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Propagation of light through small clouds of cold interacting atoms
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We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of
light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic
resonance. Delays as large as −10 ns are observed, corresponding to “superluminal” propagation with negative
group velocities as low as −300 m/s. Strikingly, this large delay is associated with a moderate extinction owing
to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser
beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for
individual photons or phase imprint between two beams at the single-photon level.
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Resonant media are able to sustain the propagation of
wave packets with variable group velocities, depending on the
frequency detuning of the wave with respect to the resonance
frequency. This property can lead to slow light, associated with
large temporal delays in the transmission of a pulse of light,
or even light with negative group velocities (see Ref. [1] for
a recent review). The control of the group velocity vg relies
on the strong variation, close to resonance, of the refractive
index n(ω) of the medium with the frequency of light, leading
to a group index ng = c/vg = n + ω dn/dω (c is the speed of
light) that can be smaller than unity or negative [2]. The latter
situation, called superluminal propagation, looks paradoxical
as the pulse of light seems to exit the medium before it entered it
but is of course compatible with causality and special relativity
(Refs. [3,4] and references therein). In any case, situations
where the group index is large enough to lead to a significant
delay are associated, through the Kramers-Kronig relations [2]
with a strong attenuation of the light, making the delay hard
to measure. To circumvent this problem, controlling the group
velocity in an optical atomic medium often relies on electro-
magnetically induced transparency [5]. This dispersion man-
agement has been used with ultracold atomic clouds to produce
light with velocities as low as 17 m/s [6]. In parallel, a few ex-
periments have used a single resonance to control the group ve-
locity inside passive media, such as a thin sample of GaP:N [7],
a centimeter-long sample of room-temperature atomic va-
por [8], or a sub-micrometer-thick slab of hot atomic vapor [9].

The group delay τ (ω) is also interesting as it is related to the
phase φ(ω) imprinted by the medium on the light propagating
through it: τ (ω) = dφ/dω [10]. As such a measurement of the
group delay provides a measurement of the phase. Quantum
technologies would benefit from the capability to imprint a
large phase shift on an individual photon, possibly switchable
by another individual photon [11]. Impressive results have
been obtained using individual ions [12], atoms [13], or
molecules [14] to imprint phase shifts of a few degrees
on a tightly focused laser beam in free space. A recent
experiment also demonstrated a phase shift of 18 μrad on
a postselected photon passing through a large dilute cloud of
cold atoms [15]. But larger phase shifts would be desirable,
and using small atomic ensembles containing more than one
atom could provide them.

*Corresponding author: yvan.sortais@institutoptique.fr

Here, we show that a microscopic cloud containing a few
hundred cold atoms placed at the focal point of a tightly
focused laser beam can induce large group delays when tuned
and probed near a single atomic resonance. Our situation is
special in that the size of the atomic medium is much smaller
than the size of the beam, and yet it induces large delays
with an only moderate extinction and no distortion of the
laser pulse. Experimentally, we send a pulse with a weak
intensity (less than one photon on average) and a Gaussian
temporal envelope into the cloud. We measure delays as large
as 10 ns with values either positive or negative depending on
the detuning of the laser with respect to the atomic resonance.
The corresponding group velocities can be either negative
or positive with values as low as 300 m/s. Strikingly, we
observe a fractional pulse advancement as large as 40% of
the pulse width with a transmission not smaller than 20%. The
observed delays are in good agreement with measurements
performed in steady state of the coherent optical response of
the cloud. Our measurements imply that, when sending a weak
continuous laser beam on the cloud, phase shifts as large as
∼1 rad are imprinted on it, making it potentially interesting
for applications in quantum technologies.

Our setup is represented in Fig. 1. It consists of two identical
aspherical lenses with a high numerical aperture [(NA) = 0.5]
mounted in a confocal configuration in a vacuum chamber [16].
Lens L1 is used to focus a laser beam at a wavelength of
940 nm onto a waist of 1.2 μm, thus creating a dipole trap
with a depth of kB × (1 mK) (kB is the Boltzmann constant).
We load the trap with 87Rb atoms, which have a temperature
of 120 μK, resulting in a cigar-shaped cloud with transverse
and longitudinal root-mean-square (rms) widths of L⊥ = 0.2
and Lz = 1.2 μm, respectively [17]. We control the number
of atoms N within 10% and can vary N between 10 and
180 [18]. The probe beam is focused by lens L2 at the position
of the cloud down to a waist w = 1.20 ± 0.05 μm, larger
than the cloud transverse size. The probe light is linearly
polarized and is nearly resonant with the D2 closed transition
of rubidium between the (5S1/2,F = 2) and (5P3/2,F = 3)
levels at λ = 2πc/ω0 = 780.2 nm (linewidth of � = 2π ×
6 MHz) [19]. The intensity of the probe is I/Isat = 0.04 (Isat =
1.6 mW/cm2), small enough to operate in the linear-response
regime of the atoms. The probe light transmitted through the
cloud is collected using L1 and coupled into a single-mode
fiber connected to an avalanche photodiode. The temporal
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FIG. 1. Experimental setup. A microscopic cloud of 87Rb atoms
is illuminated by a linearly polarized probe laser focused down to a
waist of w = 1.2 μm. P : polarization beam splitter, aligned at 45◦ of
the laser polarization. L: lens allowing the mode matching between
the probe beam and the fiber mode in the absence of atoms. F :
single-mode fiber. APD: avalanche photodiode.

signals are acquired by accumulating single photons using
a counting card with a resolution of 150 ps.

Our experimental arrangement measures the interference
of the incoming probe light EL and the coherent field
scattered by the cloud Esc [23], leading to a total field of
E = EL + Esc. The use of a single-mode fiber implies that,
in steady state, we measure the overlap between E and fiber
mode g, E(ω) = ∫ {E(r,ω) · g∗(r)}dS (dS is a differential area
element perpendicular to the optical axis) [13,24]. The setup
is aligned such that the fiber mode is matched to the incoming
light, i.e., g ∝ EL. We thus define the coherent optical response
of the cloud in steady state by a transfer function S(ω) =
E(ω)/EL(ω) that links the detected fields with and without
atoms. The group delay is then related to the phase of the
transfer function φ(ω) = arg[S(ω)] by τ (ω) = φ′(ω) [2,25].
Measuring the group delay provides a way to access the
phase of the transfer function, i.e., the phase imprinted by the
cloud on the laser beam, and is an alternative to direct, e.g.,
interferometric, measurements of the phase [13,14].

In order to measure the group delay, we proceed in the
following way. After preparing the atoms in the (5S1/2,F = 2)
level, we alternately illuminate the cloud 1000 times with the
trap light and the probe light with a period of 1 μs. The probe
light is sent during the 500-ns switch-off period of the dipole
trap. By shaping the amplitude of the radio-frequency input
signal of an acousto-optic modulator (AOM) we produce
a probe pulse with a Gaussian temporal profile. The rms
duration of the intensity profile is �t0 = 25 ns, leading to
a bandwidth smaller than the bandwidth �c of the medium,
which is in the range of 1.5�–3� for 10 � N � 180 [23].
The parameters of the probe imply that each pulse contains
only ∼0.4 photons. We repeat the probe-trap-probe alternated
illumination 200 times with a new atomic cloud each time and
the whole sequence for various probe detunings � = ω − ω0

and various atom numbers.
Figures 2(a) and 2(b) show two examples of transmitted

pulses, together with the pulse in the absence of atoms. We
find that the transmitted pulses are well fitted by a Gaussian
function G(t) = B exp[−(t − τ )2/2 �t2] whatever the atom
number and the detuning. The variations of the delay τ , width
�t , and amplitude B of the transmitted pulse are shown in
Figs. 2(c)–2(e) as a function of the probe detuning � for N =
170 atoms [26]. Close to resonance, we observe large negative
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FIG. 2. Temporal signals recorded on the APD. Circles: Gaussian
reference pulse (no atoms). Lozenges: transmitted pulse for N = 170.
(a) � = −0.7�: The pulse is maximally advanced by 10 ns. (b)
� = 1.8�: The pulse is maximally retarded by 7 ns. Solid lines:
Gaussian fits to the data. Dashed lines: reconstructed pulse using
Eq. (2). Each run consists of 1000 illuminations with a duration of
300 ns each. (c) Group delay τ . (d) rms duration �t of the pulse
detected in the presence of atoms, normalized to the case without
atoms. (e) Amplitude B of the transmitted pulse. In (c)–(e), the error
bars are from the Gaussian fit of the detected pulse, and the solid
lines are the Gaussian fit parameters of the reconstructed pulse using
Eq. (2).

group delays, corresponding to a superluminal pulse propaga-
tion [27]. The largest measured advanced delay is −10 ns, cor-
responding to a fractional pulse advancement of τ/�t � 40%
with a transmission of 20%. For comparison, Ref. [9] reports a
fractional pulse advancement of 55% but with only 1% trans-
mission. We also observe pulses retarded by as much as 7 ns.

Considering that the cloud has a longitudinal size of
L = √

2πLz, an advanced delay of τ = −10 ns corresponds
to a group velocity of vg = −300 m/s. As the cloud is much
smaller than the beam waist, the link to a group index is
awkward, but what the group index of a slab of thickness L

would be remains a valid question. The corresponding group
index would be |ng| = 106, probably one of the largest ever
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measured close to a single resonance yet with a transmission
as large as 20%. The associated limited extinction is due to
the small size of the cloud and to the fact that it is very dense:
The cloud acts like a dark spot with an effective size of σ0

placed in the probe beam of waist w thus removing a relative
amount of power ∼σ 2

0 /w2. We also note that such a large group
index would correspond to a pulse compression by a factor of
1/|ng| [5], giving for our 25-ns-long pulse a compression from
7.5 m to 7.5 μm. Despite the large compression factor, this
value is larger than the cloud longitudinal size, indicating that
the strong dispersion is not sufficient to entirely store the pulse
inside the cloud, which rather acts as an efficient delay line.

In order to understand quantitatively the measured delays
and their variations with the laser detuning, we also perform
measurements of |S(ω)|2, now in steady state, using the exact
same sequence but having replaced the Gaussian temporal
pulses by flattop pulses with durations of 300 ns (rise time
of 2 ns). This is performed by monitoring the amount of
transmitted light when the signal reaches steady state and
normalizing the signal to the one obtained without atoms. The
spectrum obtained for a given atom number N is fitted using
the following functional form:

S(�,N ) = 1 − A

1 − 2i �−�c

�c

, (1)

with A(N ), �c(N ), and �c(N ) being free parameters.
Figure 3(b) shows the spectrum measured for N = 180 and
the corresponding fit (see the Appendix for other values of
N ). For a cloud with a size much smaller than λ/(2π ) = 1/k,
the amplitude A would scale as 1/(kw)2, w being the probe
waist at the position of the atoms: This comes from the fact
that a polarizable nonlossy particle illuminated by a radiation
of wavelength λ has an optical cross section of 6π/k2 at
resonance, whatever its real physical size as soon as it is smaller
than 1/k. Although our cloud is not exactly in this regime, this
suggests that a tight focus leads to the largest effect of the
cloud on the probe laser [13,24]. In particular, the phase shift
increases when the waist becomes small. In our case the phase
shift can be as large as �φ ∼ 1 rad (see below). As the width
�c of the resonance, although broadened by the interactions,
remains very small with respect to the resonance frequency,
the group delay τ ∼ �φ/�c can reach tens of nanoseconds.

The frequency variations of the group delay presented
in Fig. 2 show an asymmetric behavior near resonance.
This asymmetry is surprising since the functional form (1)
indicates that the phase φ(ω) has a dispersive behavior and
thus τ (ω) = φ′(ω) should be symmetric around the resonance.
To understand the observed asymmetry we simulate the
transmitted pulse intensity using the complex transfer function
S(ω) measured in steady state and the following relationship:

I (t) =
∣∣∣∣
∫ ∞

−∞
S(ω)EL(ω)e−iωt dω

2π

∣∣∣∣
2

, (2)

where we introduce a small linear frequency chirp β in the
spectral amplitude of the laser field,

EL(ω) = σE√
1 + 2iβσ 2

E

e−(ω−ωL)2σ 2
E /2(1+2iβσ 2

E ). (3)

(a)

(b)

FIG. 3. (a) Largest group delay induced by the cold-atom cloud
versus number of atoms. Dots: measured data. Dotted line: simulation
based on Eq. (2) and using the measured transfer function S(ω)
[see Eq. (1)] and incoming pulse with a duration of �t0 = 25 ns
(including the chirp). Solid line: prediction τmax(N ) based on Eq. (4).
Dashed line: the same as the dotted line but taking a 200-ns-long
pulse (without chirp). (b) Transfer function reconstructed from
our measurements in steady state for N = 180 atoms. Black dots:
measured data. Error bars: statistical uncertainties. Black line: fit
by |S(� − �c)|2. The horizontal axis is shifted by �c = −2 MHz.
Red line: phase φ = arg[S] imprinted on the transmitted light by the
cold-atom cloud. The dashed lines mark the extreme phase shifts and
the associated transmission level.

Here, ωL is the central frequency of the laser, and σE = √
2�t0.

The introduction of the frequency chirp is motivated by
our finding of a distorted frequency response of the AOM
driver on the short time scale used here. We measured β =
37 kHz/ns directly on the light. We fit the calculated pulse
by a Gaussian function with the delay, width, and amplitude
as free parameters. Figure 2 shows good agreement between
the data measured directly on the transmitted pulse and the
data extracted from the reconstructed pulses. This feature is
verified for all the numbers of atoms used in this paper (see the
Appendix). In particular, the pulse reconstruction reproduces
the measured variations of the width �t across the resonance,
which are due to the dispersion φ′′(ω) and the pulse spectral
width being not very small with respect to the atomic resonance
linewidth �c. We emphasize that the asymmetry observed in
the delay and width variations comes from the chirp on the
laser frequency and not from the response of the medium.

Figure 3(a) shows our measurements of the largest (nega-
tive) delay achievable using a cold-atomic sample with our
parameters and a variable atom number. We compare the
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(a) (b)

FIG. 4. (a) Measurements of |S(N,�)|2 deduced from transmission spectra measured in steady state for N = {10,25,63,83,180} (top to
bottom). Error bars are rms statistical uncertainties. Solid lines: fits using the function of Eq. (1) (see the main text) with free parameters
A(N ), �c(N ), and �c(N ). (b) Fit results for the entire set of values of N used in this paper. Error bars are from the fits of the transmission
spectra. Solid lines: fits of the data (see text). Dotted line: asymptotic value of A for N � 1.

measurements with the theoretical expression,

τmax(N ) = − 2

�c(N )

A(N )

1 − A(N )
, (4)

that is obtained by simply differentiating the phase of the
transfer function S(ω) given by Eq. (1). Here A(N ) is obtained
by interpolating the experimental values of the transmission
|S(ω)|2 in steady state (see the Appendix). As can be seen,
the measured delays are significantly smaller than the ones
predicted by Eq. (4). This is due to the finite spectral width
of the 25-ns-long pulse. The on-resonance delay calculated
from the reconstruction of the transmitted pulse is on the other
hand in good agreement with the data. We have cross-checked
by simulating the propagation of a long pulse (�t = 200 ns)
that we indeed recover the largest theoretical delay and that
the chirp would play a little role in that case. Interestingly we
note that the delay does not increase monotonically with the
number of atoms: This comes from the saturation with N of
the amplitude A(N ) together with the increasing linewidth
�c(N ), which are induced by the resonant dipole-dipole
interactions [23]. The largest delay we would achieve, had
we used a very long pulse, would be −30 ns.

Finally, Fig. 3(b) summarizes our measurements of the
coherent optical response of the atomic cloud in steady state
and for our largest atom number N = 180. In this case the
phase shift φ(ω) imprinted on the laser beam varies by ∼1 rad
over a detuning range of ∼ [−�,�]. One could thus envision
using a second laser beam to induce a controlled ac Stark
shift on the atoms and hence control the phase imprinted
by the atoms on the probe laser containing less than one
photon using that second beam. If this second laser field is
also focused as tightly as the probe, its single-photon Rabi
frequency for a bandwidth �, g = d

√
�ω0�/(πε0w2c)/� =

�
√

3/(kw) (d is the dipole of the D2-stretched transition)

is already 2π × 1 MHz, making it possible to control the
optical response of the single photon of the probe with a few
photons from the second laser. Our system may therefore be
interesting for applications in quantum optics and quantum
information processing where this is still a challenge to imprint
a large relative phase between two beams at the single-photon
level [11].

In conclusion, we have demonstrated that a dense cloud
of cold atoms with a size much smaller than the waist of a
beam produces a large negative delay associated with a large
negative group index close to an atomic resonance and yet the
extinction by the cloud remains limited with no distortion of
the pulse. We have inferred from this long delay the phase
imprinted by the cloud on the laser beam and found values
as large as ∼1 rad. As the number of photons per pulse
sent on the cloud is smaller than one, it opens interesting
perspectives in quantum technologies, such as generating effi-
ciently large nonlinear phase shifts using laser beams with low
intensity, following the postselection method demonstrated in
Ref. [15].
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APPENDIX

Here we present the full data set used for the reconstruction
of the transmitted Gaussian pulse.
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FIG. 5. For each group of figures corresponding to a given number of atoms: (a) Comparison between the amplitude B obtained by fitting
the measured transmitted pulse (markers) and the one obtained from the fit of the reconstructed pulse (solid line). (b) Comparison between the
delay τ obtained by fitting the measured pulse (markers) and the one obtained from the reconstructed pulse (solid line). (c) Ratio between the
temporal width �t of the pulse after transmission and the width �t0 of the incident pulse measured in the absence of atoms. The markers are
obtained from fits of the measured transmitted pulses. The solid lines are obtained from fits of the reconstructed pulses. Error bars are from the
Gaussian fits to the data.
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As explained in the main text, we reconstruct the trans-
mitted pulse using Eq. (2) of the paper and the transfer
function S(N,�) measured independently in steady state [23].
Figure 4 shows the parameters A(N ), �c(N ), and �c(N ) in
the expression of S(N,�), which were measured for discrete
values of the atom number and interpolated to any value of N

using the following functions:

A(N ) = 1 −
√

a + (1 − a) exp(−bN ) with

a = 0.1 ± 0.02 and b = (1.9 ± 0.2) × 10−2, (A1)

�c(N )/� = a + bN with a = (−2.7 ± 5.5) × 10−2 and

b = (−1.7 ± 0.5) × 10−3, (A2)

�c(N )/� = a + bN with a = 1.44 ± 0.21 and

b = (9.6 ± 1.9) × 10−3. (A3)

We then fit the reconstructed pulse using the same Gaussian
function as for the data,

G(t) = B exp[−(t − τ )2/2 �t2], (A4)

and extract B, τ , and �t . We repeat this procedure for several
detunings and atom numbers. Figure 5 shows the comparison
among the measured amplitude, delay, and width with their
reconstructed counterparts.
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