400
at time t = 0, moves toward the lossy resonator at the end
and is absorbed without reflection because of the dissipation.
At approximate time (N − Nc − �)/(2κ) ≈ 141/κ , the head
of the Gaussian wave packet with α = 0.02 reaches the
lossy resonator N , and the arrived component is completely
absorbed without reflection. At time t0 = (N − Nc)/(2κ) =
200/κ , the wave packet center arrives at the lossy resonator
and half of the wave packet has been perfectly absorbed.
After the wave packet moves forward for an extra distance
of � with an additional time �/(2κ) cost [i.e., at time
t0 + �/(2κ)], the tail of the wave packet is perfectly absorbed.
The absorption demonstrated in the configuration shown in
Fig. 1(c) corresponds to the coherent perfect absorption in the
configuration of Fig. 1(b). In a coherent perfect absorption,
the appropriate amplitudes and phases of the two counter-
propagating incidences are perfectly absorbed [57–59]. The
wave packet in the configuration depicted in Fig. 1(c) implies

FIG. 5. Schematic configuration of the PT -symmetric system
combining by two semi-infinite scattering systems cut at the leads.

that the two wave packets with the same profile and wave
vector that are located at symmetric positions near the lossy
resonator j = 0 in the configuration shown in Fig. 1(b), move
in opposite directions, and are perfectly absorbed at the lossy
resonator j = 0.

The time evolution of the initial state |�(j,0)〉 is simply a
moving Gaussian wave with velocity 2κ , the center of which
is Nt = Nc + 2κt before reaching the loss site,

�(j,t) = �−1/2e−α2(j−Nt )2/2e−i π
2 j , (18)

the Gaussian wave packet vanishes out of region
[Nt − �,Nt + �] because of the exponential decay of
the wave packet tails. When the head of the wave packet
reaches the lossy resonator and Nt + � > N , the region
[N,Nt + �] is perfectly absorbed but [Nt − �,N ] remains.
After the tail of the wave packet passes the end of the
resonator array when Nt − � > N , the Gaussian wave packet
is completely absorbed.

VI. PT -SYMMETRIC SYSTEM WITH GAIN AND LOSS

In this section, we consider a PT -symmetric system with
finite sites (Fig. 5). The finite PT -symmetric system is formed
by connecting a finite gain structure and a finite loss structure.
The finite gain (loss) structure is cut at the lead of the semi-
infinite chain array for wave emission (perfect absorption) as
shown in Fig. 1(c). The PT -symmetric Hamiltonian can be
described by a one-dimensional finite chain array, the ends of
which are coupled to two resonators with balanced gain and
loss. The Hamiltonian is

HPT = −κ

(
N−1∑
l=3

a
†
l al+1 +

√
2a

†
2a3 +

√
2a

†
NaN+1 + H.c.

)

− g(a†
1a2 + a

†
N+1aN+2 + H.c.)

− iγ a
†
1a1 + iγ a

†
N+2aN+2. (19)

We consider the PT -symmetric system as a finite gain
structure coupled to its PT -symmetric loss countpart. Thus,
the PT -symmetric system has even site N . The exceptional
point is at γc = g2/2κ as demonstrated in detail in Appendix A.
In weak gain or loss region |γ | ≤ γc, the system has two pairs
of bound states with complex eigenvalues; in strong gain or loss
region |γ | > γc, one more pair of bound states emerge with
pure imaginary eigenvalues. The system is nondiagonalizable
consisting of a 2 × 2 Jordan block. The coalesced state is a
plane wave state that emits from the gain resonator to the
loss resonators. The plane wave state is the coalescence of the
wave emission state and the absorption state at the spectral
singularity of the semi-infinite systems, with gain and loss
resonator at the ends.

In Fig. 6, we show a Gaussian wave with k = π/2,
centered at Nc = 400, moving with velocity 2κ toward the
gain resonator. In order to simulate wave packet dynamics,
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FIG. 6. Time evolution probability of Gaussian wave in a PT -
symmetric finite system (blue curve). Red circles show the probability
when the wave front is at the center of the PT -symmetric system.
The green curve indicates the quadratic increasing of wave packet
probability in a long time scale. tn marks the time of the wave front
reflected at the ends resonator with gain and loss. The parameters are
g = κ = 1, α = 0.02, k = π/2, N = 800, Nc = 400.

we omit the significantly small probabilities of wave packet
on the two pairs of bound states, which are far away from
the wave packet center in the momentum space. At the time
t0 = 200/κ (reaching the system ends for the first time), the
wave packet probability starts increasing because it reaches the
gain resonator. The emission wave at the gain resonator leads
to a linear growth after wave packet reflection. The reflection
at the gain resonator realizes a plane wave emission process
as discussed in the preceding section. The emission wave still
has a velocity of 2κ and at time t1 = 600/κ , the wave reaches
the loss point and is absorbed. After the wave is reflected at
the loss resonator, the waves that are emitted and absorbed are
balanced and the probability remains constant until the wave
front reaches the gain resonator again at t2 = 1000/κ . In the
time interval [t1,t2], the wave emission at the gain resonator
and wave absorption at the loss resonator are balanced. The
wave increases again at the time interval [t2,t3]. After the wave
front touches the loss resonator at t3 = 1400/κ , the dynamics
of the right propagating wave with constant probability and the
left propagating wave with a linear time-dependent probability
growth repeat as described. tn = t0 + mN/(2κ) (m ∈ Z) is the
time wave reflection happens at the resonators with gain and
loss. The dynamics of 2 × 2 Jordan blocks for dimer systems
have been thoroughly investigated. The probability in the
dimer exhibits an increasing power law with the highest order
being a quadratic function [62–64]. The increasing quadratic
is associated with the 2 × 2 Jordan block. For a higher-order
Jordan block (e.g., a 3 × 3 Jordan block), the highest order of
the probability increase is higher (quartic function). We note
that in the PT -symmetric system, the wave packet probability

increases quadratically in a large time scale,

P (t) ≈ 1 + (h/N)(κt)2, (20)

as denoted by the dashed green line shown in Fig. 6, where the
coefficient h/N ≈ 1/18. The red circles in Fig. 6 indicate the
probabilities of the wave at the chain center at time mN/κ (m ∈
Z). The quadratic probability increase reflects that the system
is at the exceptional point. The Hamiltonian system consists
of a 2 × 2 Jordan block with two coalescence states. Thus,
we link the spectral singularities of a semi-infinite scattering
system with the exceptional point of a finite PT -symmetric
system.

In the Appendix, we calculate the dynamics of a Gaussian
wave packet in the PT -symetric system. In a large system
that the wave packet width far less than the system size
(� � N ), the wave packet is localized without spreading in the
dynamical process before the wave front reach the system ends.
The system has no long-range interactions and is described by
a tight-binding model. The loss far away from the gain in the
system hardly affects the dynamics of a wave packet that close
to the area near the gain site, therefore, the dynamics in the
PT -symmetric system is approximately the same as that in
the corresponding wave emission system.

VII. NEAR THE SPECTRAL SINGULARITIES

The characteristic dynamics at and near the system
exceptional points was investigated in several previous
works [64,65]. The polynomial dynamical features at the
exceptional points were also found near the exceptional points
in a narrow region. In this section, we show the dynami-
cal behaviors near the spectral singularities. The reflection
coefficient for k = π/2 wave in configuration Fig. 1(c) is
r = (2γ + g2)/(2γ − g2). For γ > 0 (γ < 0), the reflection is
larger (smaller) than unity, which is attributed to the gain (loss)
at the system end. The reflection probability R(γ ) = |r|2 is
shown in Figs. 7(a) and 7(b). The reflection coefficient diverges
at the spectral singularities for system with gain, and changes
dramatically near the spectral singularities [Fig. 7(a)]. For
system with loss, the reflection coefficient is the inverse, i.e.,
R(−γ ) = R(γ )−1, the reflection at the spectral singularities
is zero. Contrary to the system with gain, the reflection is
insensitive as the loss γ near the spectral singularities, the
reflection probability is close to zero in a wide region near the
spectral singularities, in particular at large γc [Fig. 7(b)].

In order to investigate the dynamics near the spectral
singularities, we define the gain or loss γ deviated from the
spectral singularities by a deviation parameter δ as

γ = γc(1 + δ). (21)

The dynamical difference is enlarged as time increasing for
γ > 0. We focus on a short time internal within the wave
packet reaching the gain site for the second time as shown in
Figs. 7(c)–7(f). In Figs. 7(c) and 7(d), we show the dynamical
time evolution of the probability of an incident wave packet
at g = κ = 1. At about t = 300/κ in Fig. 7(c), the wave
emission starts, the probability increases linearly at the spectral
singularity. For the gain γ slightly deviates from the critical
gain γc at about δ = 10−4, the time evolution keeps close with
the linear increasing in a time interval before the wave packet
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FIG. 7. The reflection probability and the dynamics near the
spectral singularities for the configuration Fig. 1(c). The reflection
R(γ ) for gain (a) and loss (b). (c–f) The curves correspond to
systems with different deviations δ in the gain (c, e, f) or loss (d).
The parameters are κ = 1, α = 0.04, k = π/2, N = 800, Nc = 200;
g = 1 in (c, d), g = 1/4 in (e), g = 2 in (f).

reaching the gain site once more after reflection. We consider
the probability difference (|1 − Pγ /Pγc |) at t = 900/κ . The
probability difference remains within 3% for |δ| ≤ 10−4, the
probability difference for |δ| = 10−3 is remarkable, reaches
about 40%. In Fig. 7(d), the perfect absorption in a loss
system remains good for large deviation. From the expression
of reflection R(γ ), the probability without absorption is
around 1% for loss deviation as large as |δ| = 10−1. After
the wave packet reached the loss site for the first time (around
t = 300/κ), the wave packet is almost fully absorbed.

In Figs. 7(e) and 7(f), we show the time evolution of
probability at different spectral singularities. The spectral
singularities at different critical gain γc varies as the coupling
g. Strong coupling g results in large gain γc. The probability
difference in the time evolution process is gain dependent,
the significant probability difference is caused by the large
gain. As the critical gain reduced to γc = κ/32 at g = κ/4,
the probability difference decreases to 2% for δ = 10−3

[Fig. 7(e)]; as the critical gain increased to γc = 2κ at g = 2κ ,
the probability difference increases to 320% for δ = 10−3

[Fig. 7(f)]. Moreover, through comparison, we note that the
probability difference is smaller for negative −|δ| than that of

(c) (d)(b)

(a)

FIG. 8. The probabilities of Gaussian wave packet in the systems
near the spectral singularities. g = κ = 1, α = 0.04, k = π/2, N =
800, Nc = 400. (a) |δ| = 0,10−3 for the scattering systems; (b) δ =
−10−4, (c) δ = 0, (d) δ = 10−4 for the PT -symmetric systems.

positive |δ|, which also indicates that large gain leading to more
probability difference. For a system with loss, the absorption
is insensitive near the spectral singularities in a wide region,
in particular for systems with large loss.

In Fig. 8(a), the time evolution profiles of Gaussian wave
packet in the scattering system as illustrated in Fig. 1(c) are
shown for |δ| = 0,10−3. The red dashed (blue solid) lines
are for δ = −10−3 (δ = 10−3), they are similar but slight
smaller (larger) than the platform wave emission at the spectral
singularity (black solid lines), the profiles deviations diminish
as |δ| decrease. In Figs. 8(b)–8(d), the time evolution of
probabilities in the PT -symmetric system (Fig. 5) are shown
for different deviations δ. The probability oscillates in the
region γ < γc in Fig. 8(b), quadratically increases at the
exceptional point in Fig. 8(c), and exponentially increases in
the region γ > γc in Fig. 8(d). The exponential increase is
induced by the one more pair of bound states emerged with
pure imaginary eigenvalues when γ > γc.

VIII. CONCLUSION

We studied the spectral singularity of a semi-infinite
coupled resonator system. The system is a coupled resonator
array with a gain (lossy) resonator at the end. This system
can be described by a one-dimensional tight-binding chain.
Based on the exact solution, the critical dynamical behavior
associated with the spectral singularities was demonstrated.
The dissipative resonator absorbs the incoming wave with a
matched wave vector. When the resonator loss is replaced by
a gain, the coupled resonator system remains at the spectral
singularity. However, the dynamics is a persistent wave emis-
sion instead of a perfect absorption. We found that the wave
emission can be characterized by a time-dependent Gaussian
error function. The emission wave amplitude probability
linearly depends on the FWHM of the incident Gaussian wave
and quadratically depends on the resonator gain. Combination
of the scattering systems at spectral singularities can form
a finite PT -symmetric system at exceptional point. Thus,
we linked the spectral singularity to the exceptional point.
The coalescence states are the absorption and emission
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solutions at the spectral singularities in the scattering system.
The occurrence of two coalescent states indicates that the
PT -symmetric system has a 2 × 2 Jordan block and that
the probability increases quadratically. Calculating the time
evolution of Gaussian wave packet with energy on resonance
of the coalesced states, we revealed a stepped progressive
ascent of probability. For a long time scale, the probability
increases quadratically, which reflects the exceptional point;
for a short time scale, the plane wave emission and absorption
phenomena reflect the dynamics at the spectral singularities.
The dynamical features near the spectral singularities were
investigated, the dynamical differences in the wave packet
profiles and probabilities induced by slight deviation from
the critical gain (loss) was shown, the effect bringing by the
deviation is significant (tiny) at large critical gain (loss).
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APPENDIX A: SOLUTION OF THE PT -SYMMETRIC
SYSTEM

We consider the PT -symmetric Hamiltonian Eq. (19).
Introducing a local unitary transformation u, which is de-
fined by ua

†
ju

−1 = (−1)j a†
j , uaju

−1 = (−1)j aj , we have
(Pu)H (Pu)−1 = −H , i.e., H has a chiral symmetry. On the
other hand, unitary transformation Pu maintains the spectrum
of the system. Then the spectrum is symmetric about zero
energy. From the investigation of the zero-energy solution,
we obtain one zero-energy state for system with odd N , and
two coalesced zero-energy states at the exceptional point γc =
g2/(2κ) for system with even N (the situation we discussed in
Sec. VI: The PT -symmetric system is a finite gain structure
coupled to its PT -symmetric loss structure counterpart).

In general, the single-particle solution for any N has the
form

|ϕk〉 =
∑

l

fl|l〉, (A1)

the wave function ansatz is fl = Aeikl + Be−ikl for the
uniform region of the system (3 ≤ l ≤ N ). To be concise,

∑
l

represents the summation of all l ranging from 1 to N + 2. The
Schrödinger equation can be expressed in the explicit form of

− gf2 = (Ek + iγ )f1, (A2)

− gf1 −
√

2κf3 = Ekf2, (A3)

−
√

2κf2 − κf4 = Ekf3, (A4)

− κfN−1 −
√

2κfN+1 = EkfN, (A5)

− gfN+2 −
√

2κfN = EkfN+1, (A6)

− gfN+1 = (Ek − iγ )fN+2, (A7)

where Ek = −2κ cos k is the eigen energy. Substituting fl =
Aeikl + Be−ikl (3 ≤ l ≤ N ), we obtain

− gf2 − (Ek + iγ )f1 = 0, (A8)

− gf1 −
√

2κ(Ae3ik + Be−3ik) − Ekf2 = 0, (A9)

−
√

2κf2 − (Eke
3ik + κe4ik)A − (Eke

−3ik + κe−4ik)B = 0,

(A10)

−
√

2κfN+1 − (Eke
ikN + κeik(N−1))A

− (Eke
−ikN + κe−ik(N−1))B = 0, (A11)

− gfN+2 −
√

2κ(AeikN + Be−ikN ) − EkfN+1 = 0,

(A12)

− gfN+1 − (Ek − iγ )fN+2 = 0; (A13)

after eliminating the coefficients of wave function, the wave
vector k satisfies

{4κ2[κ2 sin2 (2k) + γ 2 sin2 k] − g4} sin[(N − 1)k]

+ 4g2κ2 sin(2k) cos[(N − 1)k] = 0. (A14)

It is easy to check that k = π/2 is a solution of Eq. (A14) for
arbitrary system parameters with odd N ; but the parameters
should satisfy γ = g2/(2κ) for system with even N .

Now we consider the wave vector k = π/2. The corre-
sponding wave function |ϕπ/2〉 at γ = g2/(2κ) (i.e., Ek = 0)
under the Schrödinger equations of Hamiltonian H yields

− f2 = ig/(2κ)f1, (A15)

− gf1 =
√

2κ(−iA + iB), (A16)

−
√

2f2 = A + B, (A17)

−
√

2fN+1 = iN−1A + (−i)N−1B, (A18)

− gfN+2 =
√

2κ[iNA + (−i)NB], (A19)

where we obtain A = 0, B = −√
2f2, and

f1 = (2iκ/g)f2, (A20)

fl = −
√

2(−i)lf2,(3 ≤ l ≤ N ), (A21)

fN+1 = (−i)N−1f2, (A22)

fN+2 = (−i)N (2κ/g)f2. (A23)

Note that A = 0 indicates that |ϕπ/2〉 is a unidirectional plane
wave with left-going part e−ikj only.

Similarly, the wave function |ϕ̃π/2〉 of Hamiltonian H †

for k = π/2 at γ = g2/(2κ) under the Schrödinger equations
yields

− f̃2 = −ig/(2κ)f̃1, (A24)

− gf̃1 =
√

2κ(−iÃ + iB̃), (A25)
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−
√

2f̃2 = Ã + B̃, (A26)

−
√

2f̃N+1 = iN−1Ã + (−i)N−1B̃, (A27)

− gf̃N+2 =
√

2κ[iN Ã + (−i)NB̃], (A28)

where we obtain Ã = −√
2f̃2, B̃ = 0, and

f̃1 = −(i2κ/g)f̃2, (A29)

f̃l = −
√

2il f̃2,(3 ≤ l ≤ N ), (A30)

f̃N+1 = iN−1f̃2, (A31)

f̃N+2 = iN (2κ/g)f̃2, (A32)

therefore, the overlap is 〈ϕ̃π/2|ϕπ/2〉 = ∑
l f̃

∗
l fl , i.e.,

〈ϕ̃π/2|ϕπ/2〉 = −4κ2

g2
+ 1 + 2

N∑
l=3

(−1)l − (−1)N

+ (−1)N
4κ2

g2
, (A33)

for even N , 〈ϕ̃π/2|ϕπ/2〉 = 0; for odd N , 〈ϕ̃π/2|ϕπ/2〉 =
−8κ2/g2 �= 0. These indicate that γ = g2/(2κ) is the ex-
ceptional point of the PT -symmetric system with even N ,
the coalescence states are the zero-energy states; however,
γ = g2/(2κ) is not the exceptional point of thePT -symmetric
system with odd N .

The time evolution of a Gaussian wave packet with central
momentum π/2 is relevant to the near-zero-energy eigen
states, i.e., k ≈ π/2, in which Eq. (A14) under similar coupling
condition (κ ∼ g) is approximately reduced into

tan (Nk) ≈ 0, (A34)

the approximate solution of momentum k near π/2 is

k ≈ nπ/N. (A35)

APPENDIX B: DYNAMICS IN THE PT -SYMMETRIC
SYSTEM

We apply the solution ofPT -symmetric system with odd N

to calculate the dynamics of a Gaussian wave packet. The gain
γ = g2/(2κ) is not the exceptional point of PT -symmetric
system with odd N , thus the biorthoganal basis exists for H

and H †. We solve the eigen states of H and H † to form the
biorthogonal basis. We use the biorthoganal basis to expand the
initial state and calculate the time evolution. From Eqs. (A8)–
(A10), we obtain f1, A, and B as functions of f2,

f1 = g

2κ cos k − iγ
f2, (B1)

A = 2iκ2 sin (2k) + 2κγ sin k − g2

2iκ
√

2e2ik(2κ cos k − iγ ) sin k
f2, (B2)

B = 2iκ2 sin (2k) + 2κγ sin k + g2

2iκ
√

2e−2ik(2κ cos k − iγ ) sin k
f2; (B3)

the coefficients fN+1, fN+2 can be obtained as functions of
f2 after substituting A, B in Eqs. (A11)–(A13), H † is solved
under the same procedure. The eigen states for H † are set as

|ϕ̃k〉 = ∑
l f̃l|l〉 with f̃l = Ãeikl + B̃e−ikl (3 ≤ l ≤ N ), simi-

larly, we obtain

f̃1 = g

2κ cos k + iγ
f̃2, (B4)

Ã = 2iκ2 sin (2k) − 2κγ sin k − g2

2iκ
√

2e2ik(2κ cos k + iγ ) sin k
f̃2, (B5)

B̃ = 2iκ2 sin (2k) − 2κγ sin k + g2

2iκ
√

2e−2ik(2κ cos k + iγ ) sin k
f̃2, (B6)

the coefficients f̃N+1, f̃N+2 can be obtained as functions of
f̃2. All coefficients A, B, Ã, B̃ and wave functions f1, fN+1,
fN+2, f̃1, f̃N+1, f̃N+2 are expressed as functions of nonzero
values f2, f̃2. The momentum k can be solved from the critical
Eq. (A14) exactly; however, the eigen states evolved in the time
evolution process and being important are the eigen states in
the linear region of the spectrum near k = π/2, which has
approximate solution of k ≈ nπ/N .

Note that the wave functions |ϕk〉 and |ϕ̃k〉 should be
renormalized. In a non-Hermitian system, we use the biorthog-
onal renormalization method. The renormalization factors are
Gk = 〈ϕ̃k|ϕk〉 = ∑

l f̃
∗
j fj . The renormalized eigen states of

Hamiltonians H and H † are denoted as

|ϕGk
〉 = G

−1/2
k

∑
l

fl|l〉, (B7)

|ϕ̃Gk
〉 = G

∗−1/2
k

∑
l

f̃l|l〉, (B8)

for eigenvalues Ek and E∗
k , respectively. The overlap is

〈ϕ̃Gk
|ϕGk

〉 = 1 according to the definition of Gk .
The initial state is a Gaussian wave packet with central

momentum π/2, centered at site Nc,

|ψ(0)〉 = �−1/2
∑

j

e−α2(j−Nc)2/2ei(π/2)j |j 〉, (B9)

the time evolution of the initial state is in form of |ψ(t)〉 =
e−iH t |ψ(0)〉, which can be calculated by employing the
biorthogonal basis {|ϕGk

〉,|ϕ̃Gk
〉} that composed by the eigen

states of Hamiltonians H and H † [Eqs. (B7) and (B8)]. |ψ(t)〉
in the momentum space of H is in form of

|ψ(t)〉 =
∑

k

e−iEkt 〈ϕ̃Gk
|ψ(0)〉|ϕGk

〉. (B10)

The Gaussian wave packet is localized in both real and
momentum spaces; a wide Gaussian wave packet in the real
space is narrow in the momentum space. For the Gaussian
wave packet with central momentum π/2, the relevant eigen
states that being important in the time evolution process are
the states with momentum k near π/2. Therefore, to calculate
the dynamical factor e−iEkt , we can approximately express the
eigen energy near momentum kc = π/2,

Ek = −2κ cos k ≈ 2κ(k − kc). (B11)

Substituting the expansion coefficients 〈ϕ̃Gk
|ψ(0)〉, the time

evolution state |ψ(t)〉 is in form of

|ψ(t)〉 = 1√
�

∑
k

1√
Gk

⎛
⎝∑

j

f̃ ∗
j e− α2(j−Nc)2

2 eikcj

⎞
⎠

× e−i2κt(k−kc)|ϕGk
〉 (B12)
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≈ 1√
�

∑
k

Ã∗
√

Gk

⎛
⎝∑

j

e−ikj e− α2(j−Nc)2

2 eikcj

⎞
⎠

× e−i2κt(k−kc)|ϕGk
〉 (B13)

=
√

2π

α
√

�

∑
k

Ã∗
√

Gk

e−i(k−kc)Nce
− (k−kc)2

2α2 e−i2κt(k−kc)|ϕGk
〉,

(B14)

then we substitute the eigen states |ϕGk
〉 = ∑

j (fj/
√

Gk)|j 〉
in the expression of |ψ(t)〉, in the real space, we get

|ψ(t)〉 ≈
√

2π

α
√

�

N∑
j=3

∑
k

Ã∗

Gk

e−i(k−kc)Nce
− (k−kc)2

2α2

× e−i2κt(k−kc)fj |j 〉 (B15)

=
√

2
√

π

α

N∑
j=3

∑
k

Ã∗B
Gk

e−ikj e−i(k−kc)Nce
− (k−kc)2

2α2

× e−i2κt(k−kc)|j 〉 (B16)

+
√

2
√

π

α

N∑
j=3

∑
k

Ã∗A
Gk

eikj e−i(k−kc)Nce
− (k−kc)2

2α2

× e−i2κt(k−kc)|j 〉, (B17)

for the centerpart of the system (from j = 3 to j = N ). The
time evolution of the Gaussian wave packet |ψ(t)〉 is reduced
to a combination of two parts. After simplification, we note
that before the Gaussian wave packet reaching the gain site
of the PT -symmetric system, Eq. (B17) dominates and ap-
proximately equals to the time evolution of the Gaussian wave
packet on a uniform chain; after the Gaussian wave packet
being reflected at the gain site [t > t0 ≈ (N − Nc)/(2κ)],
Eq. (B16) represents a persistent wave emission and Eq. (B17)
stands for a reflected wave packet. The platform height h =
2(γc/κ)2√π/α shown in Eq. (17) is obtained after simplifying
Eq. (B16), this persistent wave emission part results in a linear
increasing of the initial state probability. As long as the system
is at critical γc, the linear increasing of the probability is visible
even if the gain is small. Moreover, when g4/κ4 � 2α2/π , the
wave emission dominates in the time evolution process. |ψ(t)〉
is approximately described by a platform wave emission, as

|ψ(t)〉 ≈
√

2
√

π

α

N∑
j=3

∑
k

Ã∗B
Gk

e−ikj e−i(k−kc)Nce
− (k−kc)2

2α2 e−i2κt(k−kc)|j 〉 (B18)

≈ 1

4

(g

κ

)2

√
2
√

π

α

N∑
j=3

[∑
k

i(N − 2)−1

(k − kc)
e4ike−i(k−kc)(Nc+2κt)e

− (k−kc)2

2α2 e−ikj − e−ikcj

]
|j 〉 (B19)

= 1

2

√
2
√

πγ 2
c

ακ2

N∑
j=3

[∑
k

i
(N − 2)−1

(k − kc)
e
− (k−kc)2

2α2 e−i(k−kc)(j+Nc+2κt−4) − 1

]
e−ikcj |j 〉 (B20)

=
√

h

2

N∑
j=3

[∑
k

i
(N − 2)−1

(k − kc)
e
− (k−kc)2

2α2 −i(k−kc)(j+Nc+2κt−4) − 1

]
e−ikcj |j 〉 (B21)

≈ −
√

h

2

N∑
j=3

{
erf

(
23/4

�
[2(κt − N − 2) + j + Nc]

)
+ 1

}
e− iπj

2 |j 〉 (B22)

= −
√

h

2

N∑
j=3

{
erf

[
23/4

�
(j − Nt )

]
+ 1

}
e− iπj

2 |j 〉, (B23)

where Nt = 2(N + 2) − Nc − 2κt indicates the Gaussian
wave packet center after reflection for system with γ =
0. In the summation of k, k ≈ nπ/N with integer n =
1,2, . . . ,N . The time evolution state |ψ(t)〉 at the end
with gain is |ψ(N + 1,t)〉 = −(

√
2iγ κ/g2)|ψ(N,t)〉, and

|ψ(N + 2,t)〉 = −(
√

2κ/g)|ψ(N,t)〉. In the PT -symmetric

system described by Hamiltonian in Eq. (19), the total site
number of the system is N + 2. However, the time evolution
discussed in Sec. IV is for a system with gain only at one
end, the total site number is N + 1. In that case, therefore, we
obtain the time evolution of the Gaussian wave packet in the
wave emission system as shown in Eq. (16).
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