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Dual-Lagrangian description adapted to quantum optics in dispersive and dissipative
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We develop a dual description of quantum optics adapted to dielectric systems without magnetic property. Our
formalism, which is shown to be equivalent to the standard one within some dipolar approximations discussed
in the article, is applied to the description of polaritons in dielectric media. We show that the dual formalism
leads to the Huttner-Barnett equations [B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992)] for QED in
dielectric systems. More generally, we discuss the role of electromagnetic duality in the quantization procedure
for optical systems and derive the structure of the dynamical laws in the various representations.
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I. INTRODUCTION

The description of quantized electromagnetic fields propa-
gating in a dielectric media has been the subject of intensive
research since the early times of quantum optics. It was
shown already in 1948 [1] that a Hamiltonian formalism
adapted to nondispersive and dissipative model can be easily
implemented by analogy with standard QED quantization
procedures used in vacuum. With the development of quan-
tum optics and integrated photonics, several authors have
extended the previous canonical quantization method to
complex inhomogeneous systems with a spatially dependent
dielectric permittivity ε(x) (see, for example, Refs. [2–4]).
However, in order to consider the physical properties of
realistic optical media, the central issue is the inclusion of
dispersion and dissipation in the quantum description [5].
Since these properties are connected by the well-known
Kramers-Kronig relations [6,7] related to causality, it is
clear that a correct description should not analyze dispersion
and dissipation separately. Nevertheless, when dissipation is
weak, it is actually possible to give a Hamiltonian basis to
the quantum formalism [8–11] using relations obtained long
ago byBrillouin [7,12] for the energy density in dispersive
media at frequency ω, at which absorption is negligible.
These approaches involve “quasimodal” expansions and were
recently applied to the field of quantum plasmonics [13] for the
coupling of emitters to nanoantennas [14–16] when dissipation
is weak. Clearly, these assumptions are, however, not generally
valid, e.g., in plasmonics [17–19], where optical resonances
with low-quality factors are coupled to fluorescent emitters
[20–29].

However, in the 1990’s it already became clear that
fundamental progresses could only occur by including more
degrees of freedom in the quantum description, i.e., by
modeling dissipation with thermal baths coupled to the
photonic variables. The approach was used in quantum
optics for the description of lossy beam splitters [30,31],
for instance, for modeling Casimir forces [32], and more
recently was applied in quantum plasmonics by modeling
decay channels as an information loss in the metal and/or
dielectric environment [33–35]. Moreover, the most important
progress came in 1992 when it was suggested by Huttner
and Barnett to model any dispersive and absorbing linear
bulk media satisfying Kramers-Kronig relations by using a

modified Hopfield-Fano [36,37] model involving a continuous
distribution of harmonic oscillator fields interacting with light
[38–44]. This powerful approach was originally limited to
infinite and homogeneous bulk media but continuous efforts
have been done later on to extend its range of validity to
the more interesting inhomogeneous medium case, which
is needed for nanophotonics applications in general and for
quantum plasmonics in particular [45–49]. Actually, these
formal developments of the original Huttner-Barnet model
[39] are strongly motivated by the parallel development of
the phenomenological Green function approach of Gruner
and Welsch [50–52] based on the Langevin equation method
[53] and the dyadic Green function formalism [54,55]. In
this strategy, a noise current is added phenomenologically
to Maxwell’s equation in order to preserve unitarity of
the full evolution and in particular the constancy of all
conjugate canonical variables commutator with time [56].
The Green function strategy has been intensively used in the
literature in the recent years [57–65] and applied to several
problems including dielectric or magnetic materials, and
coupling of light with atoms in the regime of weak or strong
coupling in presence of plasmonic nanoparticles [66–74].
Despite its success, the Langevin noise method applied to
macroscopic electrodynamics (unlike for atomic physics in
vacuum [53]) lacks a neat and clear quantum foundation that,
like the Huttner-Barnett model [39], could be justified using
a Hamiltonian description. In Refs. [45–47,49,75,76], general
proofs were given for the formal equivalence between the
Huttner-Barnett model and the Langevin noise approach.

This work contributes to this discussion by providing
a different Lagrangian and Hamiltonian foundation to the
approach considered in, e.g., Ref. [49]. More precisely, our
aim is to bypass the usual canonical procedure based on the
“minimal coupling” Lagrangian in the Coulomb gauge [77].
Generally speaking, this is usually done in the literature by
introducing the Power-Zienau unitary transformation [77,78]
leading to the multipolar representation of the electromagnetic
field [79]. Here, we proceed differently by introducing an
equivalent description of the electromagnetic system using
a dual electric vector potential F(x,t) different from the usual
magnetic vector potential A(x,t). With this formalism there
is no unphysical separation between transverse quantized and
longitudinal unquantized fields (indeed, this separation is not
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relativistically causal [77]). The method of quantization we
propose here is actually a direct way to introduce the multipolar
Hamiltonian [78,79], where the fundamental electromagnetic
quantities are now the displacement D and magnetic B
fields. In turn, this approach, adapted to neutral dielectric
systems without magnetic properties, will shed some new
light on the Huttner-Barnett model (which was based on the
minimal coupling scheme) and therefore on the derivation
of the Langevin noise method [50–52]. We conclude the
article by a discussion concerning electromagnetic duality
between electric and magnetic physical quantities and compare
different but equivalent representations of the dynamical laws.

II. GENERAL HUTTNER-BARNETT EFFECTIVE MODEL
FOR A LINEAR DIELECTRIC MEDIUM

A. A Lagrangian formulation

We here follow the standard approach in quantum electro-
dynamics and start with writing a Lagrange-Hamilton princi-
ple adapted to our system. In other words, we choose the La-
grangian L(t) and the Lagrangian density L(x,t) such that the
variational problem δ

∫ t2
t1

dt L(t) = δ
∫ t2
t1

dt
∫

d3xL(x,t) = 0
could be solved and lead to the Maxwell equations in a
dissipative and dispersive inhomogeneous dielectric medium.
However, in this work we will not consider the usual canonical
“minimal coupling” Lagrangian in the Coulomb gauge [53],
which was used historically by Huttner and Barnett [39], but
instead work with the dual choice (in the Lorentz-Heaviside
system of units):

L = B2 − D2

2
+ F · ∇ × P − P2

2
+ LM. (1)

Here, the Lagrangian density depends on the electric vector
potential F(x,t) ∈ R3 and its derivatives defined as

B(x,t) = 1

c
∂tF(x,t), D(x,t) = ∇ × F(x,t), (2)

with B(x,t) and D(x,t) being the magnetic and displacement
fields, respectively. Additionally, here we will work exclu-
sively in the “Coulomb” gauge ∇ · F(x,t) = 0. As detailed
in Appendix A and discussed in Sec. IV, the Lagrangian is
motivated by fundamental duality relations existing between
electric and magnetic variables. This in turn explains why
the magnetic field term B2/2 appears with a positive sign in
Eq. (1) while D2/2 appears with a negative sign contrarily to
the usual choice made in the minimal coupling representation.
We point out that this duality symmetry was discussed long
ago in a more classical context involving, for example,
chirality or bianisotropic materials [80–82], here we applied
this concept to the Lagrange-Hamilton language adapted to
second quantization. Moreover, in this formalism, the material
part LM reads as

LM =
∫ +∞

0
dω

(∂tXω)2 − ω2X2
ω

2
, (3)

where Xω(x,t) defines the material oscillator vectorial fields
which are coupled to the electromagnetic variables. These
fields are labeled by the pulsation ω varying continuously
from zero to +∞. We emphasize that in the total Lagrangian
density we have also a term −P2

2 which plays the role of an

internal interaction and which is not included in LM to respect
the conventions used in Ref. [39]. This choice for L leads
to the same dynamical equations as those deduced from the
usual formalism based on the minimal coupling Lagrangian
[53]. However, the dual formalism appears more convenient
for the present study of neutral dielectrics system since it
does not actually involve a nonphysical separation of the
electromagnetic field between a transverse (quantized) part
associated with photons and a longitudinal (unquantized) part
associated with noncausal Coulomb fields (see later on in this
paper). The present description can actually be seen as an
alternative way to access the multipolar representation which
is connected to the minimal coupling one through a unitary
transformation as shown by Power and Zienau [53,78,79].
Here, the use of the F potential vector allows us to deduce
similar results by introducing different canonical variables.
From the previous definitions follow directly (i.e., using the
Euler-Lagrange formalism) the two Maxwell equations

∇ × B(x,t) = 1

c
∂tD(x,t), ∇ · D(x,t) = 0. (4)

The matter field Xω(x,t) ∈ R3 is related to the polarization
density by the formula

P(x,t) =
∫ +∞

0
dω

√
2σω(x)

π
Xω(x,t), (5)

where the coupling function σω(x) � 0 will represent the
conductivity of the medium at the harmonic pulsation ω. The
fact that the conductivity is sufficient for describing the field
will be shown to be consistent with Kramers-Kronig relations
[39]. We emphasize that the part LM of the Lagrangian is not
exactly the same as the one used in Huttner-Barnett’s theory in
which three contributions associated with the electromagnetic
field, the dielectric and the oscillator bath were included. Here,
we use the simpler model proposed by Philbin [49] where the
electromagnetic field characterized in our approach by F is
directly coupled to the oscillator bath variables Xω without
including the additional and non-necessary mechanical oscil-
lator used in Refs. [38–44].

From Eqs. (1) and (3), we deduce straightforwardly the
Euler-Lagrange equations for the electromagnetic fields, i.e.,
the two missing Maxwell equations

∇ × E(x,t) = −1

c
∂tB(x,t), ∇ · B(x,t) = 0 (6)

with the electric field

E(x,t) = D(x,t) − P(x,t). (7)

For the matter oscillator field Xω(x,t) we similarly obtain the
second-order Euler-Lagrange equation

∂2
t Xω(x,t) + ω2Xω(x,t) =

√
2σω(x)

π
E(x,t), (8)

which contains a linear coupling to the local electric field (there
is no magnetic coupling such as a Lorentz force). The term
−P2

2 in the Lagrangian density (1) is necessary for deriving
this dynamical equation and obtaining a coupling proportional
to E(x,t) and not to D(x,t) [inversely, in absence of coupling
with D(x,t) the electric field in Eq. (8) is −P(x,t) which can
be seen as an internal force acting on the oscillators Xω(x,t)].
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Furthermore, in order to use the Hamilton formalism needed
for quantization we define the canonical momenta associated
with the different fields:

�Xω
= δL

δ(∂tXω)
= ∂Lω

∂(∂tXω)
= ∂tXω, �F = ∂L

∂(∂tF)
= B

c
,

(9)

where δ[...]
δ(∂t Xω) is a functional derivative and where L =∫ +∞

0 dωLω. This allows us to introduce the full Hamiltonian
defined as H = ∫

d3x[�F∂tF + ∫ +∞
0 dω�Xω

∂tXω] − L. We
get

H (t) =
∫

d3x
[

B2 + D2

2
− F · ∇ × P + P2

2

]
+ HM

=
∫

d3x
[

B2 + D2

2
− D · P + P2

2

]
+ HM

=
∫

d3x
B2 + E2

2
+ HM (10)

with the helpful condition
∫

d3x D · P = ∫
d3x F · ∇ × P, and

where the material contribution HM (t) reads as

HM (t) =
∫

d3x
∫ +∞

0
dω

(∂tXω)2 + ω2X2
ω

2
. (11)

For the purpose of canonical quantization, the full Hamiltonian
can be written as a functional of the conjugate canonical
variables and we deduce

H (t) =
∫

d3x
[
c2�2

F + ∇ × F2

2
− F · ∇ × P + P2

2

]
+

∫
d3x

∫ +∞

0
dω

(�Xω
)2 + ω2X2

ω

2
. (12)

At this stage it is useful to deduce Eq. (10) using a different
approach. Indeed, the Hamiltonian used here is an integral
form of the local energy-tensor conservation law associated
with Noether’s theorem and it can be preferable, for the sake
of generality, to use such a local approach instead of a global
one. Starting from Maxwell’s equation obtained with Eqs. (1)
and (3) we get the Poynting conservation theorem

− ∂t

(
B2 + E2

2

)
= ∇ · (cE × B) + J · E, (13)

which involves the local electric current J = ∂tP associated
with the polarization density P. Replacing P by its value
in Eq. (5) and after direct integration leads to J · E =
∂t [

∫ +∞
0 dω

(∂t Xω)2+ω2X2
ω

2 ] and therefore to the local conservation
law

− ∂tu = ∇ · (cE × B), (14)

where u, the local energy density, is given by u = B2+E2

2 +∫ +∞
0 dω

(∂t Xω)2+ω2X2
ω

2 . Integration over an infinite volume leads
to the Hamiltonian H (t) = ∫

d3x u(x,t) which becomes equiv-
alent to the total conserved energy if the Poynting vector
flow

∮
	∞

cE × B · d	 over the infinite closed surface 	∞
surrounding our system vanishes sufficiently well.

B. From the Lagrangian to the polarizability of the linear
dielectric medium

We should now summarize briefly the consequence of
the Lagrangian choice (1) and show that it allows us to
justify the usual Maxwell equations in a causal dielectric
medium satisfying Kramers-Kronig relations. To do that, we
have to solve our dynamical coupled equations for matter
and electromagnetic fields. In this section, we start with the
material field which is the easiest part. In order to solve the
evolution equation (8) we introduce here other field variables:

Z(±)
ω (x,t) = ∂tXω(x,t) ± iωXω(x,t) = [Z(∓)

ω (x,t)]∗, (15)

which obey to the following first-order equations:

∂tZ(±)
ω (x,t) = ±iωZ(±)

ω (x,t) +
√

2σω(x)

π
E(x,t). (16)

These equations are easily solved using the method of the
variation of constants and lead to

Z(±)
ω (x,t) = Z(±)

ω (x,t0)e±iω(t−t0) +
√

2σω(x)

π

×
∫ t−t0

0
dτ e±iωτ E(x,t − τ ) = Z(±,0)

ω (x,t)

+
√

2σω(x)

π

∫ t−t0

0
dτ e±iωτ E(x,t − τ ) (17)

with t0 an initial time which eventually could be sent infinitely
in the remote past, i.e., if t0 → −∞. We also introduced the
“free” solution Z(±,0)

ω (x,t) = Z(±)
ω (x,t0)e±iω(t−t0) correspond-

ing to the harmonic oscillation of the medium in the absence
of coupling.

We can of course go back to the initial field variables

by using the transformation Xω(x,t) = Z(+)
ω (x,t)
2iω

+ c.c. and

∂tXω(x,t) = Z(+)
ω (x,t)

2 + c.c. This leads to

Xω(x,t) = X(0)
ω (x,t) +

√
2σω(x)

π

∫ t−t0

0
dτ

sin ωτ

ω
E(x,t − τ )

(18)

with the free solution X(0)
ω (x,t) = Z(+,0)

ω (x,t)
2iω

+ c.c. {i.e.,
X(0)

ω (x,t) = cos [ω(t − t0)]Xω(x,t0) + sin [ω(t−t0)]
ω

∂tXω(x,t0)}.
The polarization density now reads as

P(x,t) = P(0)(x,t) +
∫ t−t0

0
χ (x,τ )dτE(x,t − τ ) (19)

with the free dipole density distribution

P(0)(x,t) =
∫ +∞

0
dω

√
2σω(x)

π
X(0)

ω (x,t) (20)

and the linear susceptibility

χ (x,τ ) =
∫ +∞

0
dω

2σω(x)

π

sin ωτ

ω
�(τ ). (21)

For convenience, we introduced the Heaviside unit step
function �(τ ), defined as �(τ ) = 1 unless τ < 0 whereas
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�(τ ) = 0. Now, we get for the displacement field

D(x,t) = E(x,t) + P(x,t) = P(0)(x,t)

+ E(x,t) +
∫ t−t0

0
dτ χ (x,τ )E(x,t − τ ). (22)

If as usually we consider the limit t0 → −∞, we can write

D(x,t) = P(0)(x,t) +
∫ +∞

−∞
dτ

ε(x,τ )

2π
E(x,t − τ ), (23)

where the dielectric permittivity of the polarizable medium is
defined as

ε(x,τ )

2π
= δ(τ ) + χ (x,τ ). (24)

In the following, we will keep this useful definition even if we
do not work in the limit t0 → −∞.

At this stage it is useful to introduce the Fourier transform
of the fields defined as Ã(ω) = ∫ +∞

−∞
dt
2π

eiωtA(t) and A(t) =∫ +∞
−∞ dω e−iωt Ã(ω). If we temporally suppose that it makes

mathematical sense to define a Fourier transform for D(x,t),
E(x,t), and P(x,t), then in the t0 → −∞ limit of Eq. (23) we
get

D̃(x,ω) = P̃(0)(x,ω) + ε̃(x,ω)Ẽ(x,ω),
(25)

ε̃(x,ω) = 1 + 2πχ̃ (x,ω).

Actually, it is not at all obvious that such a Fourier transform
can be defined unambiguously. Fluctuating and stationary
quantum fields are not in general converging sufficiently fast
in the future or past directions so that the Fourier transform
is not in general a well-defined mathematical object for real
frequency ω. The problem can be more rigorously handled
using Laplace’s transform [45,46]. We will not consider this
problem in this article, keeping the complete analysis for a
future work. Here, it is sufficient to observe that in optics the
Fourier transform

ε̃(x,ω) = 1 +
∫ +∞

0
dτ χ (x,τ )eiωτ (26)

is an analytical function in the upper part of the complex
plane ω = ω′ + iω′′, i.e., ω′′ > 0, provided χ (x,τ ) is finite for
any time τ � 0. From this naturally follows the symmetry
ε̃(x, − ω)∗ = ε̃(x,ω∗). From these analytical properties it
is possible to derive the general Kramers-Kronig relations
existing between the real part Re[̃ε(x,ω)] ≡ ε̃′(x,ω) and
the imaginary part Im[̃ε(x,ω)] ≡ ε̃′′(x,ω) of the permittivity.
Remarkably, Eq. (21) fully satisfies these conditions. Indeed,
we can write the Fourier transform of Eq. (21) in the upper
complex plane

χ̃(x,ω′ + iω′′) =
∫ +∞

0

du

π

σu(x)/π

u2 − (ω′ + iω′′)2

=
∫ +∞

−∞

du

2π

σu(x)

πu

1

u − ω′ − iω′′ , (27)

where we used the relation

1

u2 − (ω′ + iω′′)2
= 1

2u

[
1

u − ω′ − iω′′ + 1

u + ω′ + iω′′

]
(28)

as well as the symmetry (definition) σu(x) = σ−u(x). We thus
get in the limit ω′′ → 0+

ε̃(x,ω′ + i0+) = 1 +
∫ +∞

−∞

du

π

σu(x)

u

1

u − ω′ − i0+

= 1 + P

[∫ +∞

−∞

du

π

σu(x)

u

1

u − ω′

]
+ i

σω′

ω′ ,

(29)

where P [. . .] denotes Cauchy’s principal value. This is
Kramers-Kronig relation if we use the identity ε̃′′(x,ω′) =
σω′ (x)

ω′ along the real axis. We have thus ε̃′′(x,ω) = −̃ε′′(x, − ω)
and ε̃′(x,ω) = ε̃′(x, − ω) in agreement with the symmetry
requirement [from Eq. (27) we deduce χ̃ (x, − ω)∗ = χ̃(x,ω∗).
Equation (21) characterizing the generalization of the Huttner-
Barnett model [39] is thus a complete representation of a
causal linear dielectric medium including both dispersion and
dissipation.

III. FORMAL QUANTIZATION PROCEDURE

A. Quantizing the matter field equations

In order to obtain a quantized theory of the matter field it is
useful to introduce the auxiliary fields f∗

ω(x,t), fω(x,t) which
correspond to rising-lowering operators:√

�

2ω
fω(x,t) = Z(−)

ω (x,t)

−2iω
,

√
�

2ω
f∗
ω(x,t) = Z(+)

ω (x,t)

2iω
(30)

with Xω(x,t) =
√

�

2ω
[fω(x,t) + f∗

ω(x,t)]. From this we can
obtain the following representation for the Hamiltonian HM :

HM =
∫

d3x
∫ +∞

0
dω �ωf∗

ω(x,t)fω(x,t). (31)

Canonical quantization starts with the replacement of the
vector fields fω by operators acting on the Hilbert space
associated with the quantum system under study. In particular,
we have the replacement f∗

ω(x,t) → f†ω(x,t). The equal-time
commutators between the conjugate canonical variables read
as

[Xω(x,t),�Xω′ (x′,t)] = i�δ(ω − ω′)δ3(x − x′)I (32)

and

[Xω(x,t),Xω′(x′,t)] = [�Xω
(x,t),�Xω′ (x′,t)] = 0 (33)

with I = x̂ ⊗ x̂ + ŷ ⊗ ŷ + ẑ ⊗ ẑ the unit dyad. We used the
definition [A(x),B(x′)] = ∑

μ,ν[Aμ(x),Bν(x′)]x̂μ ⊗ x̂ν . This
implies the commutation rules

[fω(x,t),f†ω′(x′,t)] = δ(ω − ω′)δ3(x − x′)I (34)

and [fω(x,t),fω′(x′,t)] = [f†ω(x,t),f†ω′(x′,t)] = 0 allowing a
clear interpretation of fω(x,t) and f†ω(x,t) as lowering and rising
operators for the bosonic states associated with the matter
oscillators. The quantized Hamiltonian operator is obtained
by using the normal-ordered product HM →: HM : such as

: HM :=
∫

d3x
∫ +∞

0
dω �ωf†ω(x,t)fω(x,t) (35)
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which allows the elimination of the unphysical vacuum infinite
energy by locating all creation operators to the left of all
annihilation operators in a product.

At that stage it is useful to focus on the polarization density
P(0)(x,t) which can be equivalently written as

P(0)(x,t) =
∫ +∞

0
dω

√
�σω(x)

πω
[f(0)

ω (x,t) + f†(0)
ω (x,t) (36)

with by definition f(0)
ω (x,t) = fω(x,t0)e−iω(t−t0). This mathe-

matical expression allows for an unambiguous definition of
the Fourier transform P̃(0)(x,ω) along the real axis which reads
as

P̃(0)(x,ω) =
∫ +∞

0
dω′

√
�σω′(x)

πω′ [f(0)
ω′ (x,t0)

× eiω′t0δ(ω − ω′) + f†(0)
ω′ (x,t0)e−iω′t0δ(ω + ω′)].

(37)

The presence of Dirac distributions is key in the reasoning
since it allows us to identify the frequency ω′ in the
integral with the pulsation ω of the Fourier transform. In

other words, we have P̃(0)(x,ω) =
√

�σω(x)
πω

f(0)
ω (x,t0)eiωt0 for

ω > 0 while P̃(0)(x,ω) =
√

�σ−ω(x)
−πω

f†(0)
−ω (x,t0)eiωt0 for ω < 0.

Now, Maxwell’s equations allow the definition of the cur-
rent operator J(0)(x,t) = ∂tP(0)(x,t) which implies J̃(0)(x,ω) =
−iωP̃(0)(x,ω). Furthermore, we have

[f(0)
ω (x,t),f†(0)

ω′ (x′,t)] = δ(ω − ω′)δ3(x − x′)I, (38)

and we thus deduce (for ω,ω′ � 0 or ω,ω′ � 0)

[̃J(0)(x,ω),̃J†(0)(x′,ω′)] = ω
�σω(x)

π
δ(ω − ω′)δ3(x − x′)I

(39)

or, equivalently, [̃J(0)(x,ω),̃J†(0)(x′,ω′)] = 〈0|̃J(0)(x,ω) ⊗
J̃†(0)(x′,ω′)|0〉 [note that Eq. (39) vanishes if ω and ω′ have
different signs].

These formulas are in full agreement with the Gruner-
Welsch [50–52] formalism which defines a quantum version of
the fluctuation-dissipation theorem for the dielectric medium.
We point out that in the Langevin noise approach, the
fundamental Hamiltonian is given by the fluctuating term

H
(0)
M =

∫
d3x

∫ +∞

0
dω �ωf†(0)

ω (x,t)f(0)
ω (x,t). (40)

It was the aim of the original derivation by Huttner and
Barnett [39] (see also Refs. [47,49]) to demonstrate that the
Hamiltonian H

(0)
M is for all practical needs sufficient for any

QED calculations in a dielectric medium. The equivalence will
not be studied in this article since it requires a specific study.

B. Formally quantizing the Maxwell equation

In order to quantize Maxwell’s equations, it is here
sufficient to solve formally these equations by considering the
polarization P(x,t) as an external source. We will give some
details on the derivation here since the use of the F potential
is not very common in the context of quantum optics. The
strategy will be, like we did for the material field, to start

from the Heisenberg picture in which priority is given to the
field evolution equations but with “c numbers” replaced by
“q numbers,” i.e., operators, which are both time and space
dependent. First, from Maxwell’s equations we obtain the
following second-order differential equation:

1

c2
∂2
t F(x,t) − ∇2F(x,t) − ∇ × P(x,t) = 0, (41)

which can be formally solved by using a modal expansion of
the potential into plane waves. For this we write

F(x,t) =
∑
α,j

qα,j (t)ε̂α,j�α(x) (42)

with α a generic label for the wave vector kα , �α(x) =
eikα ·x/

√
V (here we consider as it is usually done the periodical

“box” Born–von Karman expansion in the rectangular box
of volume V ), j = 1 or 2, labels the two transverse polar-
ization states with unit vectors ε̂α,1 = kα × ẑ/|kα × ẑ| and
ε̂α,2 = k̂α × ε̂α,1 (conventions and more details are given in
Appendix B). The method for solving Maxwell’s equations is
to transform the second-order differential evolution (41) into a
set of first-order equations in time. For this we use the variables

c
√

2�ωαcα,j (t) = d

dt
qα,j (t) − iωαqα,j (t). (43)

We thus obtain a modal expansion for the fields:

F(x,t) =
∑
α,j

ic

√
�

2ωα

cα,j (t)ε̂α,j�α(x) + c.c.,

D(x,t) =
∑
α,j

−
√

�ωα

2
cα,j (t)k̂α × ε̂α,j�α(x) + c.c.,

B(x,t) =
∑
α,j

√
�ωα

2
cα,j (t)ε̂α,j�α(x) + c.c. (44)

Quantization of those fields holds if we impose the commuta-
tion relations [cα,j (t),c†β,k(t)] = δα,βδj,k , [cα,j (t),cβ,k(t)] = 0,

and [c†α,j (t),c†β,k(t)] = 0. We can easily deduce several useful
commutation relations (see Appendix B) like, for example,

[Bj (x,t),Ek(x′,t)] = [Bj (x,t),Dk(x′,t)]

= ic�

∑
l

εj,k,l∂lδ
3(x − x′). (45)

This commutator plays an important role in the Langevin’s
equation [56] approach and it is here deduced directly from our
canonical formalism. Furthermore, using this representation
based on the F potential the Hamiltonian for the pure field
HF = ∫

d3x(B2 + D2)/2 becomes

: HF (t) :=
∑
α,j

�ωαc
†
α,j (t)cα,j (t) (46)

which has the usual form for free bosons.
We conclude this section by commenting on the use

of the electric potential F(x,t) instead of the more usual
magnetic potential A(x,t). Standard canonical quantization of
the electromagnetic field starts from the separation B(x,t) =
∇ × A(x,t) and E(x,t) = −1

c
∂tA(x,t) − ∇V (x,t) where V is
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the scalar potential. The usual standard Lagrangian density
reads as

Ls = E2 − B2

2
+ A · J

c
− ρV + LM, (47)

where LM is the same as in Eq. (2). This Lagrangian density
allows us to derive the same equation of motion as done before.
However, since the canonical momentum �V associated to V

is vanishing we cannot define commutators for those fields and
the quantization procedure becomes tricky unless we use the
Gupta-Bleuer method [77]. The usual solution to circumvent
this difficulty is to work exclusively in the Coulomb gauge ∇ ·
A(x,t) = 0 which allows a clear separation between physical
and redundant electromagnetic variables (see Ref. [77] for
a clear analysis of this problem). The field is thus separated
into a transverse contribution E⊥(x,t) = −1

c
∂tA(x,t), B(x,t) =

∇ × A(x,t), which can be nicely quantized, and into a
longitudinal electric field E‖(x,t) = −∇V (x,t) = −P‖(x,t)
which depends on material fields. Without rewriting here
the complete analysis, this formalism leads to the following
second-order equation:

1

c2
∂2
t A(x,t) − ∇2A(x,t) − J⊥(x,t)

c
= 0 (48)

with J(x,t) = ∂tP(x,t). By using a modal expansion A(x,t) =∑
α,j xα,j (t)ε̂α,j�α(x) and the transformation

− c
√

2�ωαaα,j (t) = d

dt
xα,j (t) − iωαxα,j (t) (49)

similar in spirit to Eqs. (44)–(50) we can rewrite the relevant
quantized transverse fields as

A(x,t) =
∑
α,j

−ic

√
�

2ωα

aα,j (t)ε̂α,j�α(x) + c.c.,

B(x,t) =
∑
α,j

√
�ωα

2
aα,j (t)k̂α × ε̂α,j�α(x) + c.c., (50)

E⊥(x,t) =
∑
α,j

√
�ωα

2
aα,j (t)ε̂α,j�α(x) + c.c.,

which must be compared with Eq. (44). The most important
difference between the formalism using A and the one based on
F is that the latter uses only local and causal electromagnetic
properties such as D, B, and P while the former uses a
separation between transverse and longitudinal fields and
currents which not are causal when taken separately [77]. It
is therefore an advantage of our method to eliminate such
unphysical separation from the ground.

Quantization can be easily done by imposing the commu-
tation rules [aα,j (t),a†

β,k(t)] = δα,βδj,k and [aα,j (t),aβ,k(t)] =
[a†

α,j (t),a†
β,k(t)] = 0 from which we deduce the same field

commutators as the one discussed previously and derived in
the Appendix [in particular Eq. (45)].

The canonical Lagrangian density

Lc = E2
⊥ − B2

2
+ A · J⊥

c
− ρV/2 + LM (51)

with ρ = −∇ · P = −∇ · P‖ (implying
∫

d3x E2
|| =∫

d3x P2
|| = ∫

d3x ρV ) allows us to introduce the canonical
Hamiltonian

Hc(t) =
∫

d3x

[
E2

⊥ + B2

2
− A · J⊥

c
+ E2

‖
2

]
+ Hc,M,

(52)

where the canonical Hamiltonian for the matter field differs
from HM , as given in Eq. (12), by the amount Hc,M − HM =
A · J⊥

c
. This results from a different canonical momentum

for the matter field �c,Xω
= ∂tXω +

√
2σω(x)

π
A. The canonical

Hamiltonian Hc(t) can be also expressed as a functional of the
canonical variables and we get

H (t) =
∫

d3x

[
c2�2

A + ∇ × A2

2
+ P2

||
2

]

+
∫

d3x
∫ +∞

0
dω

[
�c,Xω

−
√

2σω(x)
π

A
]2 + ω2X2

ω

2

(53)

which should be compared with Eq. (12).
Despite these differences, the terms proportional to A · J⊥

c

cancel out in Eq. (52) and we get the remarkable result

Hc(t) =
∫

d3x
B2 + E2

2
+ HM (t) = H (t) (54)

with
∫

d3x :B2+E2
⊥:

2 = ∑
α,j �ωαa

†
α,j (t)aα,j (t). Equation (54)

shows that the two formalisms based on A or F should be
equivalent (this is also confirmed by the fact that we obtain
the same commutators for the electromagnetic fields in both
formalisms). Rigorously, the correspondence between these
two languages can be done by equating the electromagnetic
fields obtained with both methods. We thus obtain a relation-
ship between the xα,j (t) and qα,j (t) variables. This is done
easily by remarking that we have D = E + P = E⊥ + P⊥. As
explained in Appendix C, we get

cα,1(t) = −aα,2(t) − 1√
2�ωα

Pα,2(t),

(55)

cα,2(t) = aα,1(t) + 1√
2�ωα

Pα,1(t)

with the definition

Pα,j (t) =
∫

d3x
∫ +∞

0
dω

√
2σω(x)

π
Xω(x,t) · ε̂α,j�

∗
α(x).

(56)

We emphasize that the transformation between two formalisms
based on F and A potentials can be handled differently using
the so called Power-Zienau unitary transformation [77]. In this
article, we did not use this approach (see, however, Appendix
C) and we instead introduced the dual Lagrangian given in
Eq. (1). We will, however, discuss further in the conclusion
the relationship between the different formalisms.

Before leaving this sectio,n we emphasize that all the
dynamical equations used previously could be equivalently
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obtained from the Heisenberg equation, which, for an operator
A(t), reads as i� d

dt
A(t) = [A(t),H (t)] where H (t) is the full

Hamiltonian operator. This was checked for the equations used
in this work. However, we point out that the Hamiltonian
formalism has some intrinsic limitations since it relies on
some convergence hypothesis which was briefly mentioned
in Sec. II. Indeed, since for fields we discuss the problem
of radiating system the conservation of the energy in a fixed
volume is in general not valid unless we accept some specific
boundary conditions at spatial infinity (i.e., in general, the
Poynting vector flow at infinity does not vanish). At the
opposite, we could take the quantized dynamical equations
as fundamental postulates of the theory without relying on
the Hamilton operator and checking the consistency of the
formulas at hand (see also Ref. [83] for a wave-function
analysis of the photon dynamics in vacuum). However, both
approaches give of course similar results as far as the boundary
conditions are taken into considerations.

IV. COMPARISON WITH THE MINIMAL COUPLING
AND MULTIPOLAR REPRESENTATION

While the previous analysis was given in order to model
macroscopic quantum electrodynamics in dielectric media, it
is particularly important to discuss the microscopic physical
origin of the model in order to evaluate the hypothesis,
limitations, and possible generalization of the approach. First,
observe as a reminder that the minimal coupling scheme
associated with the Lagrangian density (51) corresponds
actually to the continuous limit of the nonrelativistic Lagrange
function [77]

Lc =
∫

d3x
E2

⊥ − B2

2
+ A · J⊥

c
− ρV

2
+

∑
n

Tn − U,

(57)

where
∑

n Tn is the discrete sum of the kinetic energy
terms Tn = 1

2mn[ dxn(t)
dt

]2 associated with the pointlike parti-
cle with individual mass mn and spatial coordinates xn(t)
(n = 1, . . . ,N is an integer labeling the particles) [77]. We
also included an interaction potential U (x1, . . . ,xN ) which
depends on the N particle coordinates. In this description, the
symmetrized electric current is

J = 1

2

∑
n

en

dxn(t)

dt
δ3(x − xn) + 1

2

∑
n

enδ
3(x − xn)

dxn(t)

dt

(58)

(the symmetrization is necessary for satisfying the commuta-
tion relations) while the charge density is ρ = ∑

n enδ
3(x −

xn) with en the individual charge of each moving individual
electron. For neutral matter, this total charge

∑
n en is of course

globally neutralized by the static charges of the atomic nuclei.
Moreover, in the Coulomb gauge description, the fundamental
current is the transverse current J⊥ where the transverse delta
function δ⊥(x − xn), defined in Eq. (B14), replaces δ3(x − xn).
From Eq. (51) we deduce the direct generalization of the

Hamiltonian Hc given by Eq. (52):

Hc(t) =
∫

d3x

[
E2

⊥ + B2

2
− A · J⊥

c
+ E2

‖
2

]
+

∑
n

Tn + U

(59)

with Tn = [pn−enA(xn,t)/c]2

2mn
is explicitly written using the particle

canonical momentum pn = mn
dxn(t)

dt
+ enA(xn,t)/c associated

with xn. Moreover, the full evolution leads straightforwardly
to Maxwell’s equations [77] and to the quantized Lorentz force
dynamical equation

mn

d2xn(t)

dt2
= enE(xn,t) − ∂

∂xn

U + en

1

2c

dxn(t)

dt

× B(xn,t) − en

1

2c
B(xn,t) × dxn(t)

dt
, (60)

where the symmetrization is required from the ground.
The usual approximation made to model a dielectric

medium is to expand the Lorentz force as a power of the relative
coordinate ξn between the nth electron and the associated
nuclei (we suppose only one electron per atom). The classical
result [55] implies the standard dipolar approximation leading
to the force

Mn

d2Xn(t)

dt2
� en

i=3∑
i=1

ξn,i

∂

∂Xn

Ei(Xn,t)

+ en

∂

∂t

[
ξn × B(Xn,t)

c

]
, (61)

where Xn is the center-of-mass coordinate of the electron-
nucleus system with total mass Mn. In many applications, e.g.,
with harmonic excitation, the time derivative in the second
terms average to zero so that only the gradient force survives
[55]. This center-of-mass equation is not exhausting the
dynamics of the dielectric system and for optical application
the fundamental relation is the internal dynamics which is
given by the equation

μn

d2ξn(t)

dt2
� enE(Xn,t) − ∂

∂ξn

Un(ξn) + en

1

2c

dXn(t)

dt

× B(Xn,t) − en

1

2c
B(Xn,t) × dXn(t)

dt
, (62)

where we have made the assumption U = ∑
n Un(ξn) and in-

troduced the reduced mass μn = m(e)
n m(n)

n /Mn of the electron-
nucleus pair. Clearly, Eq. (8) is a special case of this internal
dynamics corresponding to a harmonic interaction potential Un

and to the static condition dXn(t)
dt

= 0 removing the magnetic
Lorentz force. We now point out that while the minimal
coupling description is clearly sufficient for many purposes,
a different but rigorously equivalent way to describe the
electromagnetic coupling in dielectric systems is to use the
multipolar representation [77–79,83]. It is obtained by adding
a term − d

dt
[
∫

d3x A·P
c

] to the canonical Lagrangian given by
Eq. (57). Through this canonical transformation and after
introducing the density of electric and magnetic polarization
P and M (which for neutral systems are connected to J and
ρ by J = ∂tP + c∇ × M, and ρ = −∇ × P), we obtain the
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Lagrange function

Lmulti. =
∫

d3x
[

D2 − B2 − P2

2
+ M · B

]
+

∑
n

Tn − U.

(63)

With this definition we deduce the canonical mo-
menta �A,multi = −D

c
and pn,multi = mn

dxn(t)
dt

+ ∂
∂ ẋn

[
∫

d3x M ·
B] (which differ from the usual minimal coupling values) and
a different Hamiltonian

Hmulti =
∫

d3x
[

D2 + B2 + P2

2
− M · B − P · D

]
+

∑
n

Tn + U +
∑

n

ẋn · ∂

∂ ẋn

[∫
d3xM · B

]
. (64)

These equations are sufficient to obtain directly the macro-
scopic Maxwell equations for any dielectric and magnetic
media. In the general case, the electric dipole density P
is expressed in the classical problem by a line integral
as [55,77,79] P(x,t) = ∑

n enξn(t)
∫ 1

0 duδ3(x − uξn − x(N)
n )

with x(N)
n the coordinate of the nth nuclei of electric charge

−en and ξn + x(N)
n := x(e)

n is the coordinate of the electron of
electric charge en. We have generally

ρ = −∇ · P =
∑

en

[
δ3

(
x − x(e)

n

) − δ3
(
x − x(N)

n

)]
(65)

in order to preserve the total charge cancellation of
the dielectric medium. We obtain similarly M(x,t) =∑

n
en

c

∫ 1
0 du δ3(x − uξn − x(N)

n )ξn(t) × [udξn

dt
+ dx(N)

n

dt
] and

thus the classical (nonsymmetric) current

J =
∑

en

[
dx(e)

n

dt
δ3

(
x − x(e)

n

) − dx(N)
n

dt
δ3

(
x − x(N)

n

)]
. (66)

We point out that the rigorous extension of the line integral
formulas from classical to quantum regime is not a trivial
task since we should consider carefully the noncommutation
of conjugate variables, i.e., positions and velocities [84,85].
It is alternatively possible to use the second quantized
formalism involving the wave-function operators �(x,t),
�†(x,t) associated with particles to remove ambiguities [86].
Hence, at the end we will obtain a symmetrized current
like in Eq. (58). With these definitions it is not difficult
to obtain Hmulti = ∫

d3x[ E2+B2

2 ] + ∑
n Tn + U allowing us to

identify the multipolar Hamiltonian with the total energy. For
the present purpose we are interested in the crude dipolar
approximation M(x,t) ≈ 0, P(x,t) ≈ ∑

n enξn(t)δ3(x − Xn)
with Xn � x(N)

n the center-of-mass coordinate of the nth
electron-nucleus pair [in order to remove the singularity of the
delta function δ3(x) and the infinite self-interaction coming
from the term P2/2 in the Lagrangian and Hamiltonian, one
can alternatively introduce a narrow function �(x) [6] peaked
on the origin]. Within this approximation, the total force acting
on the electron-nucleus system leads to the dynamical law

Mn

d2Xn(t)

dt2
� en

i=3∑
i=1

ξn,i

∂

∂Xn

Ei(Xn,t) (67)

without the time-derivative term in Eq. (61) [Eq. (61)
can be justified by relaxing the approximation done on

P and M [4,87], i.e., by introducing a Rontgen current
in the Hamiltonian [88]). These forces can be summed over
the different particles and lead to the total force acting on the
medium: Ftotal = ∫

d3x
∑i=3

i=1 Pi(x,t)∇Ei(x,t) (the inclusion
of internal forces between particles n and m will not change
the final result as far as these additional terms cancel out over
the summation and integration). Importantly, in the multipolar
framework the internal dynamical motion given by Eq. (62)
is kept unchanged, meaning that all optical QED applications
in a dielectric medium can be handled equivalently with the
minimal coupling or multipolar scheme.

What is, however, key for this article is to check the self-
consistency of our dual representation discussed in previous
sections and based on the electric potential F. To do this,
observe that the obvious generalization of Lagrangian (1) reads
as

L =
∫

d3x
[

B2 − D2

2
+ F · ∇ × P − P2

2

]
+

∑
n

Tn − Un.

(68)

As explained in Appendix A, this Lagrangian is actually
obtained from the multipolar Lagrangian (63) by using some
duality relations between electric and magnetic quantities.
By using the electromagnetic dual-Lagrangian Lm,multi. [see
Eq. (A5)] with M =0 we have L = Lm,multi + ∑

n Tn − Un −∫
d3x P2

2 . The added terms only depend on the particle variables
and are not affecting the Maxwell equations. The inclusion of
the supplementary potential

∫
d3x P2

2 is necessary in order to
justify the equations of motion (62) and (67). As explained
before, the inclusion of internal forces leads to Eq. (62)
and this is true in this representation as well. In this way,
the Huttner-Barnett Lagrangian LM [see Eq. (3)] is only a
particular case leading to Eq. (8). Still, in all cases we can
easily obtain the macroscopic Maxwell equations as well as the
dynamical motion laws for the particles, i.e., Eq. (67) without
the time-derivative term. Clearly, this means that the approach
outlined in this paper is equivalent to the minimal coupling or
multipolar Lagrangian within the crude dipolar approximation,
which is what we wanted to demonstrate (more on this and on
the duality relation is given in Appendix A).

V. CONCLUSION

To conclude, we introduced a dual representation of the
quantized electromagnetic field in dielectric media based
on the transverse electric potential vector F instead of the
usual magnetic potential vector A in the Coulomb gauge.
The method, contrarily to the usual minimal coupling rep-
resentation, involves only physical, i.e., local and causal,
quantities. We showed that our approach is well adapted to
the analysis of neutral systems without magnetic property.
The dual-Lagrangian formalism is equivalent to both standard
multipolar and minimal coupling representations within the
crude dipolar approximation. This allowed us to rederive the
standard QED equations within the Huttner-Barnett model
for quantized polaritons [39,47,49]. The equivalence with the
usual commutation relations given in the Langevin noise ap-
proach [52,65] was discussed and the Hamiltonian formalism
was justified from the ground within our dual approach. In
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future works, we plan to apply the dual-Lagrangian formalism
to general QED questions in homogeneous and inhomo-
geneous dielectric media involving coupling with quantum
emitters. We believe our work will motivate further studies
concerning duality relations and quantization in dense optical
media.
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APPENDIX A: DUALITY IN DIELECTRIC
AND MAGNETIC MEDIA

It is interesting to understand that the motivation for the
Lagrangian given by Eqs. (1) and (68) is connected to a
particular form of duality existing for Maxwell’s equations.
Consider indeed the most general set of Maxwell’s equations
for continuous media:

∇ × B = 1

c
∂tE + Je

c
, ∇ · B = 0,

(A1)

∇ × E = −1

c
∂tB, ∇ · E = ρe,

where the electric current and charge density are given by Je =
∂tP + c∇ × M and ρe = −∇ · P. By introducing H = B − M
and D = E + P, Eqs. (A1) transform as

∇ × D = −1

c
∂tH + Jm

c
,∇ · D = 0,

(A2)

∇ × H = 1

c
∂tD,∇ · H = ρm

with the magnetic current and charge density given by Jm =
∂tM − c∇ × M and ρm = −∇ · M. There is clearly a duality
relation between Eqs. (A1) and (A2) and we go from the first
to the second by the dual replacement

E → −H, B → D,

Je → −Jm, P → −M,
(A3)

ρe → −ρm, M → P,

A → F, V → V ′,

where by definition H = 1
c
∂tF + ∇V ′ which depends on the

dual potentials F and V ′. Now, Eqs. (A1) can be derived from
the standard electromagnetic canonical Lagrangian density
Le = E2−B2

2 + A · Je

c
− ρeV , i.e., Eq. (47) without the material

part. This means that the dual set of equations (A2) can
equivalently be derived from the “standard” Lagrange function

Lm,s = H2 − D2

2
− F · Jm

c
+ ρmV ′. (A4)

The multipolar analog of Eq. (63) Lm,multi = Lm,s +
d
dt

[
∫

d3x F·M
c

] reads as in this language

Lm,multi =
∫

d3x
[

B2 − D2 − M2

2
+ P · D

]
(A5)

and the Hamiltonian becomes

Hm =
∫

d3x
[

B2 + D2 + M2

2
− P · D − B · M

]
. (A6)

This duality is actually reminiscent of the early work made
in the 19th century when Coulomb and Biot proposed an
interpretation of magnetism in terms of magnetic charge (in
analogy with electrostatic) while Ampere proposed to give a
electric current origin to magnetism [89]. The equivalence is,
however, not complete since there is no magnetic monopole
in the standard electromagnetism approach. More precisely, if
we consider the total force acting on a medium characterized
by P and M in the standard Maxwell representation (A1) we
get from Noether’s theorem

Fe,total =
∫

d3x
[
ρeE + Je × B

c

]
= d

dt

[∫
d3x

P × B
c

]

+
∫

d3x
i=3∑
i=1

[Pi(x,t)∇Ei(x,t) + Mi(x,t)∇Bi(x,t)]

(A7)

while the dual representation (A2) leads to the total force

Fm,total =
∫

d3x
[
ρmH − Jm × D

c

]
= d

dt

[∫
d3x

D × M
c

]

+
∫

d3x
i=3∑
i=1

[Pi(x,t)∇Ei(x,t)+Mi(x,t)∇Bi(x,t)].

(A8)

Clearly, in general Fe,total differs from Fm,total unless the
time derivatives cancel. This special case occurs in the
magnetostatic limit but also for oscillating motions when time
average removes the time-derivative terms as in Eq. (67) (this
is the case for fluctuating forces considered in nanophotonics
[55])

APPENDIX B: PLANE-WAVE MODAL EXPANSION AND
QUANTIZATION OF THE ELECTROMAGNETIC FIELD

In order to quantize the electromagnetic field using a
plane-wave modal expansion, we first remind several mathe-
matical properties of the Born–von Karman expansion method.
First, we have the normalization [obtained from ∇2�α(x) +
k2
α�α(x) = 0, with kα = |kα| = ωα/c]∫

V

d3x �α(x)�∗
β(x) = δα,β . (B1)

Second, we have the following symmetries for kα = −k−α:

�−α(x) = �∗
α(x), ε̂−α,1 = −ε̂α,1,ε̂−α,2 = +ε̂α,2, (B2)

which we summarize as ε̂−α,j = ηj ε̂α,j with η1 = −1 and
η2 = +1. The field being real valued, i.e., F(x,t) = F∗(x,t),

053826-9
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we deduce

q−α,j (t) = ηjq
∗
α,j (t). (B3)

In order to solve Eq. (39) it is useful to introduce the auxiliary
variables

Z
(±)
α,j (t) = d

dt
qα,j (t) ± iωαqα,j (t), (B4)

i.e.,

qα,j (t) = Z
(+)
α,j (t) − Z

(−)
α,j (t)

2iωα

,

d

dt
qα,j (t) = Z

(+)
α,j (t) + Z

(−)
α,j (t)

2
. (B5)

From the reality requirement (B3) we deduce

Z
(±)
−α,j (t) = ηjZ

(∓)
α,j

∗
(t). (B6)

These relations and definitions lead to

F(x,t) =
∑
α,j

Z
(−)
α,j (t)

−2iωα

ε̂α,j�α(x) + c.c.,

D(x,t) =
∑
α,j

−Z
(−)
α,j (t)

2c
k̂α × ε̂α,j�α(x) + c.c., (B7)

B(x,t) =
∑
α,j

Z
(−)
α,j (t)

2c
ε̂α,j�α(x) + c.c.

In this representation the field equations read as

Ż
(±)
α,j (t) = ±iωαZ

(±)
α,j (t) + Sα,j (t) (B8)

with the source term

Sα,j (t) = c2
∫

d3x ∇ × P(x,t) · ε̂α,j�
∗
α(x). (B9)

One strategy for quantizing the electromagnetic field is to
introduce rising c

†
α,j (t) and lowering cα,j (t) photon operators

defined by

Z
(−)
α,j (t)

2c
=

√
�ωα

2
cα,j (t) (B10)

with the commutators [cα,j (t),c†β,k(t)] = δα,βδj,k and

[cα,j (t),cβ,k(t)] = [c†α,j (t),c†β,k(t)] = 0. We thus have

qα,j (t) = c
√

(2�ωα)
ηjc

†
−α,j (t) − cα,j (t)

2iωα

,

d

dt
qα,j (t) = c

√
(2�ωα)

ηjc
†
−α,j (t) + cα,j (t)

2
. (B11)

This means

[qα,j (t),q̇†
β,k(t)] = [q†

β,j (t),q̇α,k(t)] = i�c2δα,βδj,k (B12)

and [qα,j (t),qβ,k(t)]= [qα,j (t),q†
β,k(t)]=0, [q̇α,j (t),q̇β,k(t)]=

[q̇α,j (t),q̇†
β,k(t)] = 0. From these we deduce

[F(x,t),�F(x′,t)] = [F(x,t),�†
F(x′,t)]

=
∑

α,β,j,k

[qα,j (t),q̇†
β,k(t)]

c2

× ε̂α,j ⊗ ε̂β,k�α(x)�∗
β(x′)

= i�δ⊥(x − x′) (B13)

with the unit transverse dyadic distribution

δ⊥(x − x′) =
∑
α,j

ε̂α,j ⊗ ε̂α,j�
∗
α(x′)�α(x). (B14)

We have also [F(x,t),F(x′,t)] = [�F(x,t),�F(x′,t)] = 0.

From these relations we deduce the commutation rules

[B(x,t),B(x′,t)] = [D(x,t),D(x′,t)] = 0 (B15)

and

[Bj (x,t),Dk(x′,t)] = ic�

∑
l

εj,k,l∂lδ
3(x − x′). (B16)

However, X and F conjugate variables commute as
well and we have [B(x,t),P(x′,t)] = [D(x,t),P(x′,t)] =
[P(x,t),P(x′,t)] = 0. Therefore, from E(x,t) = D(x,t) −
P(x,t) we deduce [E(x,t),E(x′,t)] = 0 and

[Bj (x,t),Ek(x′,t)] = [Bj (x,t),Dk(x′,t)]

= ic�

∑
l

εj,k,l∂lδ
3(x − x′). (B17)

Within this approach, the electromagnetic fields can also
be directly expressed as a function of the rising and lowering
operators and we get Eq. (44).

Finally, In the configuration space and by analogy with
Eq. (B8), it is also possible to define the auxiliary “photon”
fields

Z(±)(x,t) = ∂tF(x,t) ± ic
√

−∇2F(x,t) (B18)

which obey the following first-order equations:

∂tZ(±)(x,t) = ±ic
√

−∇2Z(±)(x,t) + c2∇ × P(x,t). (B19)

The analogy with Eq. (48) allows us to introduce a photon field
�(x,t) such as

Z(−)(x,t)

2c
=

√
�c

2
(−∇2)1/4�(x,t) (B20)

with

�(x,t) =
∑
α,j

cα,j (t)ε̂α,j�α(x). (B21)

The commutators read as now

[�(x,t),�†(x′,t)] = δ⊥(x − x′) (B22)

with also [�(x,t),�(x′,t)] = [�†(x,t),�†(x′,t)] = 0.

APPENDIX C: TRANSFORMATION MATRIX BETWEEN
A AND F REPRESENTATIONS

We have using Eq. (B2)

−
∑
α,j

ẋα,j (t)

c
ε̂α,j�α(x) +

∫ +∞

0
dω

√
2σω(x)

π
X⊥,ω(x,t)
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=
∑
α,j

i
ωα

c
qα,j (t)k̂α × ε̂α,j�α(x). (C1)

Similarly, for the magnetic field∑
α,j

i
ωα

c
xα,j (t)k̂α × ε̂α,j�α(x) =

∑
α,j

q̇α,j (t)

c
ε̂α,j�α(x).

(C2)

From Eqs. (C1) and (C2), we thus deduce the equivalence
relations

i
ωα

c
qα,1(t) = − ẋα,2(t)

c
+ Pα,2(t),

−i
ωα

c
qα,2(t) = − ẋα,1(t)

c
+ Pα,1(t),

(C3)
q̇α,1(t) = −iωαxα,2(t),

q̇α,2(t) = iωαxα,1(t)

with Pα,j (t) given by Eq. (56). Equivalently, we can write
Eq. (C3) in terms of rising and lowering operators and
deduce Eq. (55). We can also rewrite Eq. (55) using the
unitary transformation (Power-Zienau) [77–79,84–86] T (t) =
ei

∫
d3x A·P/(c�) (with T † = T −1) such as

aα,j (t) + 1√
2�ωα

Pα,j (t) = T aα,j (t)T †. (C4)

In, particular, we have directly in the Power-Zienau transfor-
mation

T −1(t)D(x,t)T (t) = E⊥(x,t),

T −1(t)B(x,t)T (t) = B(x,t),

T −1(t)

[
pn(t) − en

A(xn,t)

c

]
T (t) = pn(t). (C5)

This transformation can be used in different ways for defining
equivalent representations of the electromagnetic field as
discussed in Refs. [77,90].
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