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We develop a systematic method for deriving a quantum optical multimode Hamiltonian for the interaction of
photons and phonons in nanophotonic dielectric materials by applying perturbation theory to the electromagnetic
Hamiltonian. The Hamiltonian covers radiation pressure and electrostrictive interactions on equal footing. As
a paradigmatic example, we apply our method to a cylindrical nanoscale waveguide and derive a Hamiltonian
description of Brillouin quantum optomechanics. We show analytically that in nanoscale waveguides radiation
pressure dominates over electrostriction, in agreement with recent experiments. The calculated photon-phonon
coupling parameters are used to infer gain parameters of Stokes-Brillouin scattering in good agreement with
experimental observations.
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I. INTRODUCTION

Quantum optomechanics is the study of phenomena origi-
nating from the mutual interaction between electromagnetic
radiation and mechanical motion [1–4]. In cavity optome-
chanics both the electromagnetic field and the mechanical
vibrations are effectively restricted to single modes, and the
strong coupling among phonons and photons achievable there
enabled the demonstration of various quantum mechanical
effects in recent years [5]. In the domain of optical frequencies,
the strongest optomechanical coupling has been obtained
in optomechanical crystals [6,7], where nanostructuring of
dielectric materials is exploited to generate phonon and photon
modes with strong spatial localization in order to enhance the
light-matter interactions.

Very recently, experimental progress with nanophotonic
waveguides supporting long-lived, high-frequency phonon
modes evidenced that quantum optomechanical effects may
become accessible also within a multimode version of optome-
chanics involving continua of propagating phonon and photon
modes [8–13]. At the classical level, the Brillouin physics
of interacting photons and phonons in waveguides has been
studied extensively and led to the demonstration of a wide
scope of nonlinear optical phenomena; see Refs. [14–17] for
reviews. So far, the dominant mechanism for optomechanical
coupling in waveguides has been electrostriction, that is the
modulation of the index of refraction of the bulk dielectric
material associated with its acoustic vibrations causing scat-
tering of photons on these periodic index modulations. The
recent experiments with nanophotonic waveguides entered a
new regime where radiation pressure effects due to vibrational
surface deformations start to dominate over electrostriction,
which may result in vastly enhanced photon-phonon coupling.
At the same time, these devices can maintain large quality fac-
tors for GHz mechanical modes extending over long cm-scale
nanowires providing large optomechanical interactions over
significant time and length scales. Overall, these developments
indicate Brillouin quantum optomechanics as a promising
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route toward integrable, broad-band platforms supporting
strongly interacting fields of phonons and photons.

On the theoretical side, the description of Brillouin op-
tomechanics in classical terms is well established [9,18–
20]. A corresponding quantum mechanical description of
electrostrictive coupling in terms of a multimode Hamiltonian
has recently been derived by Agrawal et al. [21] in the
context of multimode phonon cooling. In cavity quantum
optomechanics involving single phonon and photon modes
both effects are commonly taken into account [6,7] based on a
formula by Johnson et al. [22]. Progress toward extending the
cavity optomechanical description to the regime of Brillouin
optomechanics has been achieved by Van Laer et al. [23]
by relating Brillouin gain parameters to the optomechanical
single-photon coupling strengths. Sipe et al. [24] very recently
provided a Hamiltonian treatment of stimulated Brillouin
scattering in nanoscale integrated waveguides accounting for
electrostriction and radiation pressure, following the method
of Refs. [20,22].

In the present work we aim to contribute to this development
of a quantum theory of Brillouin optomechanics in two
respects: First, we derive the multimode Hamiltonian for Bril-
louin optomechanics by applying perturbation theory directly
to the field Hamiltonian for the case of an isotropic dielectric
material, which includes on equal footing electrostriction and
radiation pressure mechanisms. Our derivation reproduces the
results of Sipe et al. [24] but avoids the rather technical
smoothing procedures introduced by Johnson et al. [22],
employed also in Ref. [24], in order to deal with discontinuities
at surfaces. We believe that the point of view advocated in
the present derivation provides valuable physical insight to
an otherwise rather unintuitive result. Second, we apply the
general formula of the multimode Hamiltonian for Brillouin
optomechanics to the important special case of a cylindrical
nanowaveguide, and evaluate analytically the parameters in
the Hamiltonian characterizing the phonon-photon coupling
strength. We use our analytical expressions to demonstrate the
domination of radiation pressure effect over electrostriction
for nanoscale waveguides, and determine optimal parameter
regimes exhibiting maximal coupling. The formalism is
applicable to systems of any dimensional scales, ranging from
cavity optomechanical systems involving localized photon and
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phonon modes up to bulk materials in which photons and
phonons are described by continuous fields as in Brillouin
optomechanics.

We treat a cylindrical nanoscale waveguide (tapered fiber),
which exhibits a (quasi)continuum of modes propagating in
the longitudinal direction with localized discrete modes due
transverse confinement. We consider in much detail the case
of a nanofiber made of silicon material that is embedded in
free space. We analytically solve for the photon and phonon
vector mode functions and dispersion relations and calculate
the photon-phonon coupling parameters originating from
electrostriction and radiation pressure mechanisms. This case
is motivated by the recent progress in Brillouin optomechanics
[10–13,25], but also by the work on tapered optical nanofibers
that have been used in manipulating, trapping, and detecting
neutral cold and ultracold atoms [26,27], in which optically
active mechanical modes of tapered nanofibers have been
also investigated [28]. Moreover, we provide a means to
compare the theoretically calculated photon-phonon coupling
parameter with the experimentally observed gain parameter.
Moving to the real-space representation of the Hamiltonian,
we solve the system of equations for the Stokes stimulated
Brillouin scattering. The Stokes field is amplified with a
gain parameter that is related to the photon-phonon coupling
parameter in the derived Hamiltonian, similar to what has been
discussed by Van Laer et al. [23].

The paper is organized as follows. Section II contains the
derivation of the classical, perturbed Hamiltonians for the
coupled light and mechanical excitations through radiation
pressure and electrostriction mechanisms. The discussion
is followed by the canonical quantization of the coupled
classical fields, where the interacting multimode photon
and phonon Hamiltonian is derived. The photon-phonon
coupling parameters are explicitly calculated for the case
of cylindrical nanowires in Sec. III. A relation between the
photon-phonon coupling parameter and the gain parameter of
Stokes stimulated Brillouin scattering is presented in Sec. IV,
and the coupled photon-phonon real-space Hamiltonian is
introduced. The appendices include the full solutions of the
electromagnetic fields and the mechanical excitations in a
cylindrical dielectric waveguide.

II. COUPLING AMONG ELECTROMAGNETIC FIELD
AND MECHANICAL VIBRATIONS

We aim first to derive the classical Hamiltonian that
represents the mutual influence of the mechanical excitations
and the electromagnetic field in a bounded dielectric medium,
and which are characterized by the electric field E(x) and
the mechanical displacement field Q(x), respectively. The
electromagnetic field in a dielectric, lossless, and nonmagnetic
medium with a scalar permittivity ε(x) is described by the
Hamiltonian [29]

H = 1

2

∫
dV

{
1

ε(x)
|D(x)|2 + 1

μ0
|B(x)|2

}
, (1)

where the electric displacement field is defined by D(x) =
ε(x)E(x). The Hamiltonian coupling of photons and phonons
follows from evaluating the correction δH to H due to a
mechanical displacement Q(x) causing a perturbation δε(x)

in the permittivity ε(x). We will consider corrections in first
order of the mechanical displacement throughout the paper and
limit the discussion to isotropic fluctuations in the dielectric
constant. The explicit dependence of δε(x) on Q(x) differs for
radiation pressure and electrostrictive interaction, and will be
detailed below. Nevertheless, both effects are covered by the
perturbation to the field Hamiltonian in Eq. (1):

δH = 1

2

∫
dV δε−1(x)|D(x)|2. (2)

Here δε−1(x) in Eq. (2) denotes the perturbation of the inverse
of the permittivity, which is not to be confused with the inverse
of the perturbation [δε(x)]−1. The contributions to δH due to
the corrections in the amplitude of the electric displacement
field D are negligibly small, on the order of the ratio of phonon
to photon frequency, as shown in Appendix A. A further
correction of the same order is introduced through magnetic
polarization effects [24]. Note that the perturbation of the field
Hamiltonian Eq. (1) needs to be done in the representation
where the energy density is expressed in terms of the electric
displacement field. If instead the electric field E is used, the
contributions due to corrections of the field amplitude will be
significant, cf. Appendix A, and δH would take a much more
cumbersome form.

We consider a dielectric material with permittivity ε(x) =
ε1 in a volume V1, which is localized in a surrounding medium
with permittivity ε(x) = ε2 occupying the complementary
volume V2. For a dielectric material in vacuum ε2 = ε0. The
unperturbed permittivity can be written as

ε(x) = ε2 + (ε1 − ε2)�(x), (3)

where �(x) is a step function defined by

�(x) =
{

1 for x ∈ V1

0 for x ∈ V2
.

A mechanical displacement Q(x) of the dielectric medium
in V1 will affect the material’s permittivity in two ways:
In the electrostrictive mechanism, the fluctuations change
the magnitude of the permittivity of the material in V1 at
a fixed boundary. Radiation pressure in turn corresponds to
fluctuations in the material boundary at a fixed magnitude of
ε1. Thus, the perturbed permittivity can be written as

ε(x) = ε2 + [ε1(Q) − ε2]�(x + Q),

where ε1(Q)|Q=0 = ε1. The first-order corrections is δε(x) =
δεrp(x) + δεel(x) and the contributions from radiation pressure
and electrostriction are, respectively,

δεrp(x) = (ε1 − ε2)Q(x) · ∇�(x), (4)

δεel(x) = δε1(Q)�(x). (5)

The contributions of these two perturbations to the interaction
Hamiltonian in Eq. (2) will be treated in the following two
subsections.

A. Radiation pressure

We note first that ∇�(x) in Eq. (4) denotes a δ distribution
whose effect is to turn volume integrals into surface integrals
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over the boundary ∂V between V1 and V2, that is∫
V1+V2

dV f(x) · ∇�(x) =
∫

∂V

dA · f(x), (6)

where dA is the infinitesimal surface element. Thus, when
using Eq. (4) in Eq. (2) it will be vital to take care that the
remaining integrand does not contain discontinuities on the
boundary surface rendering the integral undefined.

This concerns in particular the discontinuity in the field
component of D(x) parallel to the boundary surface. In order to
overcome this difficulty we consider an (arbitrarily thin) shell
volume V ′ enclosing the boundary surface ∂V , and rewrite the
contribution to the interaction Hamiltonian Eq. (2) within V ′
in terms of the fields E‖(x) = D‖(x)/ε(x) and D⊥(x) parallel
and orthogonal to the surface that are both continuous,

δH = 1

2

∫
V ′

dV {−δε(x)|E‖(x)|2 + δε−1(x)|D⊥(x)|2}. (7)

Here we used ε2(x)δε−1(x) = −δε(x). In restricting the inte-
gration to the shell volume V ′ we anticipate, in view of Eq. (6),
that it is the energy within this subvolume that will be relevant
for the perturbation due to radiation pressure. The remaining
hurdle is to arrive at a well-behaved perturbation of the inverse
permittivity in Eq. (7). This can be achieved by expressing the
inverse as ε−1(x) = ε−1

2 + (ε−1
1 − ε−1

2 )�(x), which yields

δε−1
rp (x) = (

ε−1
1 − ε−1

2

)
Q(x) · ∇�(x), (8)

for the contribution due to radiation pressure.
Finally, we can use Eqs. (4), (6), and (8) in Eq. (7) to arrive

at the Hamiltonian describing radiation pressure interaction

δHrp = −1

2

∫
∂V

dA · Q(x)

×{�ε|E‖(x)|2 − �(ε−1)|D⊥(x)|2}. (9)

We used the symbols �ε = ε1 − ε2 and �(ε−1) = ε−1
1 − ε−1

2
following the notation introduced by Johnson et al. in Ref. [22].
The integral in Eq. (9) is over the surface ∂V of the dielectric
medium, and all fields are evaluated on that surface. Thanks to
the continuity of E‖ and D⊥ there is no ambiguity in evaluating
the field on either side of the surface.

The result presented here agrees with the one derived in
Ref. [22] for the perturbed eigenfrequency of photonic field
modes. Johnson et al. used a smoothing procedure in order to
deal with the difficulty of discontinuities of field amplitudes at
the surface. The alternative approach presented here avoids
such technicalities and at the same time provides directly
the interaction Hamiltonian covering both frequency shifts of
photon modes and Brillouin scattering among different field
modes. It is this last aspect that is of main interest in the
description of the optomechanics of extended nanophotonic
waveguides. Furthermore, the interaction Hamiltonian Eq. (9)
is directly amenable to quantization, as will be done in
Sec. II C, and provides firm grounds for the description of
radiation pressure effects in Brillouin quantum optomechanics.

B. Electrostriction

Electrostriction appears due to the tendency of a dielectric
material to be compressed in the presence of light, and as

a consequence to excite mechanical vibrations in the medium
[18,19]. The appearance of mechanical vibrations modulate the
optical properties and result in small changes in the dielectric
constant that induce scattering of the light. A Hamiltonian
description of electrostriction has been derived previously by
Agrawal et al. [21]. For completeness we present a derivation
within the present approach, starting from Eq. (12) for the
perturbation of the bulk value of the permittivity due to a
mechanical displacement.

By means of the electrostriction constant γel the change
in the permittivity can be related to fluctuations of the mass
density ρ,

δε1(Q) = ε0
γel

ρ
δρ(Q), (10)

which in turn is determined through the mechanical displace-
ment,

δρ(Q) � −ρ∇ · Q(x). (11)

Overall, we arrive from Eq. (12) at

δεel(x) = −ε0γel[∇ · Q(x)]�(x). (12)

Electrostriction mechanism in nanoscale structures can give
rise to anisotropic phenomena. Anisotropic contributions
induced by longitudinal phonons in nanoscale waveguides
are immaterial [30]. As we concentrate mainly in processes
involving longitudinal phonons we treat here only the isotropic
case of scalar fluctuations [18,19]. Anisotropic phenomena
induced by tensor fluctuations of the dielectric function are
beyond the scope of the present paper.

The relation Eq. (12) can be used directly in Eq. (2) when
resorting to the representation of δH in terms of the electric
field (using again ε2(x)δ[ε−1(x)] = −δε(x)),

δHel = −1

2

∫
V1+V2

dV δεel(x)|E(x)|2. (13)

No issues regarding discontinuities in the integrand arise here
since the domain of integration is effectively limited to the
volume V1 occupied by the dielectric due to the step function
in Eq. (12). Here δHel decreases by increasing δε as expected.
Finally, this yields the Hamiltonian for the electrostrictive
interaction of photons and phonons,

δHel = γel
ε0

2

∫
V1

dV [∇ · Q(x)]|E(x)|2. (14)

It is evident from Eqs. (9) and (14) that radiation pressure and
electrostriction are surface and volume effects, respectively.
For sufficiently small dimensions radiation pressure will there-
fore dominate and may ultimately provide largely enhanced
coupling strengths per single photon and phonon. We will
show this explicitly for the example of a cylindrical waveguide
in Sec. III. Before that, we will quantize the interaction
Hamiltonians in Eqs. (9) and (14), and extract the quantum
mechanical coupling strengths at the single photon/phonon
level.

C. Quantization

We aim to derive the photon-phonon interaction Hamil-
tonian in dielectric media by canonically quantizing the
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electromagnetic and mechanical fields that were presented in
the previous sections [29,31–33]. The Hamiltonian of the free
photon field reads

Ĥphot =
∑

α

�ωâ†
αâα, (15)

where the summation is over all the photon modes and the sum-
mation index α comprises any index labeling photon modes for
a given geometry. In the following we will assume a discrete
set of indices, such that â†

α and âα are dimensionless bosonic
creation and annihilation operators, and fulfill [âα,â

†
β] = δαβ .

Continuous index sets as relevant to problems with, e.g.,
translational symmetry can be attained via appropriate limiting
procedures, as detailed, for example, in Ref. [34]. The electric
field operator reads Ê(x) = Ê(+)(x) + Ê(−)(r), where

Ê(+)(r,t) = i
∑

α

EαâαUα(x), (16)

and Ê(−) = (Ê(+))†. The (dimensionless) vector function Uα(x)
of mode α and the eigenfrequency ωα are obtained by solving
Maxwell’s equations with appropriate boundary conditions, cf.
Appendix A. The electric field amplitude of a single photon in
mode α is

Eα =
√

�ωα

2ε0V
phot
α

. (17)

The effective volume V
phot
α is calculated from the normaliza-

tion condition, ∫
dV |Uα(x)|2 = V phot

α . (18)

On the other hand, the phonon Hamiltonian reads

Ĥphon =
∑

ν

�νb̂
†
ν b̂ν, (19)

where b̂†ν and b̂ν are the bosonic creation and annihilation
operators of a phonon in mode ν with angular frequency ν .
The index ν again stands for any discrete index relevant for a
given geometry. The operator corresponding to the mechanical
displacement field is Q̂(x) = Q̂(+)(x) + Q̂(−)(x), where

Q̂(+)(x) =
∑

ν

Zνb̂νWν(x), (20)

and Q̂(−) = (Q̂(+))†. Here Wν(x) is the (dimensionless) vector
mode function of phonons with eigenfrequency ν , which is
obtained by solving the equations of motion of mechanical
excitation as shown in Sec. III. The zero-point-fluctuation of
mode ν is

Zν =
√

�

2M
phon
ν ν

. (21)

The effective mass associated to phonon mode ν is given by
M

phon
ν = ρV

phon
ν , where ρ is the medium’s mass density and

V
phon
ν is the phonon effective volume, which can be calculated

from the normalization condition,∫
dV |Wν(x)|2 = V phon

ν . (22)

The quantized interaction Hamiltonian is obtained from
the classical one by replacing the displacement and the
electromagnetic fields by operators and using normal ordering.
We will use the notation (:X̂:) to denote the normally ordered
form of the operator X̂. The radiation pressure Hamiltonian
reads

Ĥrp = −1

2

∫
∂V

:dA · Q̂(x)

×{�ε|Ê‖(x)|2 − �(ε−1)|D̂⊥(x)|2}: , (23)

and the electrostriction Hamiltonian reads

Ĥel = γel
ε0

2

∫
V1

dV :(∇ · Q̂(x))|Ê(x)|2: . (24)

In terms of creation and annihilation operators, using the above
definitions, the interaction Hamiltonian is

ĤI = Ĥrp + Ĥel

= �

∑
αα′ν

{f ∗
αα′ν b̂

†
ν â

†
α′ âα + fαα′ν â

†
αâα′ b̂ν}. (25)

Thus, the optomechanical photon-phonon coupling strength
(of dimension Hz) is fαα′ν = f

rp
αα′ν + f el

αα′ν , where the radiation
pressure coupling is given by

f
rp
αα′ν = − 1

2
ZνEαEα′

∫
∂V

dA · Wν(x)

× {
�ε U‖∗

α (x) · U‖
α′ (x) − ε2

1�(ε−1)

× U⊥<∗
α (x) · U⊥<

α′ (x)
}
. (26)

All mode functions are evaluated on the boundary surface,
and most important here is that the perpendicular components,
U⊥<

α , are evaluated on the internal side of the surface, as in-
dicated by the superscript symbol (<). For the electrostrictive
coupling we get

f el
αα′ν = γel

ε0

2
ZνEαEα′

∫
V1

dV [∇ · Wν(x)]U∗
α(x) · Uα′ (x).

(27)

The results are applicable to any dielectric material ranging
from fully confined media, as for a resonator, up to partly
confined media, as for a waveguide. The interactions are
consistent with the results in Ref. [24], but here we give
explicitly the appropriate normalized amplitudes.

III. COUPLING AMONG PHOTONS AND PHONONS IN
NANOPHOTONIC WAVEGUIDES

The formalism of the previous section has been applied
extremely successfully to quantum optomechanical systems
comprising single electromagnetic and mechanical modes.
Our main concern here is the application to extended media,
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FIG. 1. An optical nanofiber of radius a and refractive index n,
which is localized in free space.

where the multimode character of the interaction Hamiltonian
is essential but at the same time field confinement due to small
spatial extensions yields strong coupling due to enhanced
radiation pressure. In the following we present analytical
results for the coupling strengths f

rp
αα′ν and f el

αα′ν for the most
elementary such geometry, namely a cylindrical nanophotonic
waveguide. We consider a dielectric nanowire that is localized
in free space and extended along the z direction over a length
L with a nanoscale radius a, as seen in Fig. 1. The dielectric
constants are ε1 = ε0n

2 and ε2 = ε0, where n is the medium
refractive index. Recently, such tapered optical nanofibers have
been intensively studied [26–28].

The strong confinement in the transverse direction results
in discrete modes for both the electromagnetic and mechanical
fields. In the following we will consider only a single transverse
mode for the photons and phonons. The electromagnetic and
mechanical fields can propagate along the waveguide axis with
wave number k, which takes on the values k = 2π

L
m with

m = 0, ± 1, ± 2, . . ., where L is the waveguide length and
we use periodic boundary conditions. Phonon wave numbers
will be denoted by q and have a natural cutoff that is given by
the inverse of the crystal lattice constant.

A. Photons in nanoscale waveguides

The photon Hamiltonian for a single tranverse mode reads

Ĥphot =
∑

k

�ωkâ
†
kâk, (28)

where â
†
k and âk are the creation and annihilation operators of

a photon of wave number k and angular frequency ωk . The
electric field operator reads, in cylindrical coordinates,

Ê(r,θ,z) = i
∑

k

√
�ωk

2ε0V
phot
k

× {âkuk(r,θ )eikz − â
†
ku∗

k(r,θ )e−ikz)}, (29)

where uk(r,θ ) is the transverse vector mode function, and the
effective mode volume V

phot
k is defined by

∫
dV |uk(r,θ )|2 =

V
phot
k .

The lowest propagating mode in an optical nanofiber is
the HE11 mode. We concentrate in photons with a fixed
polarization, and we consider rotating polarization with left-
or right-hand circular rotations. Detailed calculations of the
cylindrical waveguide photon dispersions and mode functions
are given in Appendix B. The photon dispersion, which is
the relation between the angular frequency, ω, and the wave

ka
0 1 2 3 4

ω
/(

2
π

) 
[1

0
14

 H
z]

0.5

1

1.5

2

2.5

FIG. 2. The lowest HE11 fiber mode is presented as ω/(2π ) vs.
ka. Here n = 3.5 for silicon material. Beyond the dashed line at
ω/(2π ) ≈ 2.186 × 1014 Hz other photon branches start to appear.

number along the fiber axis, k, can be extracted from the
expression [35]

J0(pa)

paJ1(pa)
=

(
1 + n2

2n2

)
K0(qa) + K2(qa)

2qaK1(qa)
+ 1

p2a2

−
{(

n2 − 1

2n2

)2(
K0(qa) + K2(qa)

2qaK1(qa)

)2

+
(

k

nk0

)2( 1

q2a2
+ 1

p2a2

)2
}1/2

, (30)

where p =
√

k2
0n

2 − k2, and q =
√

k2 − k2
0, with k0 = ω/c.

Propagating modes can appear only in the range 1 � k
k0

� n.
In the literature this result is commonly represented in terms
of the fundamental parameter V = k0a

√
n2 − 1. For silicon

we have n ≈ 3.5 and up to about V ≈ 3.84 only the HE11

photons propagate in the fiber, and beyond V ≈ 3.84 TM and
TE modes can be excited. The HE11 dispersion relation is
plotted in Fig. 2 for ω/(2π ) as a function of ka. For small
wave numbers the photons are unconfined in the nanofiber and
propagate with the group velocity c/n, but beyond ka ≈ 0.7
they get confined and propagate with almost linear dispersion
of group velocity vg ≈ c/5.

The vector mode functions inside the fiber, that is for (r <

a), are given by

ur<
k = −iB

k

2p
[(1 − s)J0(pr) − (1 + s)J2(pr)]e±iθ ,

uθ<
k = ±B

k

2p
[(1 − s)J0(pr) + (1 + s)J2(pr)]e±iθ , (31)

uz<
k = BJ1(pr)e±iθ ,
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ka
1 1.5 2 2.5 3 3.5

V
ef

f/V
F

1

1.1

1.2

1.3

1.4

1.5
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FIG. 3. The relative photon mode volume V
phot
k /VF vs. ka for

HE11 fiber photons.

and outside the fiber, that is (r > a), are given by

ur>
k =−iB

k

2q

J1(pa)

K1(qa)

[(1 − s)K0(qr) + (1 + s)K2(qr)]e±iθ ,

uθ>
k = ±B

k

2q

J1(pa)

K1(qa)

[(1 − s)K0(pr) − (1 + s)K2(qr)]e±iθ , (32)

uz>
k = B

J1(pa)

K1(qa)
K1(qr)e±iθ ,

where

s =
[

1

p2a2
+ 1

q2a2

]{
J ′

1(pa)

paJ1(pa)
+ K ′

1(qa)

qaK1(qa)

}−1

, (33)

and (±θ ) stand for left- and right-hand circular polarizations.
The parameter B is fixed from the normalization relation stated
above. In Fig. 3 we plot the effective volume V

phot
k of photon

mode k relative to the total fiber volume VF = πa2L as a
function of ka. Here a minimum appears around ka ≈ 1.74
in which the photon mode is highly concentrated inside the
fiber, and a small part penetrates outside. For example, for
a = 250 nm we get a minimum at λ ≈ 900 nm.

B. Phonons in nanoscale waveguides

The phonon Hamiltonian for a single mode is given by

Ĥphon =
∑

q

�qb̂
†
q b̂q , (34)

where b̂
†
q and b̂q are the creation and annihilation operators of

a phonon of wave number q and angular frequency q . The

qa
0 1 2 3 4

Ω
/(

2
π

) 
[G

H
z]

0

2

4

6

8

10

12

14

16

18

FIG. 4. The lowest two branches of the longitudinal phonon
modes, for /(2π ) vs. qa for a silicon waveguide (n = 3.5): Lower,
acoustic branch (solid blue line); upper, vibrational branch (dashed
red line).

displacement operator is defined by

Q̂(r,θ,z) =
∑

q

Zq{b̂qwq(r,θ )eiqz + b̂†qw∗
q(r,θ )e−iqz)}, (35)

where wq(r,θ ) is the transverse vector mode function. The
zero-point-fluctuation is Zq = (�/2Mqq)1/2 with effective
mass Mq = ρV

phon
q and effective phonon mode volume∫

dV |wq(r,θ )|2 = V
phon
q .

In optical nanofibers torsional, longitudinal, and flexural
phonons can be excited. Here we consider only longitudinal
modes, as the torsional modes decouple to the light through
radiation pressure and the flexural modes are of higher energy.
Detailed calculations of the cylindrical waveguide phonon
dispersions and mode functions are given in Appendix C.
The longitudinal phonon dispersion can be extracted from the
expression [36]

(
q2 − η2

t

)2 ηlaJ0(ηla)

J1(ηla)
+ 4q2η2

l

ηtaJ0(ηta)

J1(ηta)
= 2η2

l

(
q2 + η2

t

)
,

(36)

where we have η2
l = 2

v2
l

− q2, and η2
t = 2

v2
t

− q2. The lowest

two longitudinal branches are plotted in Fig. 4 for /(2π )
as a function of qa. We treat silicon material with vl = 8433
m/s and vt = 5843 m/s. For small wave numbers qa 
 1, the
lowest acoustic modes have a linear dispersion, and the lowest
vibrational modes are almost dispersion-less up to ka ≈ 2.
Both branches become linear beyond the anticrossing point.

The vector mode functions are given by

wr
q = −AηlJ1(ηlr) + iCqJ1(ηt r),

wθ
q = 0, (37)

wz
q = iAqJ0(ηlr) − CηtJ0(ηt r).
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FIG. 5. The relative zero-point fluctuation, Zq/a vs. qa, (a) for
acoustic modes, and (b) for vibrational modes.

The parameters A and C are fixed using the boundary condition
relation,

C = 2iqηl[
η2

t − q2
] J1(ηla)

J1(ηta)
A, (38)

and the normalization relation stated above. Note that A

also plays the role of a scaling factor that takes care of the
appropriate units.

For illustration we consider a nanofiber of radius a =
250 nm and length L = 1 cm made of silicon material
(density ρ = 2328 kg/m3). In Figs. 5(a) and 5(b) we plot
the zero-point-fluctuation relative to the fiber radius, Zq/a,
as a function of qa, for the lowest two branches. It appears
that the zero-point fluctuations decrease with increasing qa

for the acoustic modes, where a singularity appears around
qa ≈ 1.8, and increase afterward for larger qa. The singularity
appears at the anticrossing point among the acoustic and the
lowest vibrational modes, as seen in Fig. 4. The vibrational

modes have finite zero-point-fluctuations that decrease with
increasing qa.

Importantly, the phonon frequencies for both acoustic and
vibrational modes are in the GHz regime, which allows
to achieve low thermal occupation numbers at cryogenic
temperatures. Moreover, mechanical quality factors measured
in recent experiments with tapered nanofibers were in the range
of 104 [28]. For square-shaped waveguides, mechanical quality
factors of several 100 have been measured [12,13]. In view of
the tremendous progress made regarding mechanical quality
factors of single-mode optomechanical systems we expect
that there is vast room for improvement here with optimized
nanostructures.

C. Photon-phonon interactions

Insertingly, the analytical expressions for the nanowire
photon and phonon modes derived in the previous sections
into the general expression for the photon-phonon interaction
Hamiltonian Eq. (25) yields

ĤI = �

∑
kq

{f ∗
kq b̂

†
q â

†
k−q âk + fkq â

†
kâk−q b̂q}, (39)

where we exploited the translational symmetry along the
waveguide axis, implying

1

L

∫ L

0
dze−i(k−q−k′)z = δk′,k−q . (40)

Translational symmetry results in conservation of momentum
in which two photons of wave numbers k and k − q scatter
by emission or absorption of a phonon of wave number q.
The coupling is fkq = f

rp
kq + f el

kq , as in Eq. (25). The coupling
parameter due to radiation pressure is given by

f
rp
kq = − Zq

aeff
k

√
ωkωk−qF

rp
kq, (41)

where

F
rp
kq = a

aeff
k

n2 − 1

2
wr

q

×{uz∗<
k uz<

k−q + uθ∗<
k uθ<

k−q + n2ur∗<
k ur<

k−q}, (42)

and all vector mode functions are evaluated on the fiber surface
according to Eqs. (31). The effective radius of the photon mode
aeff

k is defined through V
phot
k = π (aeff

k )2L. In view of ωq 
 ωk

we approximate ωk−q � ωk in the following. The dependence
of |fkq | on L is only through Zq that gives |fkq | ∝ 1/

√
L.

In Figs. 6(a) and 6(b) we show the radiation pressure
coupling parameter, |f rp

kq |/(2π ), versus ka and qa for scat-
tering that involves, respectively, the acoustic modes and the
lowest vibrational modes for a fiber of length L = 1 cm.
Radiation pressure coupling parameters have high values
of about 10 kHz, in the region of qa ≈ 1.5–2, for acoustic
modes and qa ≈ 1–1.5 for vibrational modes, which appear
in the region of ka ≈ 2–3 for photons. This region for optical
photons appears at nanoscale waveguides, and the coupling is
significantly decreased at microscale and larger structures.
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FIG. 6. The radiation pressure coupling parameter |f rp
kq |/(2π )

contour vs. the plane (ka − qa), for scattering that involves: (a)
acoustic modes, and (b) vibrational modes. The fiber length is L =
1 cm. The optomechanical parameters f

rp
kq scale as L−1/2.

The coupling parameter due to electrostriction is given by

f el
kq = Zq

aeff
k

√
ωkωk−qF

el
kq, (43)

where

F el
kq = γel

2aeff
k

∫ a

0
rdr[u<∗

k (r) · u<
k−q(r)]

×
{

1

r

∂

∂r

[
rwr

q(r)
] + iqwz

q(r)

}
. (44)

FIG. 7. The electrostriction coupling parameter |f el
kq |/(2π ) con-

tour vs. the plane (ka − qa), for the scattering that involves:
(a) acoustic modes, and (b) vibrational modes. The fiber length is L =
1 cm. The optomechanical parameters f el

kq scale as L−1/2.

In Figs. 7(a) and 7(b) we show the coupling parameter
|f el

kq |/(2π ) versus ka and qa, for scattering involving, respec-
tively, the acoustic modes and the lowest vibrational modes
again for a fiber of length L = 1 cm. The electrostriction
parameter for dielectric materials can be written as γel ≈
n4p12, where p12 is the elasto-optic parameter. For silicon
we have n ≈ 3.5 and p12 ≈ 0.017, hence we get γel ≈ 2.55.
For acoustic modes the electrostriction coupling parameters
increase with increasing ka and qa, while for vibrational
modes they increase with increasing ka only at small qa.

The comparison between the two coupling mechanisms
show that electrostriction is small in zones where radiation
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pressure is maximal, which is the case for optical light in
nanoscale waveguides. But for microscale and larger waveg-
uides electrostriction becomes dominant where radiation
pressure is significantly suppressed. Nanowires of square cross
sections are expected to give larger photon-phonon coupling
parameters due to the fact that light is more concentrated on
the boundary [9], but they have smaller mechanical quality
factor relative to cylindrical nanofibers.

IV. REAL-SPACE REPRESENTATION AND BRILLOUIN
GAIN PARAMETER

In this section we transform the coupled photon-phonon
Hamiltonian from momentum-space to real-space represen-
tation. This is especially instructive in cases when the
description can be effectively constrained to relatively narrow
frequency bands, as is the case when narrowband light is
injected into the nanofiber and at the same time Brillouin
scattering populated only selected narrow bands of phonons.
The real-space representation developed in the following
provides coupled one-dimensional propagation equations for
narrowband photons and phonons. As a first application we
derive the Brillouin gain parameters for nanofibers measured
in recent experiments from our ab initio calculation of the
optomechanical coupling parameters f

rp
kq and f el

kq .

A. Real-space representation

For the effectively one-dimensional photon field introduced
in Sec. III A we define associated operators in real space as

ψ̂(z) = 1√
L

∑
k∈Bk0

âke
i(k−k0)z.

Here Bk0 denotes a suitable bandwidth of photon wave numbers
centered around a central wave number k0. The operator ψ̂(z)
defined such as to describe slowly varying spatial amplitudes
relative to the wave eik0z. For positive (negative) sign of k0 the
slowly varying operators ψ̂(z) describe right (left) propagating
photons. The definition of ψ̂(z) implies [ψ̂(z),ψ̂†(z′)] =
δ(z − z′), where the δ function is understood to be of width
∼B−1

k0
. The inverse relation is

âk = 1√
L

∫ L

0
dz ψ̂(z)e−i(k−k0)z.

Furthermore, we approximate the photon dispersion relation
shown in Fig. 2 within the relevant bandwidth Bk0 as
ωk = ωk0 + vg(k − k0), where ωk0 is the bandwidth’s central
frequency, and vg = ∂ωk/∂k is the group velocity. For the
silicon nanowire considered here we have vg � c/5 in the
range of wave numbers 1 � ka � 3, cf. Fig. 2. In real-space
representation the Hamiltonian Eq. (28) of the free photon field
for modes within the bandwidth Bk0 is

Ĥphot = �ωk0

∫
dzψ̂†(z)ψ̂(z) − i�vg

∫
dzψ̂†(z)

∂ψ̂(z)

∂z
.

(45)

In complete analogy, we define for the one-dimensional
fields in Sec. III B of acoustic phonons and vibrational phonons

FIG. 8. The backward Stokes SBS. The pump field of frequency
ωp and wave number kp is scattered into the Stokes field of frequency
ωs and wave number ks , and a sound wave of frequency  and wave
number q.

the real-space operators,

Q̂(z) = 1√
L

∑
q∈Bq0

b̂qe
i(q−q0)z,

with inverse relation,

b̂q = 1√
L

∫
dzQ̂(z)e−i(q−q0)z, (46)

and commutation relation [Q̂(z),Q̂†(z′)] = δ(z − z′). The
phonons have a linear dispersion with sound velocity vs ,
such that within the bandwidth Bq0 we approximate q =
q0 + vs(q − q0). Thus, the free Hamiltonian Eq. (34) for
phonons is

Ĥphon = �q0

∫
dzQ̂†(z)Q̂(z) − i�vs

∫
dzQ̂†(z)

∂Q̂(z)

∂z
.

(47)

The vibrational modes are almost dispersion-less below qa �
2, such that vs � 0 in this regime.

Finally, the interaction Hamiltonian Eq. (39) is given by

ĤI =
√

L�

∫
dz

×{f ∗Q̂†(z)ψ̂†(z)ψ̂(z) + f ψ̂†(z)ψ̂(z)Q̂(z)}, (48)

where f is the photon-phonon coupling parameter in the local
field approximation, in which we neglect the weak dependence
of f on wave numbers within the relevant bandwidths Bq0 and
Bk0 of phonon and photon modes.

B. Brillouin gain parameter

The real-space description from the previous section gen-
eralizes immediately when more than one band of phonon
or photon modes are considered, as we will discuss now for
the case of stimulated Brillouin scattering. The result of this
treatment will be a direct relation between the optomechanical
coupling parameters fkq and the Brillouin gain parameter,
which can be observed directly in experiments. We consider
the backward Brillouin scattering among two narrow band
light fields, (s) the Stokes probe field and (p) the strong pump
field, involving acoustic phonons, as seen in Fig. 8. We denote
the central frequencies for the three bands by ωs , ωp, and ,
respectively, and assume energy conservation, ωp = ωs + ,
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ks kp k

ω

ω s

ω p

q
Ω

FIG. 9. The backward Stokes SBS. The process is presented
schematically on the dispersion plot in order to emphasize the
conservation of energy ωp = ωs +  and momentum q = ks + kp .

and momentum conservation, kp = ks + q. These conditions
are illustrated in Fig. 9.

Generalizing the results from the previous section to this
configuration, the real-space Hamiltonian is

Ĥ = − i�vs

∫
dzQ̂†(z)

∂Q̂(z)

∂z
− i�vg

∫
dzψ̂†

p(z)
∂ψ̂p(z)

∂z

+ i�vg

∫
dzψ̂†

s (z)
∂ψ̂s(z)

∂z
+

√
L�

∫
dz

× {f ∗Q̂†(z)ψ̂†
s (z)ψ̂p(z) + f ψ̂†

p(z)ψ̂s(z)Q̂(z)}, (49)

This Hamiltonian is written in an interaction picture with
respect to

Ĥ0 =�

∫
dz[ωpψ̂†

p(z)ψ̂p(z) + ωsψ̂
†
s (z)ψ̂s(z) + Q̂†(z)Q̂(z)],

(50)

and under a rotating wave approximation where all nonreso-
nant terms (such as Q̂†ψ̂†

pψ̂s or Q̂†ψ̂†
pψ̂p) were dropped.

The equations of motion corresponding to the Hamiltonian
in Eq. (49) are

(
∂

∂t
+ vg

∂

∂z

)
ψ̂p(z,t) =−i

√
Lf Q̂(z,t)ψ̂s(z,t),(

∂

∂t
− vg

∂

∂z

)
ψ̂s(z,t) =−i

√
Lf ∗Q̂†(z,t)ψ̂p(z,t),

(
∂

∂t
+ vs

∂

∂z

)
Q̂(z,t) =−�

2
Q̂(z,t) − i

√
Lf ∗ψ̂†

s (z,t)ψ̂p(z,t)

+ F̂ (z,t), (51)

where � is the acoustic phonon damping rate, and we neglect
the photon damping. F̂ (z,t) is the Langevin noise operator. The
damping rate parameter can be extracted from the observed
mechanical quality factor Q and in knowing the phonon
frequency [8–13]. At steady state all time derivatives for the
slowly varying operators vanish and, moreover, ∂

∂z
Q̂(z,t) can

be neglected for acoustic phonons. Hence, we get

Q̂(z,t) ≈ −i
2
√

Lf ∗

�
ψ̂†

s (z,t)ψ̂p(z,t) + 2

�
F̂ (z,t). (52)

Substitutions of Q̂(z,t) in the equations of motion for the
photon fields yields

∂

∂z
ψ̂p(z,t) = − 2L|f |2

vg�
ψ̂†

s (z,t)ψ̂s(z,t)ψ̂p(z,t)

− i
2
√

Lf

�vg

F̂ (z,t)ψ̂s(z,t),

∂

∂z
ψ̂s(z,t) = − 2L|f a|2

vg�
ψ̂†

p(z,t)ψ̂p(z,t)ψ̂s(z,t)

− i
2
√

Lf ∗

�vg

F̂ †(z,t)ψ̂p(z,t). (53)

The light field intensity is defined by [34]

Ip = vg

�ω

A 〈ψ̂†
p(z,t)ψ̂p(z,t)〉, (54)

Is = vg

�ω

A 〈ψ̂†
s (z,t)ψ̂s(z,t)〉, (55)

where we set ω = ωs � ωp, and denote by A the waveguide
cross section. The strong pump field is considered as a
classical field, and we use the Langevin force properties
〈F̂ (z,t)ψ̂s(z,t)〉 = 〈F̂ †(z,t)ψ̂†

s (z,t)〉 = 0. Then we have

∂

∂z
Is = −GBAIpIs, (56)

∂

∂z
Ip = −GBAIpIs, (57)

where the Brillouin gain factor is defined by

GB = 4L|f |2
�ωv2

g�
. (58)

Neglecting the pump depletion, then the first of Eqs. (56) can
be integrated to give Îs(0) = Îs(L) exp(GBIpV ). Note that the
Stokes field is propagating to the left, such that Îs(0) described
the outgoing intensity. Thus, the gain parameter GB expresses
the gain in Stokes intensity per medium volume and pump
intensity. We remark also that the coupling parameters in
Eqs. (41) and (43) are proportional to L−1/2, which makes
|f |2L and therefore also GB independent of L.

We consider the scattering of the photons maximally
localized in transverse direction with ka ≈ 1.74, which is, for
a = 250 nm, of wavelength λ � 900 nm. The phonons for the
backward scattering are of qa ≈ 3.48 with the damping rate of
�/(2π ) = 1.5 MHz. The photon-phonon coupling parameter
is f/(2π ) ≈ 5 kHz, for a nanowaveguide of length L = 1 cm.
For /(2π ) = 15 GHz the quality factor is Q = 104. The
group velocity is about vg ≈ c/5. The gain efficiency is
about GB ≈ 104 m−1W−1, which agrees with the experimental
results in Ref. [12]. The values of all parameters used here are
summarized in Table I.

The result provides a relation between the observable gain
parameter GB and the photon-phonon coupling parameter f ,
which agree with the one derived in Ref. [23]. The relations
allow us to compare the value of the calculated photon-phonon
coupling parameter to the experimental value of the gain
parameter. A similar result holds for the forward Brillouin
scattering involving vibrational modes.
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TABLE I. Values for case study on silicon nanowire.

Name Symbol Value

Fiber radius a 250 nm
Fiber length L 1 cm
Photon group velocity vg c/5
Photon wavelength λ 900 nm (ka ≈ 1.74)
Acoustic phonon frequency /(2π ) 15 GHz (qa ≈ 3.48)
Phonon damping rate �/(2π ) 1.5 MHz
Mechanical quality factor Q 104

Photon-phonon coupling f/(2π ) 5 kHz
Gain parameter GB 104 m−1W−1

V. SUMMARY

Starting from the classical electromagnetic field Hamil-
tonian in dielectric media we derived the mutual coupling
between light and mechanical excitations. The interaction
Hamiltonian is obtained by perturbing the medium due to
mechanical excitations. We treated two types of fluctuations
in the dielectric medium. The first is the fluctuation in the
dielectric constant that generates electrostriction coupling, and
the second is fluctuations in the dielectric material boundaries
that introduces radiation pressure. In order to overcome the
difficulty due to the field jumps on the boundaries we expressed
the Hamiltonian in terms of continuous fields. The main
objective in both cases is to represent the fluctuations in
terms of the mechanical displacement vector. The derived
Hamiltonian can be adopted for any structure of dielectric
medium ranging from nanoresonators up to bulk materials.

In quantum mechanics the electromagnetic field is repre-
sented as photons and the mechanical excitations as phonons,
where the classical formulation allows direct quantization by
converting the classical electric field and the displacement field
into operators. We treated in much detail the case of a cylindri-
cal nanophotonic waveguide, in which photons and phonons
can propagate along the waveguide with continuum wave
numbers and are strongly confined in the transverse direction
with discrete modes. We explicitly solved for the photon and
phonon dispersions and mode functions, where each discrete
mode gives rise to photon or phonon branch. We derived the
multimode photon-phonon interaction Hamiltonian for both
electrostriction and radiation pressure couplings. The lowest
photon branch is for HE11 photons, in which a single photon
mode can propagate within the fiber with linear dispersion of
group velocity ∼c/5, where for a silicon nanowire this mode
is maximally localized inside the waveguide around ka ≈
1.74 with a small part that penetrates into the surrounding
environment. The lowest phonon branch is of acoustic modes
with linear dispersion, and the lowest excited phonon branch is
dispersion-less of localized vibrational modes with frequency
of about 10 GHz. These two phonon branches approach
different linear dispersions beyond the anticrossing point.

We calculated the photon-phonon coupling parameters due
to electrostriction and radiation pressure mechanisms for a
silicon nanofiber. For optical light we found that radiation
pressure dominates electrostriction coupling at nanoscale
waveguides with coupling parameter of about 10 kHz, while
electrostriction becomes dominant at larger dimensions. We

provide a tool for checking the validity of the theoretically
predicted coupling parameters by relating them to the ex-
perimentally observed gain parameter. We consider Stokes
backward Brillouin scattering, where a strong pump field
scatters into a Stokes field and a sound wave. Starting from
the real space representation of the photon and phonon
Hamiltonians, we solve the field equations of motion at steady
state to get the Stokes field amplification where the gain
parameter is expressed in terms of the photon-phonon coupling
parameter.

The results presented here provide a general outline for
deriving quantum optical multimode Hamiltonians for inter-
acting photons and phonons in optomechanical nanophotonic
structures. In view of the success achieved in recent years
with optomechanical structures involving single phonon and
photon modes we envision that their multimode counterparts
offer great possibilities to observe and exploit quantum
effects in extended nanophotonic media. In particular, the
optomechanical Kerr nonlinearity mediated by phonons can
be exploited for the study of quantum nonlinear optics and for
many-body physics of strongly correlated photons. Moreover,
Brillouin induced transparency with the possibility of slow
light, in analogy to EIT in cold dense atomic gases, can be
achieved in the present nanoscale waveguides. The quantum
optical Hamiltonian derived in the present work provides firm
grounds for future explorations into these directions.
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APPENDIX A: PERTURBATION THEORY OF
MAXWELL’S EQUATIONS

We will show here that Eq. (2) provides the relevant part
of the correction to the field Hamiltonian for a given change
of the permittivity and determine the order of magnitude of
the correction due to induced changes in the field amplitudes.
The equations of motion following from the field Hamiltonian
Eq. (1) are Maxwell’s equations:

∇ × E = −μ0
∂H
∂t

, (A1a)

∇ · (ε(x)E) = 0, (A1b)

∇ × H = ε(x)
∂E
∂t

, (A1c)

∇ · H = 0, (A1d)

where E and H = B/μ0 are the electric and magnetic fields,
and ε(x) is the (dimensionless) permittivity of the assumed
dielectric, lossless, and nonmagnetic material. Maxwell’s
equations imply for the magnetic field

1

c2

∂2H
∂t2

+ ∇ ×
(

ε0

ε(x)
∇ × H

)
= 0.
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Harmonic solutions H(x,t) = Hk(x)e−iωkt therefore fulfill the
eigenvalue equation,

∇ ×
(

ε0

ε(x)
∇ × Hk

)
= ω2

k

c2
Hk. (A2)

The operator on the left-hand side is Hermitian [37] and, there-
fore, the eigenmodes are orthonormal,

∫
V

dV H∗
k(x)Hl(x) =

δkl . When the permittivity is changed slightly ε(x) → ε(x) +
δε(x) the perturbed eigenmodes Hk + δHk will remain or-
thonormal, which implies for the first-order corrections,∫

V

dV {δH∗
k(x)Hl(x) + H∗

k(x)δHl(x)} = 0. (A3)

On the other hand, the electric displacement field D =
ε(x)E corresponding to field mode Hk is Dk = iω−1

k ∇ × Hk

due to Eq. (A1c), and the same relation holds for the
first-order perturbation δDk = iω−1

k ∇ × δHk . Note that this
statement does not apply in the same way to the electric field
Ek = i[ε(x)ωk]−1∇ × Hk whose perturbation contains, apart
from δHk , further contributions proportional to δε(x). For a
general electric displacement field D(x,t) = ∑

k Dk(x)dk(t)
with amplitudes dk(t), one therefore finds∫

V

dV
1

ε(x)
δD∗D

=
∑
k,l

d∗
k dl

ωkωl

∫
V

dV
1

ε(x)
(∇ × δH∗

k)(∇ × Hl)

= 1

ε0

∑
k,l

d∗
k dl

ωkωl

∫
V

dV δH∗
k∇ ×

(
ε0

ε(x)
∇ × Hl

)

= 1

ε0

∑
k,l

d∗
k dl

c2

ωk

ωl

∫
V

dV δH∗
kHl ,

where we used the eigenvalue Eq. (A2) in the last step. Overall,
this implies∫

V

dV
1

ε(x)
(δD∗D + D∗δD)

= 1

ε0

∑
k,l

d∗
k dl

c2

∫
V

dV

(
ωk

ωl

δH∗
kHl + ωl

ωk

H∗
kδHl

)
� 0,

where we used Eq. (A3) and the fact that the optical photon
frequency is not changed appreciably in Brillouin scattering,
that is ωk/ωl = 1 + O(ωphonon/ωphoton). Thus, the contribution
to the perturbation of the field Hamiltonian due to the
corrections in the field amplitudes,

∫
V

dV ε(x)−1δ|D|2, is at
most of magnitude O(ωphonon/ωphoton) to first order in δε (or
equivalently, in the mechanical displacement Q). Note that this
is not the case for

∫
V

dV ε(x)δ|E|2 for the reason given above.
The reasoning presented here also shows that the first-order
correction of the Hamiltonian due to the perturbation of the
magnetic field amplitudes vanishes exactly due to Eq. (A3).

APPENDIX B: NANOFIBER ELECTROMAGNETIC FIELD

Here we present the rigorous derivation of the nanofiber
modes [35,38] for a cylindrical waveguide. We start from the
Maxwell’s Eq. (A1a) in cylindrical coordinates (r,θ,z). The
fields Eθ , Hθ , Er , and Hr can be expressed in terms of the

axial fields Ez and Hz by

Er =−i
β

μ0εω2 − β2

(
∂

∂r
Ez + μ0ω

β

1

r

∂

∂θ
Hz

)
,

Eθ =−i
β

μ0εω2 − β2

(
1

r

∂

∂θ
Ez − μ0ω

β

∂

∂r
Hz

)
,

(B1)

Hr =−i
β

μ0εω2 − β2

(
∂

∂r
Hz − μ0ω

β

1

r

∂

∂θ
Ez

)
,

Hθ =−i
β

μ0εω2 − β2

(
1

r

∂

∂θ
Hz + μ0ω

β

∂

∂r
Ez

)
,

where β is the axial wave number. The solution for the axial
fields is given by

Ez(x,t) = R(r)e±ilθ e−i(βz−ωt),

Hz(x,t) = R(r)e±ilθ e−i(βz−ωt), (B2)

where l = 0,1,2, . . . . The radial function R(r) obeys the
Bessel equation[

1

r

∂

∂r
+ ∂2

∂r2
+

(
k2 − β2 − l2

r2

)]
R(r) = 0, (B3)

where k2 = μ0εω
2. The solution inside the fiber, that is r < a,

with ε = ε0n
2, is given by

Ez(r,θ,z,t) = AJl(pr)e−i(βz−ωt±lθ),

Hz(r,θ,z,t) = BJl(pr)e−i(βz−ωt±lθ), (B4)

where p =
√

n2k2
0 − β2 , with k0 = ω/c is the free-space wave

number. The solution on the outside of the fiber, that is (r > a),
with ε = ε0, is given by

Ez(r,θ,z,t) = CKl(qr)e−i(βz−ωt±lθ),

Hz(r,θ,z,t) = DKl(qr)e−i(βz−ωt±lθ), (B5)

where q =
√

β2 − k2
0 .

Using the relations Eq. (B1), the solutions inside the fiber,
that is r < a, are given by

Er (r,θ,z,t) =
{
−i

β

p
AJ ′

l (pr) + μ0ω

p
(±l)B

Jl(pr)

pr

}
ei(ωt−βz±lθ),

Eθ (r,θ,z,t) =
{

β

p
(±l)A

Jl(pr)

pr
+ i

μ0ω

p
BJ ′

l (pr)

}
ei(ωt−βz±lθ), (B6)

Ez(r,θ,z,t) = AJl(pr)ei(ωt−βz±lθ),

and

Hr (r,θ,z,t) =
{
−i

β

p
BJ ′

l (pr) − εω

p
(±l)A

Jl(pr)

pr

}
ei(ωt−βz±lθ),

Hθ (r,θ,z,t) =
{

β

p
(±l)B

Jl(pr)

pr
− i

εω

p
AJ ′

l (pr)

}
ei(ωt−βz±lθ), (B7)

Hz(r,θ,z,t) =BJl(pr)ei(ωt−βz±lθ).
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The solutions outside of the fiber, that is r > a, are given by

Er (r,θ,z,t) =
{
i
β

q
CK ′

l (qr) − μ0ω

q
(±l)D

Kl(qr)

qr

}

ei(ωt−βz±lθ),

Eθ (r,θ,z,t) =
{
−β

q
(±l)C

Kl(qr)

qr
− i

μ0ω

q
DK ′

l (qr)

}

ei(ωt−βz±lθ), (B8)

Ez(r,θ,z,t) = CKl(qr)ei(ωt−βz±lθ),

and

Hr (r,θ,z,t) =
{
i
β

q
DK ′

l (qr) + ε0ω

q
(±l)C

Kl(qr)

qr

}

ei(ωt−βz±lθ),

Hθ (r,θ,z,t) =
{
−β

q
(±l)D

Kl(qr)

qr
+ i

ε0ω

q
CK ′

l (qr)

}

ei(ωt−βz±lθ), (B9)

Hz(r,θ,z,t) = DKl(qr)ei(ωt−βz±lθ).

The plus sign (+l) refers to the right-handed solution of
the transverse field, and the minus sign (−l) refers to the
left-handed solution. The linearly polarized solution can
be composed as a superposition of right- and left-handed
solutions.

The constants A, B, C, and D can be fixed by the boundary
condition between the inside and outside fields on the fiber
surface, where the fields Ez, Eθ , Hz, and Hθ are continuous
on the boundary. For the constants we obtain the relations

C =A
Jl(pa)

Kl(qa)
, D = CB/A,

B =A
iβ(±l)

μ0ω

[
1

(pa)2
+ 1

(qa)2

]

×
(

J ′
l (pa)

paJl(pa)
+ K ′

l (qa)

qaKl(qa)

)−1

, (B10)

and A can be fixed by the normalization condition. The
continuity leads to a characteristic equation that determines
the wave number β. For the EH modes, in which Ez is larger
than Hz, we get

Jl−1(pa)

paJl(pa)
=

(
1 + n2

2n2

)
Kl−1(qa) + Kl+1(qa)

2qaKl(qa)
+ l

p2a2

+
{(

n2 − 1

2n2

)2(
Kl−1(qa) + Kl+1(qa)

2qaKl(qa)

)2

+
(

lβ

nk0

)2( 1

q2a2
+ 1

p2a2

)2
}1/2

, (B11)

and for the HE modes, in which Ez is smaller than Hz, we get

Jl−1(pa)

paJl(pa)
=

(
1 + n2

2n2

)
Kl−1(qa) + Kl+1(qa)

2qaKl(qa)
+ l

p2a2

−
{(

n2 − 1

2n2

)2(
Kl−1(qa) + Kl+1(qa)

2qaKl(qa)

)2

+
(

lβ

nk0

)2( 1

q2a2
+ 1

p2a2

)2
}1/2

. (B12)

The equations can be solved numerically or graphically and
give a set of discrete solutions for β at each l that are specified
by index m. The modes are labeled by HElm and EHlm. The
transverse modes EH0m are usually denoted by TM0m, where
Hz vanishes. The transverse modes HE0m are usually denoted
by TE0m, where Ez vanishes. The modes HElm and EHlm are
termed hybrid modes, as all field components are nonzero. The
hybrid modes represent screw rays and l is associated with the
orbital angular momentum along the fiber axis.

APPENDIX C: NANOFIBER MECHANICAL VIBRATIONS

We present the elastic waves in a cylindrical waveguide of
isotropic medium [36]. The displacement vector is given by
Q = (Qr,Qθ,Qz). In the theory of elasticity the displacement
can be derived directly from the scalar φ and vector ��
potentials. In general, we can make the decomposition Q =
Ql + Qt , where Ql = ∇φ is a divergence-free vector, and
Qt = ∇ × �� is an irrotational vector. Hence, the material
displacements are obtained from the potentials by

Q = ∇φ + ∇ × ��. (C1)

The scalar field obeys the wave equation

∇2φ − 1

v2
l

∂2φ

∂t2
= 0, (C2)

where vl is the velocity of the longitudinal wave, in which
∇ × Ql = 0. The vector potential obeys the wave equation

∇2 �� − 1

v2
t

∂2 ��
∂t2

= 0, (C3)

where vt is the velocity of the transverse wave, in which ∇ ·
Qt = 0. As the three displacements are expressed in terms
of four scalar potentials, one needs an extra relation between
the potentials. The constraint condition usually used is ∇ ·
�� = 0, but the ∇ · �� �= 0 condition is also possible. The two
displacement parts propagate independently. The longitudinal
component, Ql , propagates with velocity vl , and the transverse
component, Qt , propagates with velocity vt .

Now we concentrate in the solution of the wave equations
in cylindrical coordinates. For harmonic waves of frequency
, we have

φ(r,θ,z,t) = φ(r,θ,z)e−it ,

�i(r,θ,z,t) = �i(r,θ,z)e−it , (C4)
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with (i = r,θ,z). The Laplacian of scalar and vector potentials
are defined by

∇2φ = ∇ · ∇φ,

∇2 �� = ∇(∇ · ��) − ∇ × ∇ × ��. (C5)

The wave equations are given explicitly by

∇2φ + 2

v2
l

φ = 0,

∇2�r − 1

r2
�r − 2

r2

∂�θ

∂θ
+ 2

v2
t

�r = 0,

(C6)

∇2�θ − 1

r2
�θ + 2

r2

∂�r

∂θ
+ 2

v2
t

�θ = 0,

∇2�z + 2

v2
t

�z = 0.

The equations for φ and �z are separated, and for �r and �θ are
coupled. The Laplacian ∇2 is given in cylindrical coordinates.
The solution for φ has the form

φ(r,θ,z,t) = R(r)�(θ )ei(qz−t), (C7)

where R(r) and �(θ ) obey the equations

∂2�

∂θ2
+ n2� = 0,

∂2R

∂r2
+ 1

r

∂R

∂r
+

(
2

v2
l

− q2

)
R − n2

r2
R = 0, (C8)

with (n = 0,1,2, . . . ). The general solution has the form

φ(r,θ,z,t) = AJn(ηlr) cos(nθ )ei(qz−t), (C9)

with η2
l = 2

v2
l

− q2. The solution for � can be either cos(nθ )

or sin(nθ ), and for R(r) the solution is the Bessel functions of
the first kind. Similar solution holds for �z, where

�z(r,θ,z,t) = BJn(ηrr) cos(nθ )ei(qz−t), (C10)

with η2
t = 2

v2
t

− q2.
The solutions for �r and �θ have the form

�r (r,θ,z,t) = �̄r (r) sin(nθ )ei(qz−t),

�θ (r,θ,z,t) = �̄θ (r) cos(nθ )ei(qz−t), (C11)

where

�̄r (r) = DJn−1(ηt r) + CJn+1(ηt r),

�̄θ (r) = DJn−1(ηt r) − CJn+1(ηt r). (C12)

Here using cos(nθ ) in �r implies sin(nθ ) in �θ , and viceversa.
We have four constants A, B, C, and D. We still are free

to add another relation between the potentials. But the usually
used relation of ∇ · �� = 0 gives a complex relation. Here we
use the simple relation �r = −�θ , which leads to D = 0.

The general solutions can be given by

φ(r,θ,z,t) = AJn(ηlr) cos(nθ )ei(qz−t),

�r (r,θ,z,t) = CJn+1(ηt r) sin(nθ )ei(qz−t),
(C13)

�θ (r,θ,z,t) = −CJn+1(ηt r) cos(nθ )ei(qz−t),

�z(r,θ,z,t) = BJn(ηtr) sin(nθ )ei(qz−t).

The constants A, B, and C are fixed from boundary conditions.
The displacement components are given in terms of the

potentials by

Qr = ∂φ

∂r
+ 1

r

∂�z

∂θ
− ∂�θ

∂z
,

Qθ = 1

r

∂φ

∂θ
− ∂�z

∂r
+ ∂�r

∂z
, (C14)

Qz = ∂φ

∂z
− 1

r

∂�r

∂θ
+ 1

r

∂(r�θ )

∂r
.

The boundary condition implies the surface, at r = a, to be
free, which leads to the equation that relates , q, and n. Three
cases can be treated, which are (i) torsional waves for n = 0,
where Qθ is independent of θ , (ii) longitudinal waves for n = 0
where Qr and Qz are independent of θ , and (iii) flexural waves
for n = 1 where Qr , Qθ , and Qz are dependent on (r, θ, z).

1. Torsional waves

For axially symmetric torsional waves with n = 0, which
are the simplest case for elastic waves in a rod, the displace-
ment along the θ direction is defined by

Qθ (r,z,t) = − ∂

∂r
�z, (C15)

and Qr = Qz = 0, where the potentials φ, �r , and �θ are
taken to be zero. Here the solution for the potential is �z =
�z(r,z,t) and has the form

�z = BJ0(ηt r)ei(qz−t), (C16)

where B is an amplitude and η2
t = 2

v2
t

− q2. The displacement
reads

Qθ (r,z,t) = BηtJ1(ηt r)ei(qz−t). (C17)

The force-free surface leads to the condition [36]
ηtaJ2(ηta) = 0, where either ηta = 0 or J2(ηta) = 0. The case
of ηta = 0 gives the solution

�z ≈ −B
r2η2

t

6
ei(q0z−t), (C18)

with q0 = /vt . Hence, we have

Q0
θ ≈ 1

3
Bη2

t re
i(q0z−t). (C19)

The condition J2(ηta) = 0 gives a set of roots, e.g., ε1 = 5.136,
ε2 = 8.417, ε1 = 11.620, . . . , and we write εn = ηta, where
we can write the solutions as

Qn
θ = B

εn

a
J1(εnr/a)ei(qnz−t), (C20)

with q2 = 2

v2
t

− ε2
n

a2 .
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2. Longitudinal modes

For longitudinal acoustic modes with n = 0 from symmetry
consideration we have Qr = Qr (r,z,t), Qz = Qz(r,z,t), and
Qθ = 0. Here we have �r = �z = 0, and hence the displace-
ments are related to the potentials by

Qr = ∂φ

∂r
− ∂�θ

∂z
,

Qz = ∂φ

∂z
+ 1

r

∂(r�θ )

∂r
. (C21)

The solutions for the potentials are

φ = AJ0(ηlr)ei(qz−t),

�θ = −CJ1(ηt r)ei(qz−t), (C22)

where η2
i = 2

v2
i

− q2, for (i = l,t). The requirement of the

stress to vanish on the fiber boundary, (r = a), leads to the

Pochhammer frequency equation,(
q2 − η2

t

)2 ηlaJ0(ηla)

J1(ηla)
+ 4q2η2

l

ηtaJ0(ηta)

J1(ηta)
= 2η2

l

(
q2 + η2

t

)
.

(C23)

In the limit of qa 
 1 one gets the sound wave linear
dispersion  ≈ vtq. The displacements are given explicitly
by

Qr = −{AηlJ1(ηlr) − iqCJ1(ηt r)}ei(qz−t),

Qθ = 0, (C24)

Qz = {iqAJ0(ηlr) − ηtCJ0(ηt r)}ei(qz−t).

From boundary condition we can get also relations between A

and C. Namely, the vanishing of the stress and the strain on
the surface yields [36]

2iqηlJ1(ηla)A = [
η2

t − q2
]
J1(ηta)C. (C25)
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