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Multimode quantum theory of nonlinear propagation in optical fibers
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We theoretically reveal the potential of the parallelism of squeezed state generation by nonlinear pulse
propagation in an optical fiber. Starting from a nonlinear Schrodinger equation coupling with phonon modes that
cause Raman noise, we develop a multimode quantum theory of nonlinear propagation in an optical fiber. Based
on our proposed method, we numerically simulate fiber nonlinear propagation in two conditions: solitonlike and
zero-group-delay-dispersion (zero-GVD) propagation. As a result, we find that zero-GVD propagation enables
the large-scale parallel generation of squeezed states relative to solitonlike propagation owing to the broadband

phase matching of the four-wave mixing process.
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I. INTRODUCTION

In optical quantum information processing based on contin-
uous variables such as amplitude and phase, a squeezed state is
an essential element to generate entanglement states or cluster
states [1,2]. Recently, to realize measurement-based quantum
computing [3], based on various approaches, compact schemes
for large-scale multimode squeezed or cluster state generation
have been devised and experimentally demonstrated [4—11].

In all previous experiments, multimode squeezed state
generation was achieved by a single or a pair of optical
parametric oscillators (OPOs) utilizing the degrees of freedom
of the photon field: frequency, wave vector, and polarization.
The time and the wave front are the basis transformation of
the frequency and the wave vector, respectively. The key to
constructing a compact optical large-scale quantum network
for practical quantum computers is how to utilize the degrees
of freedom.

In this article, we study the multimode quantum theory of
nonlinear fiber propagation. In previous research of single-
mode squeezed state generation with a fiber, the highest
squeezing level of —6.8 dB was demonstrated by nonlin-
ear propagation in the anomalous dispersion regime of an
optical fiber [12]. In the scheme of fiber-based squeezed
state generation, a mode-locked laser pulse is employed as
a pump source to induce a sufficient third-order nonlinear
effect [12-17]. After propagation through a fiber, large-scale
quantum correlations are formed among the frequency modes
of the pulse through a four-wave mixing (FWM) process
in the fiber [18,19]. Furthermore, the optical modes couple
with phonon modes that cause thermal noise by Raman
scattering [12,20,21]. Thus, to analyze multimode quantum
propagation through the fiber, the evolution of the photon and
phonon fields must be calculated [20-22].

In fact, the parallel generation of squeezed light with
the Kerr effect was recently studied by Guo et al [23].
However, phase matching approximation and assumption of
an unchanged waveform of a propagating squeezed pulse were
employed in this study. Furthermore, the Raman effect was not
incorporated into this theory.

Therefore, we developed a multimode quantum theory
to reveal the potential of parallel generation of squeezed
states with a fiber nonlinear propagation that includes the
Raman noise effect. Starting from a nonlinear Schrodinger
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equation (NSE) that includes Raman scattering, we propose
a method that obtains a covariance matrix that represents the
quantum correlation among frequency modes after nonlinear
propagation through a fiber. Using Williamson’s theorem and
Euler decomposition, we analyzed the covariance matrix to
obtain the separable modes of squeezed states [24]. Based on
the developed theory, we demonstrated fiber-based multimode
squeezed state generation by two numerical calculations:
solitonlike and high-nonlinear zero-group-delay-dispersion
(zero-GVD) propagation. By these numerical calculations,
we discuss the potential of fiber-based multimode squeezed
state generation for frequency-division multiplexed one-way
quantum computing.

II. THEORY

Classical nonlinear propagation in an optical fiber can be
described by NSE [22]:
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Here, A(z,t) is the classical complex amplitude in a
fiber; ¢+ and z represent the time and position in a fiber;
b(z,t) is the amplitude of the phonon fields whose time
evolution is given by b(z,t) =igg fioo exp[—(y, + i)t —
0)]|A(z,7)>dt, where y,, ), and gy are the damping
coefficient, the resonant frequency of a fiber, and the cou-
pling coefficient of between the photon and phonon fields,
respectively; y and B in Eq. (1) are the nonlinear coefficient
and the kth dispersion of a fiber, respectively; and f, is the
ratio of the contribution of Raman scattering.

Following [22], we quantize the photon and phonon fields.
By the quantization of A — A and b — b, the quantized time
evolution of the phonon fields can be obtained:

[b(z,t) + b*(z,0)]A(z,1). (1)

d A A A N
3,00 = —yrb —iQ0b + igoA(z,nAT(z,0) + Ap(z,1), (2)
Z

where 71, is the annihilation operator for the thermal reservoir
and Eq. (2) represents coupling with a thermal reservoir by
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damping of the phonon. This noise operator satisfies the
bosonic commutation relation,

[Ap(z.0),) (2, 1)] = v8(z — 2)8(t — 1), 3)
and the four correlations
(Ap(z.0ip(Z 1)) = (Ay(z,0A, (2 1)) =0,
(Ap(z. )AL 1)) = [na(T) + 1vs(z — 2)8(t — 1), (4)
(@D 1) = no(THs(z — )bt — 1),

where v = 4g§y,§20/[f,y(93 + )/,2)]. no(T) is the av-
erage phonon number in temperature 7 and no(7T) =
1/[exp (h20/kpgT) — 1]; h and kp are the Dirac and Boltz-
mann constants, respectively.

By the decomposition of A into a mean value and
perturbation A = A + @, a quantum linearized NSE can be
obtained [20]:

0 a(z,t) =i “py o a(z,t) + 2iy (1— £l Az, 0)|%a(z,t)
—aGz.) =iy ——=—a, iy(l—f, 1)[%a(z,
PR Kok ¢ Y < c

=z

+iy(1 — f)AX(z,0)a' (z,1)

—l—iyf,/ h(t — ©)|A(z,7)|*dté(z,1)

oo

+i7/fr/ h(t — 1)A*(z,7)a(z,7)dT A(z,1)

oo

+i7/fr/ h(t — )A(z,0)a' (z,7)dT A(z,1)
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+ H*(t—1)it,(z,7)]dT Az, 1), 5)

where H(t) = (Q% + yrz)/ Qo x exp[(—y, —iQ0)t] and
h(t) = —Im[H (¢)]. Thus output photon fields a(L,w) can be
expressed by the linear combination of the input states in
photon fields d(0,w) and the noise operators in phonon fields
Ap(z,1):

a(L,w) = /OO f(w,0)a0,0)do’

o0
+ / ¢ (w,0)a'(0,0)dw’

[e¢]

L 00
+ / / fr(@,7 )i t)dr'dZ’
0 (o9

L 00
+ / / grlw,z (' thdl'dz',  (6)
0 —00

where L is the length of the fiber. Here, position z and
frequency w are respectively discretized into N and M
slices [24]. After the discretization, d(z,w) can be expressed
as d,,(n), where m and n represent the mth frequency division
and nth position division.

Next, a vector of the creation-annihilation operators
of the discretized photon and phonon fields are defined:

an) = [a1(n), ....aym]Y, aftm) = [&I(n), ...,&M(n)]T,

(1) := [Ap100), . .. ,Ap (), ..., Ap ()T, and A} (n):

PHYSICAL REVIEW A 94, 053833 (2016)

= [ﬁ;,(O), ...,ﬁ;’m(n’), - iy (m]T, respectively. Using
these definitions, Eq. (5) can be rewritten:

a(N) = FaA(0) + Ga'(0) + F,h,(0) + G, (0),  (7)

where F and G are M xM matrices and F, and G, are
M x M N matrices. If the Raman scattering is ignored ( f, = 0),
Eq. (7) can be reduced to &(N) = Fa(0) + Ga'(0), and these
matrices can be decomposed into separable squeezed states of
output modes and corresponding input coherent vacuums by
Bloch-Messiah decomposition [25,26] (see Appendix A for
details about calculation without Raman noise).

However, when Raman scattering is included in the
calculation, we must obtain the covariance matrix and de-
compose it by Williamson’s decomposition. To transform
Eq. (7) into a description in phase space, first, we de-
fine the vectors of the amplitude and the phase quadra-
ture of the photon and phonon fields, X(n) := [a(n) +
al(m1/V2, P(n) = [a(n) — aT(W)]1/V2i, Rp(n) := [8,(n) +
a! (n)1/+/2, and Py(n) := [a5(n) — &} (n)]/~/2i, respectively.
We also define the 2M vector £ := [T (n),p"(n)]T and the
2M N vector T, := [f{br(n),f)Z(n)]T. Using the quadrature op-
erators, Eq. (7) can be rewritten:

E(N) = Z#(0) + Z,15(0), (3)
where
7. (Re(F +G) —Im(F + G))
“\Im(F-G) Re(F-06)
and

_ <Re(Fb + Gp)

) —Im(F), + Gp)
7 \im(F, — Gy) '

Re(Fb — Gb)

The covariance matrix C(n) is defined by anticommutation
of the quadrature:

C(n) = {#(n),#" (n)}, €))

and if the input photon fields are coherent vacuums, from
Egs. (3), (4), (8), and (9), we obtain

C(N)=ZZ" + [2na(T) + 1 Z, Z. (10)

By Williamson’s theorem, the covariance matrix C(N) can be
diagonalized [25]:

C(N)= STsS, (11)

where S € Sp2M,R)and o = &} vy E. The diagonal matrix
o is called the symplectic spectrum, whose elements represent
the purities of each separable mode. E represents the 2 x 2
identity matrix. The symplectic matrix S can also be diagonal-
ized by Euler decomposition:

S = 01A0,, (12)

where 01,0, € K(M) = Sp(2M,R) N SO(2M). The diago-
nal matrix A = @)L 1(%" 1/0,\) and denotes the local squeez-
ers. O, corresponds to the separable output modes. Thus, the
squeezing levels of each separable mode can be obtained from
the covariance matrix C'(N) = OZTC(N)OQ. Here, C'(N) is
not always a diagonal matrix, but the off-diagonal elements
among individual modes represent not quantum inseparability
but classical correlations.
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III. CALCULATION RESULTS AND DISCUSSION

First, we calculated the solitonlike propagation in the
anomalous dispersion regime of a conventional glass fiber
used in the present optical communication networks. Since
the propagating pulse can maintain its high peak power owing
to the balance of the chromatic dispersion and the nonlinear
effect in this regime, relatively high squeezing levels can
be obtained [12]. In this calculation, we assumed a 39-cm
single-mode silica fiber whose second-order dispersion j, and
nonlinear coefficient y were —20 ps?/km and 2.0 W~! km™!.
These parameters correspond those of a conventional single-
mode glass fiber. The incident pulse was 125 fs (full width at
half maximum) sech-shaped with a peak power of 2000 W.
This pulse satisfies the soliton condition if the Raman
parameter is ignored (f, = 0), and the fiber length of 39
cm corresponds to one soliton period. We employed Raman
scattering parameters that had been experimentally fitted [27]:
fr =0.18, 1/Q¢ = 12.2 (fs), and 1/y, = 32 (fs). Moreover,
we assumed the temperature of the fiber, 7, was 300 K.
We solved the NSE by the split-step Fourier method and
numerically obtained the covariance matrix.

Figure 1(a) shows the normalized covariance matrix C, F;l) =

Cij//CiiCj; — 8ij/ Ci;. Referring to previous work [28], we
calculated the symplectic matrix S that diagonalizes the
covariance matrix. Then we obtained the complex spectrum
and the squeezing levels of each separable squeezed pulse by
Euler decomposition [Figs. 1(b) and 1(c)]. The spectral phases
in Fig. 1(c) correspond to the squeezing angle. Figure 1(d)
shows the spectral phase and the amplitude of the classical
input and output pulses.

From these results, we found that the separable squeezed
pulse became a negatively chirped Hermite-Gaussian-like
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FIG. 1. Calculation results when we assumed solitonlike prop-
agation through the 39-cm fiber: (a) normalized covariance matrix
C™; (b) squeezing levels of each separable squeezed state. These
modes were arranged in ascending order: (c) spectra of first and
second squeezed modes and (d) normalized spectra of classical input
and output pulses.
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FIG. 2. Squeezing levels of first (red circles) and second (blue
squares) squeezed modes versus length of silica fiber. Black lines
show squeezing and antisqueezing levels when unshaped classical
output pulse was employed as a local oscillator.

spectrum. Furthermore, only two modes were squeezed. This
is because the broadband phase matching condition is not
satisfied due to chromatic dispersion.

In Fig. 2, the red circles and blue squares respectively
indicate the squeezing and antisqueezing levels of the first
and second modes versus fiber length L. Black solid lines
show the squeezing and antisqueezing levels when unshaped
classical output pulses were employed as a local oscillator
(LO), like in conventional schemes [11-16]. These noise
levels in the conventional schemes were calculated from a
normalized classical output spectrum and covariance matrix C
(see details in Appendix B). As shown in Fig. 2, the squeezing
levels saturate at about —20 dB. Since no such saturation was
observed in the calculation of 196-cm propagation without
Raman scattering, this is clearly an effect of Raman scattering.
Here, because the peak power after propagation of the 196-cm
fiber was 2020 W, this is not due to a decrease of peak power
caused by chromatic dispersion. Accordingly, we infer that
this is due to the balance between squeezing by the nonlinear
effect and additional noise by Raman scattering.

Next, assuming high-nonlinear zero-GVD photonic crystal
fiber (PCF) that is well employed in an experiment of super-
continuum generation, we performed a similar calculation as
those done for soliton propagation. In a previous experiment
of squeezed light generation with a PCF, —3.9 dB polarization
squeezing [29] and —4.6 dB photon-number squeezing [30]
were reported, but these squeezing levels are low relative to
experiments of solitonlike pulses. However, the broadband
phase matching condition of FWM can be satisfied in nonlinear
propagation in a PCF due to small chromatic dispersion. In
our calculation, we assumed a PCF employed in our previous
experiment [30]. The fiber parameters were 8, = 0 ps>/km,
B3 =0.162 ps®/km, B4 =1.934 x 107 ps*/km, and y =
46.8 W~! km™!. The parameters of a pump pulse and Raman
scattering were identical to the calculation of the solitonlike
propagation in the anomalous dispersion regime. Figure 3
shows the calculation results when fiber length L is 15 mm. As
shown in this figure, the first frequency mode exhibits —10 dB
squeezing after 15 mm propagation in the PCF. This squeezing
level is almost the same as that obtained at one-soliton
length propagation in the conventional single-mode fiber,
which was shown in Fig. 1(b). Therefore, we may provide
proper comparison in squeezed mode generation between
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FIG. 3. Calculation results when we assumed zero-GVD propa-
gation through 15-mm PCF: (a) normalized covariance matrix C™
and (b) squeezing levels of each separable squeezed state. These
modes are arranged in ascending order: (c) spectra of first and second
squeezed modes and (d) normalized spectra of classical input and
output pulses.

soliton and zero-GVD propagation with these parameters
for numerical calculations with the PCF fiber. In Fig. 3(b),
the number of squeezed modes became larger relative to
solitonlike propagation because a broader quantum correlation
was formed. Furthermore, similar to the case of solitonlike
propagation, the spectral amplitude of the squeezed pulses
became Hermite-Gaussian shaped, and the spectral phase
reflected the PCF’s chromatic dispersion [Fig. 3(c)]. Note
that the spectra of the eigenmodes were much broader than
those of the classical output pulse [Fig. 3(d)]. In Fig. 3(c),
due to this significant spectral mismatching between the
squeezed modes and the classical output pulses, the squeezing
levels substantially deteriorated in the conventional schemes
in which a classical output pulse was employed as a LO.
Figure 4 shows the calculation results of the propagation
length versus the squeezing levels of the first (red circles), sixth
(blue squares), 11th (green diamonds), and 16th modes (cyan

m=1 N

@ 10 m=6

=2

T 5¢ — i

E.) e=— Unshaped

o)

c

N

()

o)

>

&3-10F =63
m=1 ¥

-15E | | | I I
0 5 10 15 20 25 30

Fiber length (mm)

FIG. 4. Squeezing levels of first (red circles), sixth (blue squares),
11th (green diamonds), and 16th (cyan triangles) squeezed modes
versus length of silica fiber. Black lines show squeezing and
antisqueezing levels when an unshaped classical output pulse was
employed as a LO.
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triangles). Black solid lines show squeezing and antisqueezing
levels when an unshaped classical output pulse was employed
as a LO. The squeezing levels of the high-order modes
became high relative to the soliton propagation. However, the
squeezing levels of the high-order modes are saturated due to
the proportionality relation between the chromatic dispersion
and the fiber length. Shorter fiber and a higher-peak pulse must
be chosen to obtain higher squeezing levels of the high-order
modes.

IV. CONCLUSION

We numerically demonstrated multimode squeezed state
generation by fiber nonlinear propagation based on a theory
we developed. Our results imply that a large-scale wavelength-
division-multiplexed quantum network for a one-way quantum
computer can be realized with a simple fiber-based scheme.

We found that two separable squeezed states were generated
by solitonlike propagation conventionally used in previous
researches. By our numerical analysis, we observed the limits
of squeezing level due to Raman noise.

Furthermore, we revealed that the large-scale parallel
generation of squeezed states was possible by zero-dispersion
nonlinear propagation owing to broadband phase matching
of FWM. No high squeezing level was obtained in previous
experiments with PCF relative to solitonlike propagation.
However, this result was due to significant mismatching of
the spectra between the LO and squeezed pulses.

Squeezed pulse modes generated in parallel in the fre-
quency domain are overlapped in both the time and the spatial
domains. Since Gaussian quantum computing can be achieved
by postselection using homodyne measurements [31], even if
those frequency modes remain spatiotemporally overlapping,
they are still useful. However, in universal one-way quantum
computing, mode extraction by quantum pulse gating [32,33]
may be necessary to spatially separate arbitrary modes for
non-Gaussian measurement (e.g., photon counting).

In our calculation, we assumed a sech-shaped specific pump
pulse and discussed the quantum correlation that was formed
among the output frequency modes. However, a better pump
pulse may exist that enhances the squeezing levels and the
number of squeezed modes. Such a pump pulse will be found
by adaptive shaping of its spectrum [34].
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APPENDIX A: NONLINEAR PROPAGATION WITHOUT
RAMAN SCATTERING

In this section, we discuss nonlinear propagation without
Raman scattering (f, = 0). If f, = 0, the quantum NSE can
be reduced:

L =i ¥ L e+ 2iplaGoPac.
a\z, =1 a\z, l)/ Z, a\z,
X

9z et k! ot

+iyAxz,nal(z,0). (A1)
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Similar to the calculation with Raman scattering, the output
quantum state after propagation through an optical fiber can
be represented by the sum of the input coherent vacuum:

a(L,w) = /00 fw,0)a0,0)do’

+ / g (w,0)a'(0,0)dw'. (A2)

oo
By discretization of the frequency modes and the position in

the fiber, Eq. (A1) can be rewritten into matrix notation:
A(N) = Fa(0) + Ga'(0). (A3)

By Bloch-Messiah decomposition, we can decompose
F and G* into two unitary rotation matrices, U, V,

and diagonal real matrices Ap = diag{ay, ...,an}, Bp =
diag{by, ....by} [26]:
F=UApV*, G=UBpVT, (A4)

where a pair of diagonal matrices satisfies A%, = B3 + E,
where E is the N x N identity matrix. Unitary rotation
matrices U and V represent the basis of the input coherent
vacuum and the corresponding separable squeezed states.
Bloch-Messiah decomposition is equivalent to Euler decom-
position. If Raman scattering is not included in the NSE, we

can obtain the following equation:
t(N) = Zi(0). (AS)

Since Z is a symplectic matrix, we can diagonalize it by Euler
decomposition:

Z=0A0", (A6)

where 01,0, € K(M) = Sp2M,R) N SO2M). A is a diag-
onal matrix: A = ®£”:1(1/ Ag A(k))' If Eq. (A6) is substituted
into Eq. (A5), we can obtain a new basis of input and output
modes:

O#(N) = AO'}. (A7)

Here, we define the vectors of amplitude and phase quadrature:

O"#(N): =1, O"t0):=7, (A8)
where 0= (g, 1,0 p1, ool pm)" and V=
Dx130p1s - Dem,Dp ). As a result, the following
simple relation can be derived:

. 1 . .
Ux.m = )L_Ux,mv Upm = )\mvp,m~ (A9)
m

Thus, unlike the case of the calculation with Raman noise,
we can directly obtain the basis and corresponding squeezing
levels of the independent input coherent vacuum and the
output squeezed modes from Euler decomposition. First, we
calculated the propagation of the soliton pulse of a 39-cm fiber.
The parameters of the fiber and input pulse were identical
to those employed in the calculation with Raman scattering.
These parameters satisfy the conditions of soliton propagation.
A fiber length of 39 cm corresponds to a one-soliton period.
Figure 5 shows the calculation results, and Fig. 5(a) shows
the normalized covariance matrix. Figure 5(b) shows the
squeezing levels of each separable squeezed state given by
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m = 2. The spectral amplitudes of the input and output pulses
were consistent, and their spectral phases were symmetric with
respect to the phase axis.

Next, we calculated the propagation in the 15-mm zero-
dispersion fiber. The parameters of the fiber and input
pulse were identical to those in the calculation with Raman
scattering. Figure 6 shows the calculation results, and Fig. 6(a)
shows the normalized covariance matrix. Figure 6(b) shows
the squeezing levels of each separable squeezed state given
by —201log,, A Figures 6(c) and 6(d) respectively show the
complex spectra of input coherent vacuum 0, , (blue lines)
and separable squeezed modes i, ,, (red lines) when m = 1
and m = 2. Similar to the calculation of soliton propagation,
the spectral amplitudes of the input and output modes almost
overlapped. On the other hand, the spectral phases of the input
and output modes were shaped like negative and positive
third-order dispersions, but they were not symmetric with
respect to the phase axis.

APPENDIX B: SQUEEZING LEVELS IN
CONVENTIONAL SCHEMES

In this section, we discuss a method that calculates the
squeezing and antisqueezing levels obtained in the conven-
tional schemes in which the classical output pulse through

PHYSICAL REVIEW A 94, 053833 (2016)

the fiber is employed as a LO. First, we discretize the classical
output pulse as A(L,w) — A(N) = [A(N,1), ..., AN,M)]".
Now, we define the normalized classical output pulse:

Ao _ AW

e P Bl
HA(N)I]2 B

where [|[A(N)||, is the L? norm of the vector of the output
pulse. Next, we define two 2M vectors of the LOs as follows:

A, = (Re[A™ Im[A™), A, = (—Re[A"™,Im[A™). (B2)

Next, we calculate the 2 x 2 covariance matrix C =

(g” g;z), projected from the 2M x 2M covariance matrix

C(N) by the LO. This projection can be calculated by

Cox =AIC(N)A,, C,p= A;C(N)Ap, ®3)
Crp = [(Ax + Ap)CIN)A: +Ap) = Cox = Cppl/2,
where C,, corresponds to the photon-number noise of the
output pulses. Since the fiber nonlinear effect and Raman
scattering do not change the photon numbers of a propagating
pulse, Cy, = 1. The eigenvalues of the 2 x 2 covariance
matrix C correspond to the squeezing and antisqueezing noise
variances.
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