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Mirror and cavity formations by chains of collectively radiating atoms
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We search for mirror and cavitylike features of a linear chain of atoms in which one of the atoms is specially
chosen as a probe atom that is initially prepared in its excited state or is continuously driven by a laser field. Short
chains are considered, composed of only three and five atoms. The analysis demonstrates the importance of the
interatomic dipole-dipole interaction, which may lead to a collective ordering of the emission along some specific
directions. We examine the conditions under which the radiative modes available for the emission are only those
contained inside a cone centered about the interatomic axis. Particular interest is in achieving one-way emission
along the interatomic axis, in either the left (backward) or the right (forward) direction, which is referred to as
a mirrorlike behavior of the atomic chain. A direction-dependent quantity called the directivity function, which
determines how effective the system is in concentrating the radiation in a given direction, is introduced. We
show that the function depends crucially on the distance between the atoms and find that there is a threshold for
the interatomic distances above which a strongly directional emission can be achieved. The one-sided emission
as a manifestation of the mirrorlike behavior and a highly focused emission along the interatomic axis as a
characteristic of a single-mode cavity are demonstrated to occur in the stationary field. Below the threshold the
directivity function is spherically symmetric. However, we find that the population can be trapped in one of the
atoms, and sometimes in all atoms, indicating that at these short distances the system decays to a state for which
there are no radiative modes available for emission.
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I. INTRODUCTION

Advancement in the current technology of trapping and
controlling single atoms cooled down to ultralow temperatures
has opened new research directions in quantum optics and
quantum communication. Spatial configurations of linear
atomic chains or two-dimensional atomic lattices have been en-
gineered and have been widely applied in various experimental
setups [1–5]. Recently, the subject of utilizing supercold
atoms as highly reflecting mirrors has gained much attention.
In particular, it has been demonstrated that a collection of
cold atoms trapped near the surface of a one-dimensional
waveguide can form a nearly perfect mirror for the radiation
incident on the atoms [6–8]. The waveguide represents a
photonic channel which enhances the electromagnetic field
to which the atoms are coupled, thereby leading to a strong
collective behavior of the atoms [9]. As a consequence, a large
part of the incident light is directed, reflected back, to the
medium from which it originated. This striking mirror property
of atoms is in contrast to the usual observation, where atoms
absorb or scatter all or most of the incident energy.

Another kind of system that can exhibit mirror properties
or, equivalently, highly directive radiative properties are atoms
chirally coupled to a waveguide [10–12]. Chirality in atom-
waveguide coupling is an effect associated with a broken
symmetry of emission of photons from the atoms into the
right- and left-propagating modes of the waveguide. As a
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result, the emitted photons are channeled into one of the two
directions of the waveguide. It has been shown that the chiral
property of the emission can enhance entanglement between
two distant atoms [13]. Directive radiative properties have
also been demonstrated for a single atom trapped in front of
a distant dielectric mirror [14]. It has been demonstrated both
theoretically and experimentally that the atom can behave as an
optical mirror effectively forming, together with the dielectric
mirror, a Fabry-Pérot cavity. Related studies have shown that
an atom mirror not only can serve as a single mirror for a
one-dimensional cavity, but also can be arranged to behave
like a high-finesse cavity [15,16].

In the course of previous work on directional emission the
underlying atoms independently couple to a one-dimensional
field of a waveguide, or nanocavity, or nanofiber. Although
systems involving independent atoms exhibit interesting di-
rectional properties, there can be similar features created by
an open system of atoms in which the atoms are coupled
to a common three-dimensional field. It was Dicke [17] who
pointed out that a collection of a large number of atoms coupled
to a common electromagnetic field can radiate collectively
such that the spontaneous radiation can be enhanced in
certain directions. Since then there have been many studies
of the collective radiative properties of multiatom systems
demonstrating the dependence of the emitted radiation on the
number of atoms and the geometry of the emitting system
[18–30].

In this paper, we investigate the radiative properties of an
open system of a line of a few atoms and demonstrate that the
dipole-dipole interaction between atoms may lead to a collec-
tive ordering of the emission along some specific directions.
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To determine the directions of the emission, we introduce the
directivity function of the emitted radiation field and study
the dependence of the function on the distance between atoms.
We consider directions which lie on a surface perpendicular to
the direction of the atomic dipole moments, the horizontal
pattern of the radiation field, and analyze the directional
properties of the emitted field for two configurations of the
atomic chains, one mimicking an atom in front of a mirror
and the other an atom inside a cavity. In the first, we choose
the left-hand-side atom in the chain as a probe atom and
examine conditions under which the system may radiate only
to those modes whose propagation vectors lie within a small
solid angle about the interatomic axis and oriented in one
of the two directions of the interatomic axis, either the right
(forward) or the left (backward) direction. Such a system can
be regarded as an atom in front of a perfectly reflecting or
perfectly transmitting atomic mirror. In the second physical
arrangement, we choose the middle atom in the chain as a
probe atom and examine conditions under which the system
may radiate only to those modes whose propagation vectors
lie within a small solid angle about the interatomic axis. Such
a scheme can be regarded as an atom inside a single-mode
cavity.

We find that there is a threshold for the interatomic distances
above which a highly directional emission can be achieved.
Below the threshold the emission in the horizontal plane
is isotropic. However, we find a population trapped in one
of the mirror atoms. For the cavitylike arrangement, the
directivity function depends strongly on the number of atoms
contained in the chain and the distance between them. For
a three-atom chain and atomic distances above the threshold,
two radiative modes of different spatial directions are available
for the emission, one in the direction parallel and the other
in the direction normal to the interatomic axis. Below the
threshold, the system can radiate only to the mode normal
to the interatomic axis. For a five-atom chain and distances
above the threshold, only one mode is available for emission,
either normal or parallel to the atomic line. Thus, there exist
ranges of the interatomic distances under which the atomic
chain exhibits features characteristic of a single-mode cavity.

The paper is organized as follows. In Sec. II, we describe the
master equation of the density operator of the system and the
mathematical approach used in the evaluation of the density
matrix elements. We introduce the definitions of the directivity
function and reflection and transmission coefficients of the
radiation field emitted by a chain of atoms. In Sec. III,
we examine the conditions for the mirror-type behavior of
short chains composed of three and five atoms. We observe
the transient transfer of the population between the atoms
and the transient directivity function for an initial condition
in which the probe atom is prepared in its excited state.
Then we examine the directivity function of the stationary
field when the probe atom is driven by a continuous-wave
(cw) laser field. Section IV is devoted to the problem of
a cavity formation with atomic mirrors. We are particularly
interested in the possibility of the system’s concentrating the
radiation along the interatomic axis and thus behaving as
a single-mode cavity. Polar diagrams are given to illustrate
the mirror- and cavitylike features of atomic chains and to
show how the features are sensitive to the distances between

atoms. The results are summarized in Sec. V. The paper
concludes with two appendixes. Appendix A gives details of
the derivation of the atomic correlation functions in terms of
the populations of the collective states of a three-atom system
and the coherences among them. The equations of motion for
the density matrix elements in a single-photon approximation
suitable for numerical evaluation of the radiation intensity are
listed in Appendix B.

II. RADIATIVE PROPERTIES OF A CHAIN OF ATOMS

We consider a system composed of N identical two-level
atoms located at fixed positions �ri and coupled to three-
dimensional electromagnetic field whose modes are initially
in a vacuum state |{0}〉. Each atom has an excited state |ei〉 and
a ground state |gi〉 separated by energy �ω0 and connected by
a transition dipole moment �μ.

The atoms are arranged in a line, and we consider two
cases shown in Fig. 1. In the first case, illustrated in Fig. 1(a),
we assume that the left-side atom, chosen as a “probe” atom
is separated from its next neighbor by a distance r0 which
is larger than the separation rm between the remaining N − 1
atoms, r0 > rm. If the probe atom is excited into its upper level,
it will spontaneously decay into the ground state, emitting a
radiation field that can be absorbed by the chain of closely
located atoms and then re-emitted by the atoms towards the
probe atom. Thus, the chain of closely located atoms can act
as a mirror, directing the emitted radiation into a cone about
the interatomic axis and turned towards the probe atom. In the
second case, illustrated in Fig. 1(b), we assume that the middle
atom in the chain is separated from its adjacent neighbors by
a distance r0 which is much larger than the separation rm

between the remaining atoms. This arrangement may model
the situation of an atom located inside a cavity whose mirrors
are formed by two chains of equally distant atoms.

In practice this scheme could be realized by extending the
recently demonstrated scheme involving two superconducting
qubits coupled to a one-dimensional field [31–33] to the case
of three or five qubits coupled to a two-dimensional field. In
the experiment in Ref. [33], effective separations of λ and 3λ/4

FIG. 1. Two geometrical arrangements of atoms in a line to
demonstrate that a chain of closely located and interacting atoms
can act as an atomic mirror or cavity. (a) The left-side atom in the
chain, specially chosen as a “probe” atom, is located at distance r0

from its nearest neighbor, with the remaining atoms equally separated
from each other by a distance rm < r0. (b) The middle atom in the
chain, chosen as a probe atom, is separated from its next-nearest
neighbors by r0, while the remaining atoms are equally separated by
a distance rm < r0.
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were achieved between the fixed qubits by changing the qubit
transition frequencies.

A. Master equation

When the system is coupled to a reservoir the state of the
total system, the chain of atoms plus the reservoir field, is
described by the density operator ρT . The reduced density
operator describing the properties of only the chain of atoms is
obtained by tracing the total density operator ρT over the states
of the reservoir, ρ = TrRρT . The master equation describing
the time evolution of the reduced density operator has the form
[34–36]

∂ρ

∂t
= − i

�
[H0 + HL + Hdd,ρ]

− 1

2

N∑
i=1

γ ([S+
i ,S−

i ρ] + H.c.)

− 1

2

N∑
i �=j=1

γij ([S+
i ,S−

j ρ] + H.c.), (1)

where γ is the spontaneous emission damping rate of the
individual atoms, equal to the Einstein A coefficient, S+

i =
|ei〉〈gi | and S−

i = |gi〉〈ei | are the dipole raising and lowering
operators of atom i, and γij is the collective damping rate,

γij = 3

2
γ

{
[1 − (μ̂ · r̂ij )2]

sin ηij

ηij

+ [1 − 3(μ̂ · r̂ij )2]

(
cos ηij

η2
ij

− sin ηij

η3
ij

)}
, (2)

with

ηij = k rij = 2πrij /λ, �rij = rij r̂ij = �rj − �ri, (3)

in which rij is the distance between atom i and atom j , r̂ij

is the unit vector in the direction �rij , and λ is the resonant
wavelength.

The master equation, (1), describes the atomic dynamics un-
der the Born-Markov and rotating-wave approximations [37];
H0 is the Hamiltonian describing the free energy of the atoms,

H0 = �

N∑
i=1

ω0S
+
i S−

i , (4)

and HL is the Hamiltonian describing the interaction of the
probe atom with an external driving field of frequency ωL,

HL = 1
2 �	0

(
S+

1 e−iωLt + S−
1 eiωLt

)
, (5)

where 	0 is the Rabi frequency of the driving field, and Hdd

is the Hamiltonian describing the dipole-dipole interaction
between the atoms,

Hdd = �

N∑
i �=j=1

	ij (S+
i S−

j + S+
j S−

i ), (6)

where 	ij is the dipole-dipole interaction strength between
atom i and atom j , defined by

	ij = 3

4
γ

{
[1 − 3(μ̂ · r̂ij )2]

(
sin ηij

η2
ij

+ cos ηij

η3
ij

)

− [1 − (μ̂ · r̂ij )2]
cos ηij

ηij

}
. (7)

The parameters γij and 	ij depend on the separation
between atoms. For large separations, ηij � 1, and both
coupling parameters approach 0. For ηij � 1 the parameter
γij decreases to γ , while 	ij becomes large and strongly
dependent on rij . It is well known that 	ij plays an important
role in the collective behavior of multiatom systems and we
shall see that it has an important effect on the distribution
of the radiation field emitted by a chain of atoms. The
calculation of the equations of motion for atomic populations
and coherences for a time-dependent state vector is outlined
briefly in Appendix B.

B. Directivity function and reflection and transmission
coefficients

The intensity of the radiation field �E( �R,t) emitted at time
t in the direction specified by the polar angle θ between the
direction of observation �R and the direction of the atomic axis
�rij and the azimuthal angle φ between �R and the direction of the
atomic transition dipole moment �μi can be expressed in terms
of the correlation functions of the atomic dipole operators as
[18]

I (θ,φ,t) = R2c

2πω0
〈 �E(−)( �R,t) · �E(+)( �R,t)〉

= u(φ)
N∑

i,j=1

γ 〈S+
i (t)S−

j (t)〉eikrij cos θ , (8)

where u(φ) = (3/8π ) sin2 φ is the radiation pattern of a single
atomic dipole. In Eq. (8), we have introduced the factor
(R2c/2πω0) so that I (θ,φ,t)d	Rdt is now the probability
of finding a photon inside the solid angle d	R around the
direction �R in the time interval dt at time t in the far-field zone
(R � rij ) of the radiation emitted by the atoms.

We may introduce the directivity function, determining
how effective the line of atoms is in converging the emitted
radiation into a small solid angle defined by angles θ and φ.
The directivity function D(θ,φ,t) at time t is defined as the
ratio of the radiation intensity I (θ,φ,t) emitted in the direction
(θ,φ) divided by the total radiation intensity I (t),

D(θ,φ,t) = u(φ)

I (t)

N∑
i,j=1

γ 〈S+
i (t)S−

j (t)〉eikrij cos θ , (9)

where the total radiation intensity I (t) at time t is obtained by
integrating I (θ,φ,t) over the solid angle d	R ,

I (t) =
∫

I (θ,φ,t)d	R =
N∑

i,j=1

γij 〈S+
i (t)S−

j (t)〉, (10)

in which γii = γjj = γ and γij (i �= j ) is given in Eq. (2). The
directivity function is a measure of how effective the system
is in concentrating the radiation into a given direction. It is
equivalent to the probability density of detecting a fluorescence
photon traveling in the direction specified by θ and φ.

Our main interest is in situations where a chain of atoms
works as an atomic mirror. Therefore, an important factor is the
ability of a line of atoms to concentrate the emitted radiation
in one of the two directions along the interatomic axis, either
θ = 0 or θ = π . Since the radiation of an atomic dipole is

053831-3



QURRAT-UL-AIN GULFAM AND ZBIGNIEW FICEK PHYSICAL REVIEW A 94, 053831 (2016)

FIG. 2. Geometric arrangement of the atomic dipole moments
�μ and a photodetector P to monitor the angular distribution of the
emitted field. The photodetector detects the emitted field as a function
of θ in the plane normal to the direction of the atomic dipole moments
( �R ⊥ �μ), the horizontal radiation pattern.

most intense in the direction φ = π/2, we consider the angular
distribution of the emitted field along a two-dimensional
surface normal to the direction of the atomic dipole moments,
as illustrated in Fig. 2. In the literature the surface is called the
horizontal radiation pattern.

Following the arrangement illustrated in Fig. 2, D(θ =
π,π/2,t) describes the radiation field emitted along the atomic
axis in the direction towards the probe atom, the “backward”
direction. Thus, it can be interpreted as the field reflected
from the atomic mirror. On the other hand, the directivity
D(θ = 0,π/2,t) describes the radiation field emitted along
the atomic axis in the direction away from the probe atom,
the “forward” direction. Therefore, it can be interpreted as the
field transmitted through the atomic mirror.

Thus, we may define the reflection coefficient of the chain
of atoms as the ratio of the radiation scattered in the direction
θ = π to the total radiation scattered along the atomic axis,

R(t) = I (θ = π,π/2,t)

I (θ = 0,π/2,t) + I (θ = π,π/2,t)
. (11)

The reflection coefficient is a measure of how effective the
atoms are in concentrating the radiation in the backward
direction along the atomic axis, i.e., about the direction θ = π .
The coefficient R(t) is equivalent to the probability density
of detecting a fluorescence photon traveling in the direction
θ = π .

Similarly, we can define the transmission coefficient of the
chain as the ratio of the radiation intensity emitted in the
direction θ = 0 to the total radiation scattered along the atomic
axis,

T (t) = I (θ = 0,π/2,t)

I (θ = 0,π/2,t) + I (θ = π,π/2,t)
. (12)

Obviously, T (t) = 1 corresponds to the complete forward
emission, whereas R(t) = 1 indicates the complete backward
emission along the atomic axis.

C. Directional properties of the radiation field

We may determine the general conditions under which the
horizontal pattern of N atoms would be highly asymmetric,
with its maximum concentrated along the atomic axis. Expres-
sion (8) can be written as the sum of N terms,

I (θ,φ,t) =
N∑

i<j=1

Iij (θ,φ,t), (13)

where

Iij (θ,φ,t) = u(φ)γ

{ 〈S+
i (t)S−

i (t)〉 + 〈S+
j (t)S−

j (t)〉
N − 1

+ 2Re{〈S+
i (t)S−

j (t)〉} cos(krij cos θ )

− 2Im{〈S+
i (t)S−

j (t)〉} sin(krij cos θ )

}
. (14)

We see that the contribution of the atoms to the intensity occurs
in pairs of different combinations of the atoms. Therefore, the
system of radiating atoms can be considered as being made up
of a number of short two-atom elements and the total intensity
is obtained by summing up the intensities of the fields produced
by all the elements.

If we wish a short chain of atoms to work like a mirror with a
large convergence and reflectivity of the radiation emitted by a
probe atom located at either end of the chain, we should arrange
the atoms such that the total field emitted (scattered) can be
highly focused along the interatomic axis with a pronounced
maximum in the backward direction θ = π and a minimum,
preferably zero emission, in the forward direction θ = 0 with
respect to the line center. In order to find the conditions
for concentrating the radiation in the direction θ = π , let us
examine the intensity, (14), in more detail.

From Eq. (14) it is seen that there are three terms
determining the radiation pattern. The first term in Eq. (14)
is just the sum of the populations of the two atoms involved,
the probabilities that the atoms are in their excited states. This
term is independent of θ and therefore contributes uniformly
in all directions. The second term depends on θ and varies
as cos (krij cos θ ), with an amplitude equal to the real part
of atomic correlations. Consequently, this term can contribute
to the radiation pattern only if the correlations between the
atoms have nonzero real part, Re{〈S+

i S−
j 〉} �= 0. However, the

cosine term cos (krij cos θ ) attains the maximum value (=1)
for directions determined by krij cos θ = 0,2π . Therefore, it
would produce intensity maxima in the θ = π/2,3π/2 and
θ = arccos(λ/rij ) directions. As such, this term is not effective
in concentrating the radiation along the interatomic axis. This
simple argument suggests that the atoms should be arranged
so that the cosine term vanishes. This can be achieved when
the correlations between the atoms have zero real part.

The third term contributing to the radiation intensity, (14),
varies as sin (krij cos θ ) and hence can affect the radiation
intensity in a decidedly different way than the cosine term.
An important difference is that sin (krij cos θ ) vanishes for
θ = π/2 and 3π/2. This means that the sine term does not
contribute to the radiation emitted in the direction perpen-
dicular to the interatomic axis. Consequently, an appreciable
concentration of the radiation can be achieved along the
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interatomic axis by choosing proper distances rij between
the atoms at which sin (krij ) = ±1. Furthermore, since the
sine is an odd function, it follows that sin (krij cos 0◦) =
− sin (krij cos 180◦), which means that, independent of the
separation between the atoms, a maximum in the backward
direction is always accompanied by a minimum in the forward
direction.

Obviously, the sine term can influence the angular distribu-
tion of the radiation intensity only if the atomic correlations
have nonzero imaginary parts, Im{〈S+

i S−
j 〉} �= 0. In addition,

the sign of the imaginary part of the atomic correlations
dictates the choice of distances between the atoms at which
the emission will be enhanced in the backward direction
(high reflection) and reduced in the forward direction (low
transmission). Thus, if Im{〈S+

i S−
j 〉} > 0, the sine term will

display a maximum in the backward direction for atomic
distances at which sin(krij ) = 1. This condition is satisfied
when the atomic separations are

rij = 1
4 (2n + 1)λ, n ∈ {0,2,4, . . .}. (15)

However, if the coefficient of the sine term is negative,
Im{〈S+

i S−
j 〉} < 0, a different choice of distances is required

at which sin(krij ) = −1. This condition is satisfied when

rij = 3
4 (2n + 1)λ, n ∈ {0,2,4, . . .}. (16)

We see that there is a lower bound imposed on the distances
between the atoms, either rij = λ/4 or rij = 3λ/4, above
which a one-sided emission along the interatomic axis can be
achieved, i.e., a maximum of radiation in the direction θ = 0.
For distances shorter than the lower bound, the one-sided
emission is expected to be significantly reduced.

In the following, we limit ourselves to short chains
containing only N = 3 and N = 5 atoms. Also in the absence
of the driving field, 	0 = 0, the N = 3 case can be solved
in closed form yielding simple mathematical expressions.
In Appendix A, we outline the calculation of the atomic
correlation functions in the collective state basis.

D. Mathematical approach

To study the radiative behavior of a chain of interacting
atoms, we require the time evolution of the populations of
atoms and the coherences between them. These are given
by the diagonal and off-diagonal density matrix elements,
respectively. If the space of the atomic system is spanned
in the basis of the eigenstates of the free Hamiltonian H0, we
readily find that the basis is composed of 2N state vectors, i.e.,
for a chain composed of N = 3 atoms, the basis is composed
of 8 vectors |i1j2k3〉, whereas for N = 5 atoms it is composed
of 64 vectors |i1j2k3l4m5〉, {i,j,k,l,m} ∈ {g,e}.

Hence, in the simplest case of N = 3 atoms, the master
equation, (1), provides us with a system of 64 coupled linear
equations to be solved, in principle, a 63 × 63 matrix to be
diagonalized. For N = 5 there are a total of 4096 coupled
linear equations whose solution requires the diagonalization
of a 4095 × 4095 matrix.

If initially the probe atom is prepared in a single excitation
state or is driven by a weak laser field, the space of the atomic
system can be truncated to the ground and single excitation
states only. The truncated basis of N = 3 and N = 5 atoms

is spanned by four and six state vectors, respectively. This
significantly reduces the computation time. For example, the
case of N = 3 requires 16 × 16, whereas the case of N = 5
requires a 64 × 64 matrix to be diagonalized.

To get solutions for the density matrix elements, in both
the truncated and the complete basis, the following approach
is taken. From the master equation, (1), we find equations of
motion for the density matrix elements, which can be written
in matrix form as

�̇X(t) = A �X(t) + �R, (17)

where �X(t) is a column vector composed of the density
matrix elements, �R is a column vector composed of the
inhomogeneous terms, and A is a matrix of the coefficients
appearing in the equations of motion of the density matrix
elements.

Direct integration of Eq. (17) leads to the formal solution
for �X(t),

�X(t) = �X(t0)eAt − (1 − eAt )A−1 �R, (18)

where t0 is the initial time. Because the determinant of matrix
A is different from 0, there exists a complex invertible matrix
U which diagonalizes A, and w = U−1AU is the diagonal
matrix of complex eigenvalues. By introducing new vectors,
�Y = U−1 �X and �T = U−1 �R, we can rewrite (18) as

�Y (t) = �Y (t0)ewt − (1 − ewt )w−1 �T (19)

or, in component form,

Yn(t) = Yn(t0)ewnt −
s∑

m=1

(w−1)nm(1 − ewmt )Tm, (20)

in which s = 63 for the case of N = 3 atoms and s =
4095 for N = 5 atoms in the complete basis. To obtain
solutions for Xn(t) we must determine the eigenvalues wn and
eigenvectors Yn(t), which are readily evaluated by a numerical
diagonalization of matrix A.

The steady-state values of the density matrix elements can
be found from Eq. (20) by taking t → ∞ or, more directly, by
setting the left-hand side of Eq. (17) equal to 0, and then

�X(∞) = −A−1 �R (21)

or, in component form,

Xn(∞) = −
s∑

m=1

(A−1)nmRm. (22)

In what follows, we use solutions (20) and (22) to illustrate
the radiative properties of the atomic chains. In particular,
we calculate the transient populations of the atoms and the
steady-state directivity function.

III. RADIATING ATOM IN FRONT OF
AN ATOMIC MIRROR

Consider first the configuration illustrated in Fig. 1(a):
a single atom is positioned at a distance r0 from a finite-
size chain of closely located atoms. This arrangement can
constitute a radiating atom in front of an atomic mirror. In
order to find the mirrorlike characteristics of the chain that
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can be inferred from the radiative properties of the system, we
examine the directivity function of the radiation field emitted
by the system. The directivity function, which is determined
by the angular distribution of the radiation intensity, Eq. (13),
depends on temporal and spatial factors, the evolution time of
the system and the separation between atoms. It is clear from
Eq. (13) that in general the temporal and spatial factors cannot
be separated. The angular distribution of the radiation field at
a given time can be different for different separations between
atoms. Moreover, the transient radiation intensity is a sensitive
function of the initial atomic conditions. Even at the initial
time t = 0 the angular distribution of the radiation intensity
can depend on the separation rij if the system was prepared
in a state with nonzero interatomic correlations, i.e., either
Re{〈S+

i S−
j 〉} or Im{〈S+

i S−
j 〉} different from 0. In order to study

the angular distribution of the radiation field, it is important
to understand the radiative behavior of individual atoms in
the chain. Therefore, we first consider the time evolution
of the populations of atoms. Following this discussion, we
display the variation of the directivity function with time for
different distances between atoms. We assume that the probe
atom is initially excited and separated from the front atom of
the “mirror,” its nearest neighbor, at a distance much longer
than the separation between the mirror atoms. The method of
preparing the probe atom in the excited state does not concern
us, but it might be done with a short laser pulse, for example.

A. Transient transfer of the population

Our interest is in the time evolution of the directivity
function of the emitted field for an initially excited probe atom,
the case illustrated in Fig. 1(a). In order to study this evolution,
we first look at the time evolution of the populations of atoms
for chains composed of N = 3 and N = 5 atoms. The aim is to
first determine and then optimize the conditions which allow
the radiation emitted by the probe atom not only to be emitted
back (reflected) to it but also to achieve a strong convergence
of the radiated field along the interatomic axis.

We evaluate the transient populations of the atoms assuming
there is no driving field (	0 = 0) and that initially the probe
atom was in its excited state. The corresponding results for the
time evolution of the atomic populations for different distances
between atoms are presented in Figs. 3 and 4.

Figure 3 shows the transient transfer of the population
between N = 3 atoms: the initially excited probe atom and
a group of two atoms forming a mirror. The populations are
computed for several sets of distances (r0,rm) between atoms.
For distances r0,rm > λ/5 the initial population of the probe
atom decays exponentially in time, whereas the populations
of mirror atoms 2 and 3 increase with small oscillations.
However, there is no tendency of the mirror atoms to transfer
their populations back to the probe atom. A small oscillatory
behavior of the population ρ11(t) can be seen for short times,
t < 5/γ , but it is not periodic.

Periodic oscillatory behavior is observed for the popu-
lations of atoms 2 and 3. The mirror atoms periodically
exchange their populations without transferring them to the
probe atom. The reason is that the distance rm is much
smaller than r0, resulting in a stronger dipole-dipole interaction
between the mirror atoms, 	23 � 	12. For shorter distances,
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FIG. 3. Time evolution of the atomic populations ρ11(t) (dashed
blue line), ρ22(t) (solid red line), and ρ33(t) (dotted green line) plotted
for the case of an initially excited probe atom, 1, located in front of
a line of two atoms, 2 and 3, and several sets of distances between
atoms: (a) (r0,rm) ∈ (λ/2,λ/4), (b) (r0,rm) ∈ (λ/4,λ/6), (c) (r0,rm) ∈
(λ/3,λ/5), and (d) (r0,rm) ∈ (λ/8,λ/9).

the population of the probe atom begins to show periodic
oscillations, with the population actually oscillating between
the probe atom and only the rear atom of the mirror. Except at
very short times, the population of the middle atom, 2, remains
almost constant during the evolution of the system. Note that
the transfer of the population between atoms is not complete
since the populations remain nonzero, ρii(t) �= 0, for all t > 0.
It is interesting that atom 2, the front atom of the mirror, appears
as a mediator in the population exchange between the probe
atom and the rear atom of the mirror. In other words, the
front atom of the mirror dictates the direction of the emission.
Despite its ability to emit in any spatial direction, the probe
atom “prefers” to radiate towards the atomic mirror, and vice
versa, the mirror atoms prefer to radiate towards the probe
atom.
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FIG. 4. Time evolution of the atomic populations, ρ11 (solid
magenta line), ρ22 (dashed-dotted black line), ρ33 (dotted red line),
ρ44 (solid green line), and ρ55 (dashed blue line) plotted for the case
of an initially excited probe atom, 1, located in front of a line of
four atoms and several sets of distances between atoms: (a) (r0,rm) ∈
(λ/2,λ/4), (b) (r0,rm) ∈ (λ/4,λ/6), (c) (r0,rm) ∈ (λ/3,λ/5), and (d)
(r0,rm) ∈ (λ/8,λ/9).
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We now consider a chain containing N = 5 atoms, with the
probe atom initially excited and located at a distance r0 from
the front of a line of four equally separated atoms. The transient
transfer of the population between atoms for several sets of
distances, (r0,rm), is shown in Fig. 4. For large distances the
situation is similar to that of three atoms; the population rapidly
escapes from the system, leaving the atoms unpopulated over a
short evolution time. For small distances, we observe periodic
oscillations of the populations with the periodicity, as before
for three atoms, determined by the dipole-dipole interaction
strength. However, unlike the three-atom case, the population
can be completely transferred from the mirror atoms back to
the probe atom such that the mirror atoms are unpopulated
at times when the population of the probe atom is maximal.
This is a substantial difference compared to the case of N = 3
atoms, where a part of the population was trapped by one
of the mirror atoms. Clearly, longer chains are more effective
in the complete transfer of an excitation from the probe atom
to the mirror atoms, and vice versa.

The results presented in Figs. 3 and 4 show that the fast
periodic exchange of excitation between atoms is not confined
to times short compared with the relaxation time γ −1, and
its magnitude increases with the strength of the dipole-dipole
interaction. For a strong coupling between atoms, the initial
population disappears in a time longer than the decay time of
the atoms.

B. Transient directivity function

The periodic exchange of the populations between atoms,
in particular, between atoms forming an atomic mirror, can
lead to the emission of atoms into certain preferred directions.
In order to demonstrate this behavior, we examine the time
variation of the directivity function D(θ,π/2,t) of the field
radiated by the group of mirror atoms only. Of course it might
be argued that it would be hard for experiments to detect the
field radiated from a fraction of atoms, but we would like to
see under what conditions the field radiated by the group of
mirror atoms could be concentrated in the preferred direction
along the interatomic axis, either θ = 0 or θ = π . With a
high concentration of the radiated field in a small solid angle
centered around θ = 0, the atoms can be regarded as a highly
reflecting mirror scattering the field back towards the probe
atom.

The directionality function of the field emitted by two
(mirror) atoms and detected on a sphere around the line of
three atoms is shown in Fig. 5. We keep the distance of the
probe atom from the front of the mirror atoms at r0 = λ/2
and consider the variation of D(θ,π/2,t) with the distance
between the mirror atoms at two times. It is seen that the
emission is concentrated along the interatomic axis. For a
distance between the mirror atoms rm = λ/4, the directivity
function is significantly enhanced in one direction, and the
emission is almost one-sided in either θ = 0 or θ = π . The
maximum of the directivity function oscillates in time along
the inter atomic axis. The oscillation of the directivity results
from the oscillation of the population between mirror atoms,
as shown in Fig. 3. The beam width or, equivalently, the solid
angle inside which the emitted field is concentrated remains
almost constant.
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FIG. 5. Polar diagram of the directivity function D(θ,π/2,t)
describing the concentration of the field emitted by two atoms forming
a mirror when an initially excited probe atom is at distance r0 = λ/2
from the front of the mirror atoms. Distances between mirror atoms
are (a) rm = λ/3, (b) rm = λ/4, (c) rm = λ/5, and (d) rm = λ/8.
The green (black) curve corresponds to a minimum (maximum) in
ρ11(t). The instants in time for the green and black curves are (a)
t ∈ {3γ −1,4γ −1}, (b) t ∈ {5γ −1,3.3γ −1}, (c) t ∈ {9γ −1,3.6γ −1}, and
(d) t ∈ {9.4γ −1,6γ −1}, respectively.

One can also notice in Fig. 5 that the ability of the coupled
atoms to concentrate the radiation in one direction decreases
with decreasing distance between the atoms. It is clearly
shown that for distances rm � λ/8 the directivity function is
almost symmetrical along the interatomic axis. This result is
consistent with the general property of the radiation pattern
discussed in Sec. II B that there is a minimal value of the
distance between atoms (rm = λ/4) above which the sine term
can be maximal in the θ = 0 direction. For distances smaller
than the minimal value the contribution of the sine term is
necessarily smaller, resulting in a reduction in the ability of
the system to concentrate the emission in one direction.

The one-sided emission and then the reflectivity coefficient
can be enhanced by increasing the number of atoms forming
the atomic mirror. This is demonstrated in Fig. 6, which shows
a polar diagram of the directivity function D(θ,π/2,t) for
the case of four atoms forming the atomic mirror. As above
for three atoms, we keep the probe atom at a fixed distance
from the front of the atomic mirror, r0 = λ/2, and consider
the variation of D(θ,π/2,t) with the distance between mirror
atoms. It can be seen that, similarly to the case of two atoms,
the emission is concentrated mainly along the interatomic
axis. The one-sided emission is significantly enhanced and
persists even for short distances. Small peaks can be seen at
about 2π/3 ◦ and 4π/3 ◦. It is easy to verify that the function
sin (krij cos θ ), when evaluated for rij = 3rm = 3λ/8, corre-
sponding to the distance between the front and the rear atoms of
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FIG. 6. Polar diagram of the directivity function D(θ,π/2,t)
describing the concentration of the field emitted by four atoms
forming a mirror when an initially excited probe atom is at distance
r0 = λ/2 from the front of the mirror atoms. Distances between
mirror atoms are (a) rm = λ/3, (b) rm = λ/4, (c) rm = λ/5, and
(d) rm = λ/8. The green (black) curve corresponds to a minimum
(maximum) in ρ11(t). The instants in time for the green and
black curves are (a) t ∈ {7.76γ −1,3.7γ −1}, (b) t ∈ {6.8γ −1,3.4γ −1},
(c) t ∈ {7γ −1,3.715γ −1}, and (d) t ∈ {7.6γ −1,9.1γ −1}, respectively.

the mirror, attains its maximal value of sin (krij cos θ ) = 1 for
cos θ = 2/3, which corresponds to directions θ ≈ 130 ◦.

C. Directivity function of the stationary field

In practice a photodetector located at some position �R in the
far-field zone of the radiation field emitted by the atoms would
detect the field emitted by the entire set of atoms rather than a
fraction of selected atoms only. This is a consequence of the
fact that the fields from the probe atom and the mirror atoms
are unresolved at the detector. Therefore, we now consider the
directivity function of the field radiated by the entire system
of atoms including the field radiated from the probe atom.
Moreover, we assume that initially all atoms were in their
ground states and then the probe atom was exposed to the
incident weak laser light. We look into the radiation pattern of
the emitted field in the steady-state limit, t → ∞, and compute
the directivity function D(θ,π/2) ≡ limt→∞ D(θ,π/2,t) for
equally distant as well as for not equally distant N = 3
and N = 5 atoms. Since the directivity function involves
the contribution from the populations of atoms, significant
directionality can be obtained when the populations are small,
and we assume that the driving field is weak so that the Rabi
frequency 	0 is much smaller than γ . We use the complete
and truncated basis states in the calculations and find that both
cases lead to the same results.
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FIG. 7. Polar diagram of the directivity function D(θ,π/2) of
the stationary field emitted by three atoms in a line. The leftmost
atom in the line, which constitutes a probe atom, is driven by a cw
laser field of Rabi frequency 	0 = 0.02γ . (a) r0 = λ/2,rm = λ/4;
(b) r0 = λ/4,rm = λ/8; r0 = rm = λ/4; and (d) r0 = λ/4,rm = λ/6.

The directivity function for the radiation field emitted by
N = 3 atoms is shown in Fig. 7, where Fig. 7(a) is for distance
r0 = λ/2, while Figs. 7(b)–7(d) are for distance r0 = λ/4. It
is shown that D(θ,π/2) depends crucially on the separation
between atoms. In particular, when the probe atom is separated
from the front of the mirror atoms by r0 = λ/2 the stationary
field radiated by the system is concentrated in directions
θ = π/3 and θ = 5π/3, which depart significantly from the
direction of the interatomic axis. However, for r0 = λ/4 the
emission is concentrated along the interatomic axis.

Figure 8 shows the corresponding situation for the case
of N = 5 atoms. It is shown that in the case of r0 = λ/4,
the radiated field modes available for emission are only those
contained inside a cone centered about the direction θ = π .
Thus, at that particular distance the chain of four undriven
atoms acts as a perfectly reflecting mirror by “pushing” the
radiation in the backward direction. It can be seen that the
optimal conditions for one-sided emission with a maximum
in the direction θ = π are achieved when the probe atom is
separated from the front of the mirror atoms by r0 = λ/4 and
the mirror atoms are themselves separated by rm = λ/6. In
this case, the directivity function is nonzero only in directions
contained inside a cone limited by θ � ±π/3. Thus, the
emission is entirely one-sided, with no radiation in the θ = 0
direction. This means that the transmission coefficient T = 0,
therefore this type of behavior can be regarded as a mirror
type with perfect reflectivity. Of course, the reflectivity is
accompanied by losses in the sense that the radiation is emitted
into a cone of a finite solid angle 2θ determining the beam
width of the radiated field. The solid angle subtended by the
cone shown in Fig. 8(c) is 2θ = 120 ◦.
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FIG. 8. Polar diagram of the directivity function D(θ,π/2) of the
stationary field radiated by a line of five atoms. The leftmost atom in
the line, which constitutes a probe atom, is driven by a cw laser field
of Rabi frequency 	0 = 0.02γ . (a) Atoms are unequally separated
with r0 = λ/2, and rm = λ/4. (b) Atoms are unequally separated
with r0 = λ/4, and rm = λ/8. (c) Atoms are equally separated with
r0 = rm = λ/4. (d) Atoms are unequally separated with r0 = λ/4,
and rm = λ/6.

It was pointed out in [26] that a strong directivity of the
emitted radiation along the interatomic axis can be obtained
in a chain of independent atoms, i.e., in the absence of the
dipole-dipole interaction. However, the one-sided emission
shown in Figs. 8(c) and 8(d) requires a nonzero dipole-dipole
interaction. This is illustrated in Fig. 9, which shows the
directivity function for the same parameters as in Fig. 8(d) but
for independent atoms. Clearly, in the absence of the dipole-
dipole interaction between atoms, the emission is strongly
directional but is symmetrical in the θ = 0 and π directions.

Finally, we briefly comment on the role of quantum
fluctuations in the directivity of the emitted field. If we
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FIG. 9. Polar diagram of the directivity function D(θ,π/2) of the
stationary field radiated by a line of five independent atoms (	ij = 0).
Atoms are unequally separated with r0 = λ/4, and rm = λ/6.

examine the steady-state values of the averages appearing
in Eq. (14), we find that under the weak driving considered
here (	0 = 0.02γ ), the correlation functions factorize, i.e.,
〈S+

i (t)S−
j (t)〉 = 〈S+

i (t)〉〈S−
j (t)〉. We see that under weak exci-

tation the scattered light is coherent in the steady state such
that quantum fluctuations are 0 [38]. In physical terms, the
atomic dipoles behave similarly to classical dipoles.

In summary of this section, we have seen that the directivity
of the emission and the mirrorlike behavior of a line of atoms
depends on the distance between atoms and the nature of the
excitation. At particular distances between atoms, the system
can radiate along the interatomic axis in only one direction,
θ = π , which can be interpreted as a perfect reflection of the
radiation towards the probe atom.

IV. CAVITY FORMATION WITH ATOMIC MIRRORS

We now wish to create a cavity with atomic mirrors.
For this purpose, we place a probe atom between a pair of
finite-size chains of closely located atoms, as illustrated in
Fig. 1(b). These will constitute a radiating atom located inside
a one-dimensional cavity. We determine the parameter ranges
in which the two chains of (N − 1)/2 atoms can act as mirrors
to the field emitted by the probe atom. We examine two systems
containing different numbers of atoms. First, we consider the
simplest system, composed of N = 3 equidistant atoms in
a line. Then we extend our discussion to a larger system,
composed of N = 5 atoms. We illustrate our considerations by
examining the time evolution of the atomic populations. For
the initial conditions we choose the middle (probe) atom to be
in its excited state and the other atoms to be in their ground
states. We also analyze the directivity function for features
indicative of cavity-type modifications of the radiation pattern
of the radiation field.

A. Transient regime

The simplest system which can exhibit features charac-
terizing a cavity formed by atomic mirrors is a chain of
N = 3 equidistant atoms. Let us first examine the process
of population transfer between the middle (probe) atom of
the chain and the side (mirror) atoms. The time evolution of
the populations of the atoms is illustrated in Fig. 10, where
we present the dependence of the population transfer on the
distance between atoms. It is shown that the population is
periodically transferred between the probe atom and the mirror
atoms. The transfer occurs at a frequency determined by the
dipole-dipole coupling 	12 (= 	23) between the probe and the
mirror atoms. The oscillations show the interesting behavior
that the population transfer is not affected (modulated) by the
presence of the dipole-dipole coupling 	13 between the mirror
atoms.

The oscillations are accompanied by a steady decay of the
populations. However, depending on the distance between
atoms, the populations may not decay to 0 but, rather, to
long-lived nonzero values. It is clearly shown in Fig. 10 that for
atomic distances r0 < λ/4, i.e., the spacing between the mirror
atoms 2r0 < λ/2, a significant part of the initial population
remains trapped in the probe atom, from which it decays very
slowly. We thus have a situation similar to that encountered in a
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FIG. 10. Time evolution of the atomic populations, ρ22 (solid
red line), ρ11 (dashed blue line), and ρ33 (dotted green line), plotted
for the cavity-type configuration of three atoms and for different
distances between atoms: (a) r0 = λ/4, (b) r0 = λ/6, (c) r0 = λ/8,
and (d) r0 = λ/16. Initially, the middle (probe) atom, 2, was excited,
|ψ(0)〉 = |2〉.

Fabry-Pérot cavity composed of a pair of parallel-plate mirrors
[39]. In the cavity, the number of modes for interaction with
an atom decreases with decreasing separation L between the
mirrors. For L < λ/2 the number of modes is suppressed,
resulting in the suppression of the radiation from the atom.

Figure 11 illustrates the cavitylike situation involving five
atoms. Here, each of the cavity mirrors is formed with two
atoms. The results are similar to those we encountered for
the case of three atoms (Fig. 10), however, one can see some
interesting differences. Again, trapping of the population for
short distances between atoms is evident. It is noteworthy that
the system has a tendency to trap the population in the mirror
atoms rather than in the probe atom. It can also be noted that
for long distances the probe atom exchanges the population
with its next neighbors, the front atoms, rather than with the
rear atoms forming the mirrors. However, for short distances,
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FIG. 11. Time evolution of the atomic populations plotted for
the cavity-type configuration of a chain of five atoms and different
distances between atoms: (a) rm = λ/2, r0 = λ; (b) rm = λ/4, r0 =
λ/2; (c) rm = λ/6, r0 = λ/3; and (d) rm = λ/16, r0 = λ/8. Initially,
the middle (probe) atom, 3, was excited, |ψ(0)〉 = |3〉. Color and style
specifications as in Fig. 4.
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FIG. 12. Polar diagram of the directivity function D(θ,π/2) of
the stationary field in the cavitylike situation involving three atoms.
The middle atom, which constitutes a probe atom, is driven by a cw
laser field of Rabi frequency 	0 = 0.02γ . The atoms are separated
by (a) r0 = λ/2, (b) r0 = λ/4, (c) r0 = λ/5, and (d) r0 = λ/6.

the probe atom exchanges the population with the rear atoms,
leaving the populations of the front atoms almost constant in
time. Similar effects appeared in the population transfer in the
system composed of a probe atom located at the front of an
atomic mirror (see Sec. III A).

B. Stationary regime

We now turn to the problem of determining the conditions
under which the two chains of atoms can act like cavity mirrors
to select modes centered about the atomic axis as the only
modes available for emission. We assume that the probe atom
is continuously driven by a coherent laser field and consider
the field in the steady-state limit.

Figure 12 illustrates the effect of decreasing distance
between atoms on the directivity function D(θ,π/2) of the sta-
tionary field for the cavitylike situation involving three atoms.
It is shown that the directivity function is very sensitive to
the distances between atoms. For large distances, the system
radiates along the cavity axis as well as in the direction normal
to the cavity axis. When the atomic separations are reduced
below λ/4, which corresponds to a mirror-atom spacing of
less than λ/2, we see a cancellation of the radiation along the
interatomic axis. Thus, the system turns off the radiation along
the cavity axis. It radiates only in the directions normal to the
cavity axis, a property which clearly is not characteristic of a
cavity.

Turning next to the case of five atoms, we plot in Fig. 13 the
directivity function for several distances between atoms. We
see that the directivity function differs significantly from what
we observed for the case of three atoms. Thus, the effect of
additional atoms in forming the cavity mirrors is clearly more
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FIG. 13. Polar diagram of the directivity function D(θ,π/2) of
the stationary field in the cavitylike situation involving five atoms.
The middle atom, which constitutes a probe atom, is driven by a
cw laser field of Rabi frequency 	0 = 0.02γ . (a) The probe atom
is separated from its next-nearest neighbors by r0 = λ/2, while the
atoms which constitute the cavity mirrors are separated by rm = λ/4;
(b) r0 = λ/4 and rm = λ/8; (c) r0 = λ/4 and rm = λ/10; (d) r0 =
λ/8 and rm = λ/8.

pronounced on the directivity function of the stationary field
than on the transient population of the atoms. First, we note
from the figure that there are distances between atoms at which
the directivity function is nonzero only along the interatomic
axis [Figs. 13(b) and 13(c)].

It can also be notied that there is an optimal distance
between the mirror atoms at which the solid angle subtended
by the cone is minimal or, equivalently, the width of the
cavity axial mode is very narrow. As shown in Fig. 13(c),
a reduction in the separation may result in an increase in
the beam width. We also see quite clearly that with larger
separations between mirror atoms, additional directions of
emission appear [Fig. 13(d)].

V. SUMMARY

We have studied the directional properties of the radiation
field emitted by a chain of closely located and dipole-dipole-
interacting two-level atoms. Two geometrical configurations
of atoms in the chain have been studied: a probe atom in front
of a finite-size chain of closely located atoms and a probe
atom between a pair of chains of closely located atoms. We
call the former case an atom in front of an atomic mirror and
the latter an atom inside a cavity where the mirrors are formed
by two chains of atoms. We have found that it is possible
to account for certain mirror- and cavitylike features. We
have examined the conditions for one-sided emission centered
about the interatomic axis and have found a lower bound
for the distances between atoms above which a one-sided

emission along the interatomic axis can be achieved. The
one-sided emission focused into a cone about the interatomic
axis and oriented in the backward direction can be regarded as a
mirror type with perfect reflectivity. For interatomic distances
smaller than the lower bound, a part of the population can be
trapped in the probe atom, indicating that at these distances
there are no radiative modes available for emission. This is
a situation similar to what one encounters in a Fabry-Pérot
cavity composed of a pair of parallel-plate mirrors [39].

Polar diagrams have been presented showing the variation
of the directivity function of the time-dependent as well as the
stationary fields with various separations between atoms. We
have found that the directional properties of the radiation field
are generally more clearly manifested in the stationary field
when the probe atom is continuously driven by a coherent laser
field.

The control of directionality of photon emission could have
promising applications in quantum information processing in
realizing a directional quantum network. For example, the
strong focusing of the radiation along the interatomic axis and
the mirrorlike behavior reported here would be of great interest
in the realization of a one-dimensional quantum network
[4,5,9]. It could also be used as an optical reflector or an optical
mirror to create, together with a distant dielectric mirror, a
Fabry-Pérot cavity [14].
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APPENDIX A: ATOMIC CORRELATION FUNCTIONS
IN THE COLLECTIVE-STATE BASIS

The properties of the atomic correlation functions can be
studied in terms of the density matrix elements of the operator
ρ written in the basis of the free Hamiltonian H0 excluding the
contribution of the driving field. In the absence of the driving
field (	0 = 0) the eigenstates of the free Hamiltonian H0 and
their energies are

|1〉 = |g1〉|g2〉|g3〉, E1 = 0,

|2〉 = |g1〉|g2〉|e3〉, E2 = �ω0,

|3〉 = |g1〉|e2〉|g3〉, E3 = �ω0,

|4〉 = |e1〉|g2〉|g3〉, E4 = �ω0,

|5〉 = |g1〉|e2〉|e3〉, E5 = 2�ω0,

|6〉 = |e1〉|g2〉|e3〉, E6 = 2�ω0,

|7〉 = |e1〉|e2〉|g3〉, E7 = 2�ω0,

|8〉 = |e1〉|e2〉|e3〉, E8 = 3�ω0. (A1)

The natural treatment for interacting atoms is the analysis in
the basis of the eigenstates of the Hamiltonian H0 + Hdd , the
so-called collective states, which can be expressed in terms
of the bare atomic states. The Hamiltonian H0 + Hdd ≡ H̃
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written in the basis of states (A1) has a matrix form,

H̃ = �

⎛
⎜⎝

0 0 0 0
0 ω0I + M1 0 0
0 0 2ω0I + M2 0
0 0 0 3ω0

⎞
⎟⎠, (A2)

where

M1 =
⎛
⎝ 0 	23 	13

	23 0 	12

	13 	12 0

⎞
⎠,

(A3)

M2 =
⎛
⎝ 0 	12 	13

	12 0 	23

	13 	23 0

⎞
⎠,

and I is the 3 × 3 unit matrix. Matrix (A3) is block diagonal,
composed of two one-dimensional blocks and two 3 × 3
blocks, M1 and M2. Thus, the diagonalization of the 8 × 8
matrix, (A3), reduces to a diagonalization of matrices M1

and M2. In fact, it is enough to diagonalize matrix M1. The
eigenvalues and eigenvectors of matrix M2 are then obtained
by replacing ω0 → 2ω0 and interchanging 	12 ↔ 	23.

Since 	ij is significant for atomic separations rij � λ/4,
we have that at distances r13 > λ/2 we can put 	13 = 0 in
matrices M1 and M2. In this case, a substantial simplification
arises in the diagonalization of the matrix ω0I + M1, leading
to the eigenvalues

z2 = ω0, z3 = ω0 + 	, z4 = ω0 − 	, (A4)

where 	 =
√

	2
12 + 	2

23.
For the eigenvalue z2, the corresponding eigenstate is

|
2〉 = − sin ϕ|2〉 + cos ϕ|4〉, (A5)

where sin ϕ = 	12/	 and cos ϕ = 	23/	. For the eigenval-
ues z3 and z4 the corresponding eigenstates are

|
3〉 = 1√
2

(|s〉 + |3〉), z3 = ω0 + 	,

(A6)

|
4〉 = 1√
2

(−|s〉 + |3〉), z4 = ω0 − 	,

where

|s〉 = cos ϕ|2〉 + sin ϕ|4〉. (A7)

The eigenvalues and eigenvectors of matrix M2 are obtained
by replacing ω0 → 2ω0 and interchanging 	12 ↔ 	23 in
Eqs. (A4)–(A6). Hence, the eigenstates of matrix M2 and the
corresponding energies are

|
5〉 = − cos ϕ|5〉 + sin ϕ|7〉, z5 = 2ω0,

|
6〉 = 1√
2

(|s ′〉 + |6〉), z6 = 2ω0 + 	, (A8)

|
7〉 = 1√
2

(−|s ′〉 + |6〉), z7 = 2ω0 − 	,

where

|s ′〉 = sin ϕ|5〉 + cos ϕ|7〉. (A9)

Having the collective states available, call them
|
1〉,|
2〉, . . . |
8〉, we can express the atomic correlation

functions 〈S+
i S−

j 〉 in terms of the density matrix elements in
the basis of the |
i〉 states. For example,

〈S+
1 S−

2 〉 = Tr{S+
1 S−

2 ρ}

= Tr

⎧⎨
⎩

8∑
i,j=1

ρijS
+
1 S−

2 |
i〉〈
j |
⎫⎬
⎭. (A10)

Thus, it requires calculation of the result of S+
1 S−

2 |
i〉 before
application of the trace. The required products of the atomic
operators are

S+
1 S−

1 + S+
2 S−

2 + S+
3 S−

3

= 3|8〉〈8| + 2|7〉〈7| + 2|6〉〈6|
+ 2|5〉〈5| + |4〉〈4| + |3〉〈3| + |2〉〈2|,

S+
1 S−

2 + S+
2 S−

1 = |6〉〈5| + |5〉〈6| + |4〉〈3| + |3〉〈4|,
S+

1 S−
2 − S+

2 S−
1 = |6〉〈5| − |5〉〈6| + |4〉〈3| − |3〉〈4|.

(A11)

We express the bare atomic states in terms of two indepen-
dent sets of collective states,

|1〉 = |
1〉,
|2〉 = − sin ϕ|
2〉 + cos ϕ√

2
(|
3〉 − |
4〉),

|3〉 = 1√
2

(|
3〉 + |
4〉),

|4〉 = cos ϕ|
2〉 + sin ϕ√
2

(|
3〉 − |
4〉) (A12)

and

|5〉 = − cos ϕ|
5〉 + sin ϕ√
2

(|
6〉 − |
7〉),

|6〉 = 1√
2

(|
6〉 + |
7〉),

|7〉 = sin ϕ|
5〉 + cos ϕ√
2

(|
6〉 − |
7〉),

|8〉 = |
8〉. (A13)

Hence

S+
1 S−

1 + S+
2 S−

2

= P22 cos2 ϕ + 1

2
(1 + sin2 ϕ)(P33 + P44)

+ Re

[
P34 cos2 ϕ + sin 2ϕ√

2
(P23 − P24)

]
,

S+
1 S−

2 + S+
2 S−

1

= (P33 − P44 + P66 − P77) sin ϕ

+
√

2 Re[P23 + P24 − P56 − P57] cos ϕ,

S+
1 S−

2 − S+
2 S−

1

= 2 Im[P43 + P76] sin ϕ +
√

2 Im[P56 + P57

+P32 + P42] cos ϕ, (A14)

where Pij = |
i〉〈
j |.
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It is clearly seen from Eq. (A14) that the real parts of the atomic correlation functions depend on the populations of the collective
states and coherences between them, while the imaginary parts depend solely on the coherences. Thus, crucial for the imaginary
parts of the atomic correlation functions to be nonzero is to prepare or drive the atomic system such that there are nonzero
coherences between the collective states.

APPENDIX B: EQUATIONS OF MOTION FOR THE DENSITY MATRIX ELEMENTS

Assuming that only one atom at the most can be excited at any time t , the time-dependent state vector can be written as

|ψ(t)〉 =
N∑

i=1

bi(t)|i〉 + bN+1(t)|N + 1〉, (B1)

where the ket vector |i〉 represents the combined state of the N atoms, respectively, with only the ith atom excited. |N + 1〉
represents the collective ground state of all N atoms with no atom excited.

Using the master equation, (1), it is straightforward to show that the density matrix elements obey the set of equations

ρ̇l,l(t) = d

dt
|bl(t)|2 = −γ |bl(t)|2 −

∑
j �=l

{[
i	(lj ) + γ (lj )

2

]
b∗

j (t)bl(t) + H.c.

}
, (B2a)

ρ̇N+1,N+1(t) = d

dt
|bN+1(t)|2 = γ

N∑
j=1

|bj (t)|2 + 1

2

N∑
i=1

N∑
j=i+1

{[γ (ij ) + γ (ji)](b∗
i (t)bj (t) + H.c.)}, (B2b)

ρ̇m,n(t)

∣∣∣∣ {m,n} ∈ {1, . . . ,N}
m �= n

= d

dt
[b∗

m(t)bn(t)]

= −γ b∗
m(t)bn(t) −

N∑
j = 1
j �= m

[
i	(mj ) + 1

2
γ (mj )

]
b∗

j (t)bn(t) +
N∑

j = 1
j �= n

[
i	(nj ) − γ (nj )

2

]
b∗

m(t)bj (t),

(B2c)

ρ̇l,N+1(t) = −
N∑

j = 1
j �= l

[
i	(lj ) + γ (lj )

2

]
b∗

j (t)bN+1(t) − 1

2
γ b∗

l (t)bN+1(t), (B2d)

where {l,m,n} ∈ {1, . . . ,N}. The remaining equations for the off-diagonal matrix elements can be obtained from Eqs. (B2c) and
(B2d) by complex conjugation. We see that throughout Eqs. (B2a)–(B2d), sums over different atoms appear repeatedly, providing
the source of coupling between different atoms.
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