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We investigate the nonlinear optical susceptibility of an alkali-metal atom with tripod electronic configuration
responsible for generating cross-phase modulation and self-phase modulation under the condition of double-
double electromagnetically induced transparency. Our investigation demonstrates an enhancement in the nonlinear
optical susceptibility of an alkali-metal atom by a factor of 1000 in the region of the second transparency window.
This enhancement is in comparison with the atom’s susceptibility in the first transparency window for the
same parameters under the same conditions. Nonlinear-absorption enhancement arises by canceling Raman-gain
generation, which arises when the probe and signal fields have equal intensities. At the center of the second
transparency window, we obtain the condition required to attain a nonvanishing nonlinear optical susceptibility.
In the bare-state picture, the coupling field must be off resonant from a bare-to-bare-state transition, while working
in the semiclassical dressed picture required the signal field to be tuned off resonantly with a bare-to-dressed-state
transition. The relation that governs the values of coupling- and signal-field detuning are also obtained. Our scheme
exhibits the fact that the second transparency window has advantages over the first transparency window with
respect to obtaining an enhanced Kerr effect, and our calculation includes simulation of both low-temperature
and Doppler-broadened regimes.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is mainly
a physical technique implemented to allow the transmission
of electromagnetic radiation without any absorption [1] by
removing the influence of an optical medium on propagating
electromagnetic radiation. However, the power of EIT extends
to improve generation of several optical processes, such
as stimulated Raman gain [2] and lasing without inversion
[3–8], and to enhance the efficiency of other precesses, such
as frequency conversion [9], frequency-wave mixing, and
parametric gain nonlinear processes [10–12], in addition to
allowing the storage and slowing of light [13–17].

Another beneficial effect of EIT in the field of nonlinear
optics includes enhancing the efficiency of the optical Kerr
effect [18–21]. The Kerr effect is responsible for producing
self-phase modulation (SPM) [22] and cross-phase modulation
(XPM) required for many optical applications in the fields
of quantum optics and quantum information, such as the
implementation of optical shutters [23], quantum phase gates
[24,25], quantum switches [26], optical solitons [27,28], and
quantum nondemolition measurements [29]. These examples
show that various EIT schemes have been suggested for
producing the requisite optical Kerr nonlinearity to realize
such phenomena [16,23–25,30–33]. The generation of optical
Kerr nonlinearity under EIT conditions encounters an obstacle,
the vanishing of the optical Kerr effect at the center of EIT
window where absorption is minimal. In this case, the Kerr
effect is obtained in the region surrounding the center of the
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EIT window, in which the XPM and SPM have a nonzero value
but the absorption is high [16,24,25,31–33].

In this work, we present novel features of the tripod (�)
atom-field configuration shown in Fig. 1. We show that oper-
ating the � atom-field configuration under the double-double
electromagnetically induced transparency (DDEIT) condition
significantly enhances the Kerr effect and produces a nonzero
value of XPM and SPM at the center of the second EIT window
where one-photon absorption is minimal for both the probe
and signal fields. Unlike the N -scheme case [23], for which
XPM is limited by temporal walk-off, resulting in different
probe-field and signal-field group velocities, our proposed
technique ensures further enhancement of the cross-Kerr effect
by matching the group velocity of the probe and signal fields
under the DDEIT condition.

DDEIT has been introduced using the � scheme [2] shown
in Fig. 1(a). DDEIT exhibits DEIT for both the first EIT
windows of the signal and probe and also the second windows.
This optical system can be operated at either the first or the
second window. The first window occurs at equal detunings of
the probe, coupling, and signal fields. The second window is
observed when the weak-field detunings are equal but different
from the coupling-field detuning. The group velocities of the
probe and signal fields can be matched in either the first or the
second pair of transparency windows.

In this paper, we theoretically investigate the nonlinear
interaction between the two fields under the DDEIT condition,
i.e., when probe- and signal-field detunings are equal but
different from the coupling-field detuning. Our result exhibits
considerable enhancement in the third-order nonlinear optical
susceptibilities, which improves the Kerr effect at the region
of the second window.
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FIG. 1. Four-level �-electronic structure with high-energy state
|4〉 and lower-energy levels |1〉, |2〉, and |3〉 in ascending order
in energy. Transitions are driven by probe (p), coupling (c), and
signal (s) fields with frequencies ωx and detunings δx with x ∈
{p,c,s}. Dephasing rates are γφi for i ∈ {2,3}. (b) Same atom in the
semiclassical dressed-state picture for strong c field in resonance with
the |2〉 ↔ |4〉 transition. Levels |2〉 and |4〉 are hybridized into |±〉.

Nonlinear optical susceptibilities are improved 1000-fold
compared to their values in the region of the first EIT window
under the same conditions. For a nonresonant coupling-field
frequency, we attain a nonzero value of the nonlinear optical

susceptibilities at the center of the second window, and their
values are controlled by the coupling-field detuning. Moreover,
in our proposed system the one- and two-photon absorptions
of the signal and the probe fields vanish at the center of the
second EIT window. The two-photon absorption at the center
of the second window is canceled by Raman gain for equal
field intensities [2].

Our work is presented in the following order. In Sec. II,
we use the optical density-matrix elements describing the
optical properties of the transitions |1〉 → |4〉 and |3〉 → |4〉
to determine the optical susceptibility of the probe and signal
fields, respectively. We use these results to calculate the
effective optical susceptibility up to third order in Sec. III.
In this section, we present a detailed description of the
self-action and cross-coupling Kerr effect. The influence of the
coupling field on the dispersion properties of the probe field is
discussed in Sec. IV, while Sec. V discusses the influence of
Doppler broadening due to temperature increase on the optical
susceptibility. Finally, we conclude in Sec. VI.

II. ATOMIC-OPTICAL SUSCEPTIBILITY

Consider the closed � atom-field model scheme depicted
in Fig. 1 [2]. The lower electronic levels |1〉, |2〉, and |3〉 are
coupled to the upper level |4〉 by three coherent fields, namely,
the probe, coupling, and signal Rabi frequencies, �p, �c, and
�s, respectively. The electronic transitions |1〉 ↔ |2〉, |1〉 ↔
|3〉, and |2〉 ↔ |3〉 are dipole forbidden. The three fields are de-
tuned from the |ı〉 ↔ |j 〉 electronic transition frequency ωıj by

δp := ω41 − ωp, δc := ω42 − ωc, δs := ω43 − ωp, (1)

respectively.
The analytical steady-state density-matrix elements used to

find the probe-field effective optical susceptibility

χp = ηp
ρ14

�p
, ηp = N |d41|2

ε0�
(2)

and the signal field effective optical susceptibility

χs = ηs
ρ34

�s
, ηs = N |d43|2

ε0�
(3)

are [2]

ρ14 = i�p

(ρ11 − ρ44)
(
�43 + 2iδs + |�c|2

�32+2iδsc

) + (ρ11 − ρ44) |�p|2
γ3−2iδps

+ (ρ44 − ρ33) |�s|2
γ3−2iδps(

�43 + 2iδs + |�c|2
�32+2iδsc

)(
γ4 − 2iδp + |�c|2

γ2−2iδpc
+ |�s|2

γ3−2iδps

) + |�p|2
γ3−2iδps

(
γ4 − 2iδp + |�c|2

γ2−2iδpc

)
(4)

and

ρ34 = i�s

(ρ33 − ρ44)
(
γ4 + 2iδp + |�c|2

γ2+2iδsc

) + (ρ33 − ρ44) |�s|2
γ3+2iδps

+ (ρ44 − ρ11) |�p|2
γ3+2iδps(

�43 − 2iδs + |�c|2
�32−2iδsc

+ |�p|2
γ3+2iδps

)(
γ4 + 2iδp + |�c|2

γ2+2iδpc

) + |�s|2
γ3+2iδps

(
�43 − 2iδs + |�c|2

�32−2iδpc

) , (5)

respectively, with N being the atomic density and d14 and
d34 being the electric dipole moments of the |1〉 ↔ |4〉 and
|3〉 ↔ |4〉 transitions, respectively. See Appendixes A, B, and
C for detailed calculations of the steady-state solution of the

density-matrix elements. Equations (4) and (5) are symmet-
ric with respect to the δp ↔ δs and ρ11 ↔ ρ33 exchanges,
which ensures identical dispersive and absorptive properties
of the probe and signal fields for δp = δs and ρ11 = ρ33.
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Subsequently, in the main part of the paper we consider the
probe-field case, and the details concerning the signal-field
nonlinear properties, which are similar, are discussed in
Appendix D.

The quantities in Eq. (4) are the two-photon detuning

δxy := δx − δy, (6)

the coherence decay rate

γj :=
∑
ı<j

(γjı + γφj ), (7)

with γjı being the decay rate from state |j 〉 → |i〉 and γφı

being the dephasing of state |i〉, and the total coherence decay
rate

�kl = γk + γl. (8)

The dephasing rate between the forbidden transitions is not
zero [16]; therefore, γ2 = γφ2 and γ3 = γφ3.

In our system, the population in each state is highly
dependent on the strength of the applied field, as discussed
in detail in Appendix B of Ref. [17]. However, under the
DDEIT condition, atoms are trapped in a dark state, which is a
superposition of bare states |1〉 and |3〉. For the case that each of
the probe and signal fields have the same strength or are close
to each other in strength (which is our interest in this study),
the populations satisfy ρ11 ≈ ρ33 ≈ 0.5, which implies that
ρ22 ≈ ρ44 ≈ 0 [17]. For unequal probe- and signal-field Rabi
frequencies, equal population can be maintained by incoherent
excitation from the ground state |1〉 to the excited state |4〉
with constant pumping rate r [17] or maintained by transfer
of population (ToP) between levels through spin-exchange
collisions [34,35].

We verify the power of operating the � configuration at the
second DEIT window by applying our calculation to alkali-
metal atoms. Specifically, we consider 87Rb and assign |1〉,
|2〉, and |3〉 to the 5S1/2 level with

F = 1, mF = 0 (9)

and

F = 2, mF = {0, − 2}, (10)

respectively. Level |4〉 corresponds to the 5P1/2 level with
F = 2 and mF = −1. The atom is driven by copropagating
circularly polarized probe and signal fields, with the probe field
driving the σ− transition and the signal field driving the σ+
transition. The decay rates from the upper-level coupling-field
strength and the field detuning are assumed to be of the same
order of magnitude.

III. NONLINEAR OPTICAL SUSCEPTIBILITY

In our investigation we are interested in studying the
nonlinear interaction between the probe and signal fields
that yields the cross-coupling effect, as well as studying
the high-order nonlinearity that yields the self-action Kerr
effect. Therefore, we keep terms up to third order of the
nonlinear optical susceptibility. In this section, we consider the
probe-field optical properties, whereas the signal-field case is
discussed in Appendix D.

The effective optical susceptibility can be written using
Eqs. (4) and (2) as

χp = χ (1)
p + χ (3)

pSPM
|Ep|2 + χ (3)

pXPM
|Es|2, (11)

where

χ (1)
p = iηp(ρ11 − ρ44)

γ4 − 2iδp + |�c|2
γ2−2iδpc

+ |�s|2
γ3−2iδps

(12)

is the linear optical susceptibility at the probe-field frequency.
The imaginary and real parts of the linear optical susceptibility
are plotted in Figs. 2(a) and 2(b), respectively. The absorption
and dispersion vanish at δp = δc, the center of the first EIT
window, and at δp = δs, the center of the second EIT window.
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FIG. 2. (a) Im[χp] and (b) Re[χp] as a function of the probe-field
detuning δp. The XPM term is represented by the dotted line, the SPM
term is shown by the dashed line, and the linear term χ (1)

p × 10−3 is
shown by the solid line, with γ4 = 18 MHz, �s = 0.2γ4, �c = γ4,
γ3 = 1 kHz, γ2 = 40 kHz, δs = 9 MHz, δc = 0, d14 = d34 = 1.269 ×
10−29 C m, and N = 1012cm−3. (c) Re[χ (3)

p ] with XPM (dotted line)
and SPM (dashed line) at the first EIT window when δc = 0.
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The second term of Eq. (11) represents the nonlinear optical
process by the probe field with

χ (3)
pSPM

= iηp1
(ρ11 − ρ44)

(γ3 − 2iδps)
(
�43 + 2iδs + |�c|2

�32+2iδsc

)

×
1 − γ4−2iδp+ |�c |2

γ2−2iδpc

γ4−2iδp+ |�c |2
γ2−2iδpc

+ |�s |2
γ3−2iδps

γ4 − 2iδp + |�c|2
γ2−2iδpc

+ |�s|2
γ3−2iδps

, (13)

which is the third-order nonlinear optical susceptibility, and

ηp1
= N |d41|4

�3ε0
. (14)

The imaginary part of the second term characterizes the two-
photon absorption of the probe field, whereas the real part
describes the modulation of the field dispersion by the field
self-action, called the self-Kerr effect [36]. The imaginary and
real parts of χ (3)

pSPM
are shown by the dashed line in Figs. 2(a)

and 2(b), respectively. The phase modulation of the probe
field through the optical system by its self-action, i.e., SPM,
can be calculated using [36]

φNLpSPM
= ωp

c
npSPM

|Ep|2zp, (15)

with

npSPM
= Re

[
χ (3)

pSPM

]
2np

, (16)

which is the second-order nonlinear refractive index [36]. Here
zp is the propagation distance of the probe field through the
optical medium, and

np ≈ 1 + 1
2 Re

[
χ (1)

p

]
(17)

is the linear index of refraction.
The third term in Eq. (11) depicts the cross-coupling effect

between the probe and signal fields. The imaginary part of this
term is responsible for producing stimulated Raman gain [2]
for δs = δp. The real part represents the cross-coupling Kerr
effect between the signal and probe fields, with the nonlinear
optical susceptibility equal to

χ (3)
pXPM

= iηsp(ρ44 − ρ33)

(γ3 − 2iδps)
(
�43 + 2iδs + |�c|2

�32+2iδsc

)

× 1

γ4 − 2iδp + |�c|2
γ2−2iδpc

+ |�s|2
γ3−2iδps

(18)

and

ηsp = N |d41|2|d43|2
�3ε0

. (19)

The modulation of the probe-field phase by the signal-field
intensity through the nonlinear medium can be obtained

using [36]

φNLpXPM
= ωp

c
npXPM

|Es|2zp, (20)

where

npXPM
= Re

[
χ (3)

pXPM

]
2np

(21)

is the second-order nonlinear refractive index associated with
the cross-coupling effect.

The two-photon absorption of the probe field described
by the imaginary part of the second term in Eq. (11) is
compensated by stimulated Raman gain described by the
imaginary part of the third term of Eq. (11). When �p = �s,
the absorption is canceled by the Raman gain in the system.
This has the advantage of obtaining XPM and SPM not
accompanied by nonlinear absorption, as shown in Fig. 2(a).

The variation of Re[χ (3)] constitutes the variation of
the SPM and XPM, as evidenced by Eqs. (15) and (20),
respectively. Referring to Fig. 2(b), the value of Re[χ (3)]
vanishes at the center of the two transparency windows, i.e.,
when δp = δc and δp = δs. However, the value of Re[χ (3)] in
the region of the second window is greatly enhanced compared
to its value in the region of the first window.

The maximum of Re[χ (3)] at the region of the second
window exceeds its value in the region of the first window
by a factor of 1000, as seen by comparing Fig. 2(b) with
Fig. 2(c). The enhancement in the nonlinear optical suscep-
tibility exhibits the potential of operating the � atom-field
scheme in the second EIT window compared to the first EIT
window.

IV. VARIATION OF THE PROBE-FIELD NONLINEAR
INDEX OF REFRACTION BY THE APPLIED FIELD

DETUNINGS

Coupling-field detuning is influential for improving SPM
and XPM performance values at the center of the second
window. Figure 3 demonstrates the variation of Re[χ (3)] as a
function of the coupling-field detuning. The nonlinear optical
dispersion response vanishes when the coupling field is in
resonance with the |2〉 ↔ |4〉 transition. It also vanishes when
the coupling-field detuning is equal to the signal-field detuning
in which the optical system is operated at the center of the first
window. Tuning the coupling field to a lower or higher energy
than the |2〉 ↔ |4〉 transition energy displaces the values of the
Re[χ (3)] from zero. Then |i〉 Re[χ (3)] reaches the maximum
values when δc = δs

2 .
In the analysis that follows, we investigate further the real

part of χ (3)
pXPM

to determine the condition required to attain a
nonzero value when δp = δs. From Eq. (18),

Re
[
χ (3)

pXPM

] =
2ηsp(ρ44 − ρ33)

[(
δs − |�c|2δsc

�2
32+4δ2

sc

)(
γ4 + |�c|2γ2

γ 2
2 +4δ2

pc
+ |�s|2

γ3

) + ( |�c|2δpc

γ 2
2 +4δ2

pc
− δp

)(
�43 + |�c|2�32

�2
32+4δ2

sc

)]
γ3

[(
γ4 + |�c|2γ2

γ 2
2 +4δ2

pc
+ |�s|2

γ3

)2 + 4
( |�c|2δpc

γ 2
2 +4δ2

pc
− δp

)2][(
�43 + |�c|2�32

�2
32+4δ2

sc

)2 + 4
(
δs − |�c|2δsc

�2
32+4δ2

sc

)2] , (22)
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FIG. 3. (a) Re[χ (3)
p ] with XPM (dotted line) and SPM (dashed

line) as a function of the coupling-field detuning δc at the center of
the second EIT window when δs = δp = 9 MHz. (b) Same as (a), but
under the Doppler broadening effect at T = 300 K. Other parameters
are γ4 = 18 MHz, �s = 0.2γ4, �c = γ4, γ3 = 10 kHz, γ2 = 40 kHz,
d14 = d34 = 1.269 × 10−29 C m, and N = 1012 cm−3.

where ηsp is defined by (19). Our earlier assumption of having
a coupling-field strength and field detunings of the same order
of magnitude, in addition to having a low dephasing, as in our
optical system using 87Rb gas [16], simplifies Eq. (22) to

Re
[
χ (3)

pXPM

] ≈
2ηsp(ρ44 − ρ33)δ2

sc

(
δs − |�c|2

4δsc

)
|�s|2

[
δ2

sc�
2
43 + 4

(
δscδs − |�c|2

4

)2] . (23)

Equation (23) vanishes when δs = δc and for

δs − |�c|2
4δsc

= 0. (24)

Under the DDEIT condition, δs �= δc is always true. There-
fore, the XPM vanishes only whenever (24) is satisfied. In
other words, the condition

δs − δc �= |�c|2
4δs

(25)

is mandatory to obtain a nonzero value for npXPM
at the center

of the second window. When the coupling field is in resonance
with the |2〉 ↔ |4〉 transition, condition (25) changes to(

δs − |�c|
2

)(
δs + |�c|

2

)
�= 0. (26)

In the semiclassical dressed model of the � scheme [2], the
dressed states |±〉 are shifted from the |2〉 ↔ |4〉 transition by
ω± depending on the coupling-field detuning value,

ω± = δc ± R

2
, R :=

√
|�c|2 + δ2

c . (27)

For a resonant coupling field, the dressed states |±〉 are shifted
by ±|�c|

2 , as shown in Fig. 1(b). Detuning the signal field
by ±|�c|

2 leads to resonance of the field with the |3〉 ↔ |∓〉
transition.

According to condition (26), npXPM
vanishes when the signal

field is in resonance with the |3〉 ↔ |±〉 transition. Therefore,
the signal field must be detuned off resonantly from the
|3〉 ↔ |±〉 transition to attain a nonzero value for npXPM

. This
is equivalent to displacing the second window from being
centered at the absorption peak of the |1〉 ↔ |±〉 transition.
The above results can be generalized to involve the case of
SPM as analyzing Re[χ (3)

pSPM
] leads to the same result as above.

For the case shown in Fig. 2, the coupling field has been
selected to be in resonance with the |2〉 ↔ |4〉 transition,
whereas the signal field was chosen to be in resonance with the
transition |3〉 ↔ |−〉, i.e., δs = �c

2 [2]. Our choice of frequency
detuning centers the second EIT window at the absorption peak
of the |1〉 → |−〉 transition and compels the nonlinear index
of refraction to fade at the center of the second window. We
can avoid the zero nonlinear index of refraction by changing
the signal-field detuning to satisfy condition (26).

To summarize, our condition (25) quantifies the require-
ment for our system to enhance the Kerr effect in terms
of bare and dressed states. For a resonant coupling field,
the signal field must be off-resonant from the dressed-state
transition |3〉 ↔ |±〉. The enhancement of the nonlinear index
of refraction can be explained due to the Stark shift [31].
The off-resonant coupling field from transition |2〉 ↔ |4〉 and
the signal field from transition |3〉 ↔ |±〉 modifies the �
scheme by producing an ac Stark shift for states |2〉 and |3〉,
respectively.

V. DOPPLER BROADENING EFFECT ON NONLINEAR
OPTICAL SUSCEPTIBILITIES

In the following calculation, which accounts for the depen-
dence on temperature T (where k is Boltzmann’s constant)
and on v, which is the velocity component in the direction of
the three copropagating signal (s), probe (p), and coupling (c)
fields, we use the subscript x to denote x ∈ {p, c, s}. Transition
frequencies are expressed as

ωx =
⎧⎨
⎩

ω14 ≡ ω0, x = p,

ω24, x = c,
ω34, x = s.

(28)

We construct velocity-dependent susceptibility χp(v) from
Eqs. (13) and (18) by substituting [17] δx 
→ δx − vωx/c.
With these relations in place, we can determine the Doppler
broadening effect by integrating susceptibilities (12), (13), and
(18) according to [37]

χ̄p :=
∫ ∞

−∞
χp(v)f (v)dv (29)
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for the Maxwell-Boltzmann velocity distribution

f (v) = 1

u
√

π
exp

(
−v2

u2

)
, u =

√
2kT

m
, (30)

where m is the atomic mass.
We propose operating in the regime in which the co-

propagating fields are driving approximately equal transition
frequencies ω0 ≡ ω14 ≈ ω24 ≈ ω34, which allows the Doppler
effect on two-photon detuning δxy (6) to be neglected. These
restrictions on frequencies are commensurate with operating
conditions for a 87Rb gas. Therefore, the quantities {δxy} are
substantially intact in Eqs. (13) and (18) due to temperature
effects and thus do not change under Doppler broadening.

The complex optical susceptibility is evaluated numerically
with the same parameters as in Fig. 2 but for room temperature
(300 K). We display the results from this numerical simulation
in Fig. 4. Comparing these figures shows a reduction of the
EIT window width by an amount that is commensurate with
past observations [38]. Despite Doppler broadening, both EIT
windows are strongly evident, and the value of χ (3)

p in the
second window is clearly higher than its value in the first
window with respect to Doppler broadening.

We can now see the effect of coupling-field detuning on
SPM and XPM. As in the low-temperature limit, shifting the
coupling-field detuning from resonance enhances SPM and
XPM. However, the maximum is thus shifted from δc = δs/2
due to the Doppler effect, as depicted in Fig. 3(b).

VI. CONCLUSION

We have accomplished our objective of showing that
the second DEIT window has an advantage over the first
transparency window with respect to the goal of obtaining an
enhanced Kerr effect. Operating a � atom-field configuration
under a DDEIT condition significantly enhances the Kerr effect
and generates nonzero values for npXPM

and npSPM
at the center

of the second EIT window, where one-photon absorption is
minimal for both the probe and signal fields. The enhancement
of npXPM

and npSPM
leads to values 1000 times those in the region

of the first EIT window under the same conditions. Detuning
the coupling field from the |2〉 ↔ |4〉 transition and detuning
the signal field from the |3〉 ↔ |±〉 transition produce an ac
Stark shift for states |2〉 and |3〉, respectively, which modifies
the � scheme and improves the nonlinear index of refraction
at the center of the second EIT window. Mathematically,
condition (25) must be attained in order to obtain nonzero
values for npXPM

and npSPM
at the center of the second EIT

window.
In our system two-photon absorption is canceled by Raman

gain due to the high-order nonlinear interaction between probe
and signal fields when the two fields have equal detuning from
the atomic transition. Our proposed scheme, which aims to
realize a high nonlinear phase shift, should be experimentally
feasible as we have employed realistic parameters for 87Rb,
including dephasing, driving fields, and temperature.

APPENDIX A: ATOM-FIELD HAMILTONIAN

The Hamiltonian system that describes the coupling of four
nondegenerate states by three coherent radiation fields shown

4 2 2 4 6 8 10
Δp MHz

0.00010

0.00005

0.00005

0.00010

0.00015
Χp
1 8.9 9.0 9.1 9.2
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0.00010
0.00005

0.00005
0.00010
0.00015

Χp
1

(a)

5 5 10 15
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2. 10 7

1. 10 7

1. 10 7

2. 10 7

Im Χp
3 8.9 9.0 9.1 9.2

Δp MHz

2. 10 7
1. 10 7

1. 10 7
2. 10 7

Im Χ p3

(b)

5 5 10 15
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1. 10 7

Re Χ p3
8.9 9.0 9.1 9.2

Δp MHz

5. 10 8

5. 10 8

Re Χ p3

(c)

FIG. 4. Numerical plots of Doppler broadening Im[χp] and
Re[χp] as a function of the probe-field detuning δp for the same
parameters as in Fig. 2 but at T = 300 K. (a) Linear optical
susceptibility, with Im[χ (1)

p ] (solid line) and Re[χ (1)
p ] (dotted line). (b)

Im[χ (3)
p ] and (c) Re[χ (3)

p ] with XPM (dotted line) and SPM (dashed
line). The insets show a magnification of (a), (b), and (c) around the
region of the second EIT window.
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in Fig. 1(a) is

Ĥ (t) = Ĥ0 + Ĥdr(t), (A1)

where Ĥ0 is the unperturbed part that represents the free-atom
Hamiltonian,

Ĥ0 =
4∑

ı=1

�ωı |ı〉〈ı|, (A2)

with Ĥ0|ı〉 = �ωı |ı〉. States |1〉 , |2〉 , |3〉, and |4〉 are the eigen-
states of the unperturbed part of Ĥ (t), with eigenvalues �ω1,
�ω2, �ω3, and �ω4, respectively. The part of the Hamiltonian
Ĥdr(t) that represents the interaction of the atom with the
radiation field E(t) polarized in the ε direction and propagated
in the z direction can be written as

Ĥdr(t) = −d · E(t), (A3)

where d is the dipole moment and the electric field is
represented by

E(t) =
∑

x∈{c, p, s}
Ex(t) =

∑
x ξxe

iωxt ε̂x + c.c.

2
, (A4)

with ε̂x being the polarization vectors of a field of mode x,
ξx being the amplitude envelope function of the field, and c.c.
denoting the complex conjugate.

The summation in (A4) considers only positive frequency.
These field modes comprise a coupling field of angular
frequency ωc interacting with a pair of states |2〉 ↔ |4〉, a
probe field of angular frequency ωp coupling the transition
|1〉 ↔ |4〉, and a signal field of angular frequency ωs coupling
the transition |3〉 ↔ |4〉, as shown in Fig. 1(a).

Inserting the identity

1 = |1〉 〈1| + |2〉 〈2| + |3〉 〈3| + |4〉 〈4| (A5)

into Eq. (A3) yields

Ĥdr(t) = − (|1〉 〈1| + |2〉 〈2| + |3〉 〈3| + |4〉 〈4|)d(|1〉 〈1| + |2〉 〈2| + |3〉 〈3| + |4〉 〈4|) · E(t)

= − [|1〉 〈1| d |4〉 〈4| · Ep(t) + |2〉 〈2| d |4〉 〈4| · Ec(t) + |3〉 〈3| d |4〉 〈4| · Es(t)

+ |4〉 〈4| d |1〉 〈1| · Ep(t) + |4〉 〈4| d |2〉 〈2| · Ec(t) + |4〉 〈4| d |3〉 〈3| · Es(t)]. (A6)

The frequency components of the coupling, probe, and signal
fields are tuned close to resonance with respect to the one-
photon transition. Therefore, the three nearly resonant electric
fields are expected to affect only the transitions |2〉 → |4〉,
|1〉 → |4〉, and |3〉 → |4〉, respectively. Thus, we can disregard
off-resonance terms, and Eq. (A6) reduces to

Ĥdr(t) = − (d14 · ε̂pσ̂14 + d41 · ε̂pσ̂41)
ξpe

iωpt + c.c.

2

− (d24 · ε̂cσ̂24 + d42 · ε̂cσ̂42)
ξce

iωct + c.c.

2

− (d34 · ε̂sσ̂34 + d43 ·̂ε̂sσ43)
ξse

iωst + c.c.

2
, (A7)

where σ̂ıj = |ı〉〈j | is the projection operator and dıj = d∗
jı =

〈ı|d|j 〉 are the dipole matrix elements of the |ı〉 ↔ |j 〉
transition for ı �= j .

We assume that the transitions

|1〉 ↔ |2〉 , |1〉 ↔ |3〉 , |2〉 ↔ |3〉 (A8)

are dipole-forbidden. Thus,

d12 = d23 = d13 = 0. (A9)

From the rotating-wave approximation,

Ĥdr(t) = − 1
2 (d14 · ε̂pξpe

iωpt σ̂14 + d24 · ε̂cξce
iωct σ̂24

+ d34 · ε̂sξse
iωst σ̂34 + H.c.), (A10)

with H.c. denoting the Hermitian conjugate. We define the
strength of the resonant interaction between the applied fields
and the four-level atom by

�p = − d14 · ε̂pξp

�
,

�c = − d24 · ε̂cξc

�
,

�s = − d34 · ε̂sξs

�
, (A11)

which are known as the Rabi frequencies.
Thus, we write Eq. (A10) as

Ĥdr(t) = �

2
(�pe

iωpt σ14 + �ce
iωct σ24 + �se

iωst σ34 + H.c.).

(A12)

In the interaction picture, with respect to the free-atom
Hamiltonian (A2), the atom-field system Hamiltonian has the
form

V̂ (t) = Û †(t)Ĥdr(t)Û (t), (A13)

with

Û (t) = e
−iĤ0 t

� =
4∑

i=1

e−iωi t |i〉 〈i| (A14)

being the unitary transformation operator, where we use the
fact that the eigenstates of Ĥ0 are orthonormal (i.e., 〈ı|j 〉 =
0 for ı �= j and 〈ı|ı〉 = 1) to obtain (A14). By substituting
Eqs. (A12) and (A14) into Eq. (A13) we obtain

V̂ (t) = �

2
(�pe

−iδpt σ̂14 + �ce
−iδct σ̂24 + �se

−iδst σ̂34 + H.c.),

(A15)
with δx defined in Eq. (1).

The atom-field system Hamiltonian described by Eq. (A15)
involves terms oscillating at different optical frequencies.
Thus, our next step is to find a Hermitian operator to transform
the Hamiltonian to a rotating frame in order to eliminate the
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time dependence [39]. The transformation that we apply is
constructed to remove all time dependence from the interaction
Hamiltonian.

This new basis is known as the rotating basis and is related
to the old basis by

|ψ ′〉 = Û ′(t)|ψ〉, (A16)

with

Û ′(t) = e
−iÂt

� , (A17)

where Â is a self-adjoint operator. The corresponding trans-
formed Hamiltonian Ĥ ′ for the transformed wave function
|ψ ′〉 can be found using

Ĥ ′ = Û ′(t)V̂ (t)Û ′†(t) + Â. (A18)

In the case of our atom-field system, the operator Â used to
eliminate the time dependence is

Â = 3δpσ11 + (2δp + δc)σ22 + (2δp + δs)σ33 + 2δpσ44.

(A19)
The resultant Hamiltonian after transformation is [2]

Ĥ ′ = Ĥ ′
0 + �

2
(�pσ̂14 + �cσ̂24 + �sσ̂34 + H.c.) (A20)

for

Ĥ ′
0 := δpcσ̂22 + δpsσ̂33 + δpσ̂44, (A21)

where we have added

3δp(σ11 + σ22 + σ33 + σ44) (A22)

to the transformed Hamiltonian to obtain Ĥ ′, which shifts the
eigenvalue by 3δp. This has no physical effect, as the physically
relevant terms are the differences between energy levels.

APPENDIX B: OPEN-SYSTEM DYNAMICS AND
DENSITY-MATRIX ELEMENTS

In the presence of damping, atomic dynamics and the state’s
time evolution are described by the density operator, which is
governed by a master equation for the atomic density operator.
The resulting Lindblad master equation is [2]

ρ̇ = − i

�
[ρ,Ĥ ′] +

4∑
ı<j

γjı

2
(σıjρσjı − σjjρ − ρσjj )

+
4∑

j=2

γφj

2
(σjjρσjj − σjjρ − ρσjj ). (B1)

The Lindblad master equation includes both spontaneous
emissions and dephasing, where γjı is the decay rate of state
|j 〉 → |ı〉 and γφı is the dephasing of state |ı〉. By substituting
Eq. (A20) into Eq. (B1) we obtain ten optical Bloch equations.

Six more optical Bloch equations are obtained from
complex conjugates of the six off-diagonal density-matrix
expressions,

ρ̇12(t) =
(

−1

2
γ2 + iδpc

)
ρ12(t) − i

2
[−�∗

cρ14(t) + �pρ24(t)],

(B2)

ρ̇13(t) =
(

−1

2
γ3 + iδps

)
ρ13(t)

− i

2
[−�∗

s ρ14(t) + �pρ43(t)], (B3)

ρ̇14(t) =
(

−1

2
γ4 + iδp

)
ρ14(t)

+ i

2
{�cρ12(t) + �sρ13(t) + �p[ρ11(t) − ρ44(t)]},

(B4)

ρ̇23(t) =
(

−1

2
�32 − iδsc

)
ρ23(t) − i

2

[
�cρ43(t) − �∗

s ρ24(t)
]
,

(B5)

ρ̇24(t) =
(

−1

2
�42 + iδc

)
ρ24(t)

− i

2
{−�pρ21(t) + �c[ρ44(t) − ρ22(t)] − �sρ23(t)},

(B6)

ρ̇43(t) =
(

−1

2
�43 − iδs

)
ρ43(t)

+ i

2
{−�∗

cρ23(t) + �∗
s [ρ44(t) − ρ33(t)] − �∗

pρ13(t)},
(B7)

and four equations represent the equations of motion for the
population,

ρ̇11(t) =γ21ρ22(t) + γ31ρ33(t) + γ41ρ44(t)

− i

2
[�pρ41(t) − �∗

pρ14(t)], (B8)

ρ̇22(t) = − γ21ρ22(t) + γ32ρ33(t) + γ42ρ44(t)

− i

2
[−�∗

cρ24(t) + �cρ42(t)], (B9)

ρ̇33(t) = − γ31ρ33(t) − γ32ρ33(t) + γ43ρ44(t)

− i

2
[−�∗

s ρ34(t) + �sρ43(t)], (B10)

ρ̇44(t) = − γ4ρ44(t) − i

2
[�cρ24(t) − �∗

cρ42(t) + �sρ34(t)

− �∗
s ρ43(t) + �pρ14(t) − �∗

pρ41(t)]. (B11)

We now have the requisite equations of motion for the density-
matrix elements to solve the dynamics.

APPENDIX C: ANALYTICAL STEADY-STATE SOLUTIONS

General analytical steady-state solutions for ρ14 and ρ34

are impossible without making assumptions or employing
approximate conditions. Therefore, in our system we assume
constant populations. This assumption makes the equations
somewhat solvable analytically, as the equations of motion for
population (B3) are effectively decoupled from the equations
of motion for coherence (B2). We also assume that

|�c|2 � |�p|2,|�s|2 (C1)

is always valid for all chosen values of �c, �p, and �s. This
assumption makes it possible to decouple the coherence ρ24
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FIG. 5. (a) Im[ρ14] and (b) Re[ρ14] as a function of the probe-
field detuning δp, with numerical (solid line) and analytical (dashed
line) solutions, for γ4 = 18 MHz, �p = �s = 0.2γ4, �c = γ4, γ3 =
10 kHz, γ2 = 40 kHz, δs = 9 MHz, and δc = 0. For the case of the
analytical solution we assume ρ11 = ρ33 = 0.5.

from other coherences, which is accomplished by eliminating
�pρ24 and �∗

s ρ24 terms from ρ̇23(t) and ρ̇12(t) in (B2) and
(B5), respectively, because their influence is weak compared
to that of other terms.

Thus, the off-diagonal steady-state density-matrix element
ρ14 can be calculated as

ρ14 = �p

i(ρ11 − ρ44) + �s
γ3−2iδps

ρ43

γ4 − 2iδp + |�c|2
γ2−2iδpc

+ |�s|2
γ3−2iδps

, (C2)

where

ρ43 = �∗
s

−i(ρ33 − ρ44) + �∗
p

γ3−2iδps
ρ14

�43 + 2iδs + |�c|2
�32+2iδsc

(C3)

is the optical response to the signal field for the |4〉 → |3〉
transition. We substitute Eq. (C3) into Eq. (C2) to obtain
(4). Figure 5 shows the agreement between the analytical
and numerical solutions. This analysis validates our analytical
solution for optical property investigations.

APPENDIX D: SIGNAL-FIELD NONLINEAR OPTICAL
PROPERTIES

Like in the probe-field case, we can write the effective
optical susceptibility of the signal field as

χs = χ (1)
s + χ (3)

sSPM
|Es|2 + χ (3)

sXPM

∣∣Ep

∣∣2
, (D1)

with

χ (1)
s = iηs(ρ33 − ρ44)

�43 − 2iδs + |�c|2
�32−2iδsc

+ |�p|2
γ3+2iδps

(D2)

10 5 5 10 15
Δs MHz

2. 10 6

1. 10 6

1. 10 6

2. 10 6

Im Χs

(a)

10 5 5 10 15
Δs MHz

2. 10 6

1. 10 6

1. 10 6

2. 10 6
Re Χs

(b)

FIG. 6. (a) Im[χp] and (b) Re[χp] as a function of the probe-field
detuning δp. The XPM term is represented by the dotted line, the SPM
term is shown by the dashed line, and the linear term χ (1)

s × 10−3

is given by the solid line, with γ4 = 18 MHz, �p = 0.2γ4, �c =
γ4, γ3 = 10 kHz, γ2 = 40 kHz, δp = 9 MHz, δc = 0, d14 = d34 =
1.269 × 10−29 C m, and N = 1012 cm−3.

being the linear optical susceptibility at the signal-field
frequency. As in the probe-field case, the linear absorption
and dispersion of the signal field vanish at the center of the
first and second EIT windows, as shown in Fig. 6.

The third-order nonlinear optical susceptibility appearing
in the second term of Eq. (D1) can be written as

χ (3)
sSPM

= iηs1 (ρ33 − ρ44)(
γ3 + 2iδps

)(
γ4 + 2iδp + |�c|2

γ2+2iδpc

)

×
1 − �43−2iδs+ |�c |2

�32−2iδsc

�43−2iδs+ |�c |2
�32−2iδsc

+ |�p |2
γ3+2iδps

�43 − 2iδs + |�c|2
�32−2iδsc

+ |�p|2
γ3+2iδps

, (D3)

with

ηs1 = N |d43|4
2�3ε0

. (D4)

The imaginary part of the second term characterizes the two-
photon absorption of the signal field, whereas the real part
represents the self-action Kerr effect. The phase modulation
of the signal field through the optical system by itself action
can be calculated using

φNLsSPM
= ωs

c
nsSPM |Es|2zs, (D5)
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where

nsSPM = Re
[
χ (3)

sSPM

]
2ns

(D6)

is the second-order nonlinear refractive index, zs is the
propagation distance of the signal field through the optical
medium, and

ns ≈ 1 + 1
2 Re

[
χ (1)

s

]
(D7)

is the linear index of refraction.
The third term on the right-hand side of Eq. (D1) depicts

the cross-coupling effect between the probe and signal fields.
The imaginary part of this term is responsible for producing
stimulated Raman gain at the signal-field frequency [2] with
energy detuning δs = δp under the condition

ρ11|�p|2 > ρ33|�s|2. (D8)

The real part of the third term on the right-hand side of Eq. (D1)
represents the cross-coupling Kerr effect between the signal
and probe fields, where the nonlinear optical susceptibility can
be expressed as

χ (3)
sXPM

= iηsp(ρ44 − ρ11)(
γ3 + 2iδps

)(
γ4 + 2iδp + |�c|2

γ2+2iδpc

)

× 1

�43 − 2iδs + |�c|2
�32−2iδsc

+ |�p|2
γ3+2iδps

. (D9)

Modulation of the signal-field phase by the probe-field
intensity through the nonlinear medium can be obtained using

φNLsXPM
= ωs

c
nsXPM

∣∣Ep

∣∣2
zs, (D10)

with

nsXPM = Re
[
χ (3)

sXPM

]
2ns

(D11)

being the second-order nonlinear refractive index associated
with the cross-coupling effect.

Similar to the probe-field case, the two-photon absorption
of the signal field is overwhelmed by the gain of the signal
field due to Raman scattering, which leads to no losses when
�p = �s. Thus, XPM and SPM are not accompanied by linear
or nonlinear absorption, as shown in Fig. 6(a).

APPENDIX E: VARIATION OF THE SIGNAL-FIELD
NONLINEAR INDEX OF REFRACTION BY APPLIED

FIELD DETUNINGS

Detuning the coupling field modifies the XPM and SPM
values in the same way as in the case of the probe field,

15 10 5 5 10 15
Δc MHz

1.5 10 6

1. 10 6

5. 10 7

5. 10 7

1. 10 6

1.5 10 6
Re Χs3

FIG. 7. Re[χ (3)
s ] with XPM (dotted line) and SPM (dashed line)

as a function of the coupling detuning δc at the center of the second
EIT window when δs = δp = 9 MHz. Other parameters are γ4 =
18 MHz, �s = 0.2γ4, �c = γ4, γ3 = 10 kHz, γ2 = 40 kHz, d14 =
d34 = 1.269 × 10−29 C m, and N = 1012 cm−3.

as shown in Fig. 7. Increasing or decreasing the coupling-
field energy from the |2〉 ↔ |4〉 transition energy results in
displacing the XPM and SPM values from zero. Maximum
displacement is achieved for δc = δp

2 .
Detuning the coupling field plays an important role in

modifying the XPM and SPM values at the center of the second
EIT window. Figure 3 demonstrates the variation of XPM and
SPM as a function of coupling-field detuning. The nonlinear
dispersion response including XPM and SPM vanishes for a
resonant coupling field. However, detuning the coupling field
to a lower or a higher energy value than the |2〉 ↔ |4〉 transition
energy displaces the XPM and SPM values from zero, and they
reach their maximum values for δc = δs

2 .
We obtain an approximation of Re[χ (3)

sXPM
] as a function of

coupling-field detuning for δs = δs, in a way similar to that of
result (23), as

Re
[
χ (3)

sXPM

] ≈
2ηsp(ρ44 − ρ11)δpc

(
δp − |�c|2

4δpc

)
|�p|2

[
δ2

pcγ432 + 4
(
δpcδp − |�c|2

4

)2] . (E1)

Thus, XPM vanishes for δp = δc and for

δp − |�c|2
4δpc

= 0, (E2)

which are exactly the same conditions as for vanishing SPM
and XPM of the probe field at δp = δs.

Therefore, to enhance the nonlinear index of refraction of
the signal field, the probe field must not be in resonance with
the dressed state |3〉 ↔ |±〉. This result can be generalized
to the case of SPM, as analyzing Re[χ (3)

sSPM
] leads to the same

result.
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