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Collisions of three-dimensional bipolar optical solitons in an array of carbon nanotubes

Alexander V. Zhukov,1 Roland Bouffanais,1,* Boris A. Malomed,2,3 Hervé Leblond,4 Dumitru Mihalache,5,6
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We study interactions of extremely short three-dimensional bipolar electromagnetic pulses propagating towards
each other in an array of semiconductor carbon nanotubes, along any direction perpendicular to their axes. The
analysis provides a full account of the effects of the nonuniformity of the pulses’ fields along the axes. The
evolution of the electromagnetic field and charge density in the sample is derived from the Maxwell’s equations
and the continuity equation, respectively. In particular, we focus on indirect interaction of the pulses via the action
of their fields on the electronic subsystem of the nanotube array. Changes in the shape of pulses in the course of
their propagation and interaction are analyzed by calculating and visualizing the distribution of the electric field
in the system. The numerical analysis reveals a possibility of stable post-collision propagation of pulses over
distances much greater than their sizes.
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I. INTRODUCTION

Among materials which have been drawing a permanently
strong interest in the course of the last three decades are
carbon nanotubes (CNTs). They are considered as one of
the most promising semiconductor materials for developing a
new element base of electronics. CNTs are macromolecular
objects, in the form of layers of graphene rolled into a
cylinder, the surface of which is formed by six carbon cycles
[1]. Nanotubes can be single walled or multiwalled, if the
tube is composed of one or several layers of graphene,
respectively. The CNTs are categorized as chiral, if angles
between sides of the hexagons and nanotube axis are different
from 0◦ and 90◦, and achiral otherwise. Further, achiral CNTs
exhibit two different structures: “saddles,” if the sides of the
hexagons are perpendicular to the nanotube axis, or “zigzags,”
with a parallel arrangement of the hexagons relative to the
axis.

Since the discovery of nanotubes by Iijima [2,3] and up
to now, a great deal of work has been done on the synthesis
and characterization of different types of CNTs (see reviews
[4–8] and references therein). There are detailed descriptions
of physical properties of CNTs, as defined by their geometry
and surface structure, i.e., the arrangement of the hexagonal
carbon cycles relative to the axis of the nanotube. Calculations
of the band structure show that, depending on their build,
the CNT may feature metallic, insulating, or semiconductor
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properties, that offer a great potential for applications [1,4].
Peculiarities of the electron energy spectrum of semiconductor
single-walled CNTs of the zigzag type (see Refs. [8,9]) are
manifestations of a number of nonlinear electrodynamic prop-
erties similar to those in semiconductors with a superstructure,
for instance, in quantum semiconductor superlattices [11,12].
Nonquadratic electron dispersion suggests a possibility of
realization (in electric fields of moderate strength ∼103–105

V/cm) of diverse nonlinear phenomena, such as nonlinear
and absolute negative conductivity [13,14], phase transitions
of the first kind induced by the applied external field [14],
nonlinear diffraction and self-focusing of laser beams [15,16],
electromagnetic solitary waves [17], etc.

A wide range of applications to modern optoelectronics
may stem from these phenomena. Moreover, the recent
advancement of laser physics in the generation of powerful
electromagnetic radiation, including pulses of ultrashort dura-
tion with predetermined parameters [18–23], is an incentive
for a comprehensive study of the propagation of nonlinear
electromagnetic waves, including extremely short pulses, in
settings based on CNTs. It was first predicted theoretically
in Ref. [17] that the propagation of electromagnetic solitary
waves in CNT arrays is possible in a one-dimensional (1D)
model. Later, these results have been extended to more realistic
multidimensional models. In particular, detailed studies of the
propagation of two-dimensional (2D) unipolar and bipolar
extremely short electromagnetic pulses in CNT arrays have
been carried out (see Refs. [24–26]). Three-dimensional (3D)
spatiotemporal optical solitons (“light bullets” [27–29]) have
been considered too [30].
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Actual samples may contain various chemical impurities
and structural defects, both intentionally produced ones or
resulting from manufacture imperfections. The chemical im-
purities are uniformly distributed over a CNT array, affecting
the dynamics of extremely short electromagnetic pulses
[31–33]. In Refs. [34–36], a detailed analysis has been
developed for the propagation of unipolar solitary waves in a
medium with metallic inclusions, while Ref. [37] established
the selective nature of the interaction of an extremely short
bipolar electromagnetic pulse with a spot featuring higher
concentration of electrons, induced by a local dopant. Moving
towards a more realistic description of the solitary electromag-
netic waves in CNT arrays, one should gradually increase the
complexity of the underlying model by considering factors that
may occur in experimental situations. Along with the possible
presence of static heterogeneities in the medium, such as, for
example, the local inhomogeneity of the conduction-electron
density, it was found necessary to address the shape of the field
of propagating electromagnetic pulses in 2D and 3D models
(see Ref. [38] and references therein). The distribution of the
electric field along the CNT axis causes, in turn, redistribution
of the concentration of conduction electrons in the medium.
Thus, in general, there is another possible type of heterogeneity
of the medium, namely, the dynamic inhomogeneity induced
by the field of the propagating electromagnetic waves. Effects
associated with this type of the induced heterogeneity have
never been thoroughly investigated, to the best of our knowl-
edge.

Obviously, each electromagnetic pulse propagating in
the medium is affected by the spatiotemporal perturbation,
induced by the “trace” of the inhomogeneous distribution of
the electron density caused by the passage of other pulses in the
vicinity of a given one (see Sec. II D). Therefore, it is relevant
to consider the propagation of extremely short electromagnetic
pulses in the presence of a dynamical inhomogeneity induced
by the fields of other pulses. This problem also has relevance
to possible applications based on multiple rapid passages of
electromagnetic pulses through the specimen.

In this vein, this work deals with collisions of 3D extremely
short bipolar pulses (light bullets), taking into account the
interaction of each one with perturbations of the electron
density induced by the field profile of the other pulse. The
analysis aims to address the collisions in the form close to that
observed in real experiments.

II. GENERAL CONSIDERATIONS

A. Geometry of the problem and restrictions of the model

To begin with, we have to clarify the term “soliton”
used in this paper. Strictly speaking, we do not provide
a mathematical proof for the ultrashort waves we consider
as being solitons (see Appendix A for the outline of this
problem). Specifically, we consider the propagation of a
solitary electromagnetic wave (infrared laser pulse) through a
volumetric array of semiconductor CNTs forming a monolayer
of the zigzag type (m,0), where integer m (different from a
multiple of three) is the number of hexagonal carbon cycles
which form the circumference of the nanotube. The second
integer is the pitch of the helical pattern, also measured as the

FIG. 1. The schematic diagram of the setup with associated
coordinate system.

respective number of hexagonal carbon cycles, it is zero for a
zigzag CNT. Integer m further determines the CNT radius, as
R = m

√
3b/(2π ), where b = 1.42 × 10−8 cm is the distance

between nearest-neighbor carbon atoms [8,9]. The CNTs are
supposed to be placed into a homogeneous insulator, so that
axes of the nanotubes are parallel to the common x axis, and
distances between adjacent nanotubes are much larger than
their diameter, allows one to neglect the interaction between
CNTs [39] (see Fig. 1). In particular, with this configuration
one can neglect the electron interhopping, supposing that
the corresponding wave functions do not overlap, which is
important in order to avoid uncontrollable transverse currents.
The CNT radius is R � 5.5 × 10−8 cm for m = 7, which is
the value adopted in the computations below. It is very small
in comparison with the radiation wavelength in the infrared
range, which exceeds 10−4 cm.

Essentially, the chosen geometry of the problem is similar
to the one considered in Refs. [30,38]. Given this framework,
the dispersion relation for energy ε of conduction electrons of
CNTs is [8,9]

ε(px,s) = γ0

√
1+4 cos

(
px

dx

�

)
cos

(
π

s

m

)
+4 cos2

(
π

s

m

)
,

(1)

where the electron quasimomentum is p = {px,s}, s being an
integer characterizing the momentum quantization along the
perimeter of the nanotube, s = 1,2, . . . ,m, γ0 is the overlap
integral, and dx = 3b/2 [10]. In this paper, we consider
the propagation of extremely short 3D pulses in direction z

perpendicular to CNT axis x, with the electric field of the
pulses oriented along the x axis (see details below). The
duration of each pulse is assumed to be much smaller than the
electron relaxation time trel, which makes it possible to limit
the evolution time to t < trel [see Eq. (24) below], allowing
one to consider the evolution of the electromagnetic field in
the collisionless approximation [30].
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B. Equation for the vector potential

We treat the electromagnetic field in the CNT array by
means of the Maxwell’s equations [40,41] in terms of the
vector and scalar potentials A and φ. In the chosen geometry,
the governing equation for the vector potential in the Lorentz
gauge is

ε

c2

∂2A
∂t2

− ∂2A
∂x2

− ∂2A
∂y2

− ∂2A
∂z2

= 4π

c
j, (2)

with A = {A(x,y,z,t),0,0}, j = {j (x,y,z,t),0,0} is the cur-
rent density, ε is the average relative dielectric constant of
the medium [11], and c is the speed of light in vacuum. The
choice of the vector potential in the CNT collinear to the axes
of the nanotubes is justified by the following considerations.
According to the formulation of the problem, the array has a
nonzero electrical conductivity only along the x axis, while the
conduction current is negligible in the (y,z) plane, given the

vanishingly small interactions between the nanotubes, hence,
the current density is defined as j = {j (x,y,z,t),0,0}. In this
case, Eq. (2) allows to nullify the second and third components
of the vector potential A = {A(x,y,z,t),0,0}.

Expanding the electron energy spectrum (1) into a Fourier
series, and bearing in mind that the electrons obey the
Fermi-Dirac statistics, we apply the technique developed
in Refs. [42,43], which makes it possible to produce an
expression for the projection of the current density onto the
CNT axis in the following form (see Appendix B for details):

j = −en
dx

�
γ0

∞∑
r=1

Gr sin

[
r
dx

�

(
A

e

c
+ e

∫ t

0

∂φ

∂x
dt ′

)]
, (3)

where e is the electron charge (e < 0), n the concentration of
conduction electrons in the array, φ the scalar potential, and
coefficients Gr are given by

Gr = −r

∑m
s=1

δr,s

γ0

∫ +π

−π
cos(rκ)

{
1 + exp

[ θ0,s

2 + ∑∞
q=1 θq,s cos (qκ)

]}−1
dκ∑m

s=1

∫ +π

−π

{
1 + exp

[ θ0,s

2 + ∑∞
q=1 θq,s cos(qκ)

]}−1
dκ

. (4)

Here, θr,s = δr,s(kBT )−1, T is the temperature, kB the
Boltzmann constant, and δr,s are coefficients of the Fourier
decomposition of spectrum (1):

δr,s = dx

π�

∫ −π�/dx

−π�/dx

ε(px,s) cos

(
r
dx

�
px

)
dpx. (5)

Next, we combine Eqs. (2) and (3) to derive an equation
governing the evolution of the vector potential in the CNT
array, in the dimensionless notation:

∂2�

∂τ 2
−

(
∂2�

∂ξ 2
+ ∂2�

∂υ2
+ ∂2�

∂ζ 2

)
+ η

∞∑
r=1

Gr sin

×
[
r

(
� +

∫ τ

0

∂�

∂ξ
dτ ′

)]
= 0, (6)

where η = n/n0 is the scaled electron concentration, n0 being
the equilibrium concentration in a homogeneous specimen
in the absence of the electromagnetic field, � = Aedx/(c�)
is the projection of the scaled vector potential onto the x

axis, � = φ
√

εedx/(c�) is the dimensionless scalar potential,
τ = ω0t/

√
ε is the scaled time, ξ = xω0/c, υ = yω0/c, and

ζ = zω0/c are the scaled coordinates, and

ω0 ≡ 2
|e|dx

�

√
πγ0n0. (7)

Equation (7) determines a characteristic angular frequency of
the CNT electron subsystem in the conduction band, which is
similar to the plasma frequency of electrons in semiconductor
superlattices (cf. Ref. [11]).

C. Equation for the scalar potential field

Fields of extremely short electromagnetic pulses under
consideration are localized in all the three directions of the
Cartesian coordinates system. The nonuniformity of the field

along the direction perpendicular to the CNT axis has no
impact on the distribution of the electron concentration in the
sample, as the interaction between the nanotubes is negligible,
and, as said above, there is no electric current in the (y,z)
plane. On the contrary, the field nonuniformity along the x axis
perturbs the conduction-current density, which, in turn, affects
the charge density in the sample [30,38]. In this connection,
we note that concentration n of the conduction electrons in the
expression for the conduction current (3) and, consequently,
the scaled electron concentration η are, in general, functions
of the coordinates and time η = η(ξ,υ,ζ,τ ).

Obviously, the redistribution of the electron density leads
to a change of the scalar potential. The Maxwell’s equations
[40,41] produce an evolution equation for the scalar potential
(see also Ref. [30]):

∂2�

∂τ 2
−

(
∂2�

∂ξ 2
+ ∂2�

∂υ2
+ ∂2�

∂ζ 2

)
= β(η − 1), (8)

where β = c�/(dxγ0
√

ε).

D. Equation for the electron density

As mentioned above, the nonuniformity of the electric field
along the CNT axis (x) perturbs the current density in this
direction, as follows from Eq. (3), leading to redistribution
of the electron density. The total charge in the sample being
conserved, the change in the bulk charge density ρ = en obeys
the continuity equation ∇ · j + ∂ρ/∂t = 0 [40,41]. Projected
onto the CNT axis, this equation reads as

∂j

∂x
+ ∂ρ

∂t
= 0. (9)

Substituting Eq. (3) into Eq. (9), and passing to the dimension-
less notation, we obtain an evolution equation for the electron
concentration under the action of the pulse’s electromagnetic
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field:

∂η

∂τ
= α

∞∑
r=1

Gr

∂

∂ξ

{
η sin

[
r

(
� +

∫ τ

0

∂�

∂ξ
dτ ′

)]}
, (10)

where α ≡ dxγ0
√

ε/c�. It is worth noting that the nonlinearity
of the concentration of electrons [see Eq. (10)] bears the same
nature as the nonlinearity of the current density [see Eq. (3)],
the latter being responsible for the reshaping of the electron
concentration. Furthermore, the accumulation of charge is a
direct consequence of the inhomogeneity of the current along
the CNTs. Accordingly, an additional electric field can appear,
which is fully accounted for in this study.

Thus, the evolution of the field in the array, taking into
regard the perturbation of the conduction-electron density
due to the nonuniformity of the field along the CNT axis,
is governed by Eqs. (6), (8), and (10). This is a self-consistent
system for the coupled evolution of the field and electron
density: the field impacts the dynamics of electrons, and the
latter’s feedback affects the evolution of the field, which
resembles the Vlasov’s equations in plasma physics [44],
and the recently studied local-field effect for the propagation
of optical and microwave fields in atomic Bose-Einstein
condensates [45].

E. Characteristics of the pulse field

Measuring instruments can record the energy character-
istics of the pulse defined by the electric field [46]. The
electric field in the CNT array is determined by the potentials
E = −c−1∂A/∂t − ∇φ [40,41], which can be written using
the dimensionless variables defined above:

E = E0

(
∂�

∂τ
+ ∂�

∂ξ
,
∂�

∂υ
,
∂�

∂ζ

)
, (11)

E0 ≡ − �ω0

edx

√
ε
. (12)

Thus, Eq. (11) demonstrates that the electric field can
be represented as a superposition of two components
E = E‖ + E⊥, where E‖ is directed along the CNT axis,

E‖ = E0

(
∂�

∂τ
+ ∂�

∂ξ
,0,0

)
, (13)

and E⊥ is the electric field in the orthogonal plane,

E⊥ = E0

(
0,

∂�

∂υ
,
∂�

∂ζ

)
. (14)

Electric field E⊥ has no effect on the dynamics of
electrons due to the absence of the conductivity in the (y,z)
plane. Expression (14) shows that field E⊥ appears due to
the perturbation of the conduction-electron density and the
presence of the scalar potential. This field is determined by the
projection of vector −∇φ onto the (y,z) plane. In other words,
the nonuniformity of field E‖ along the CNT axis gives rise to
electric field E⊥ in the orthogonal plane.

As the conductivity of the array is different from zero only
along the x axis, the dynamics of the electron subsystem affects
only electric field E‖, which, in turn, is itself generated by
the dynamics of electrons. The interaction of field E‖ with

the electron subsystem gives rise to a self-consistent field of
the electromagnetic solitary wave. To visualize the distribution
of the wave field and identify its localization, we introduce I =
I (ξ,υ,ζ,τ ) ≡ |E‖|2/(8π ). It has the dimension of the volume
energy density [40,41], therefore, we call it the bulk energy
density of the electric field of the wave. Following Eqs. (12)
and (13), it may be expressed as

I = I0

(
∂�

∂τ
+ ∂�

∂ξ

)2

, (15)

where I0 = (�ω0)2/(e2d2
x 8πε). Numerical calculations reveal

that the profile of I (ξ,υ,ζ,τ ) may feature pronounced maxima,
whose positions at any given moment in time are identified as
position of the solitary waves.

F. Methodological aspects

Concluding this section, we would like to specify two
aspects which, from a methodological point of view, may
be useful for modeling wave phenomena in nonlinear media.
In general, there are at least two different approaches to the
analysis of the problem. The primary focus here is on the
mathematical scheme based upon the Fourier expansion of
dispersion relation (1) (see Appendix B), and we here explain
the feasibility of this approach. Current density (3) determines
Eq. (6) for the vector potential field and Eq. (10) for the electron
concentration. We stress that the expression for current density
(3), and therefore Eqs. (6) and (10), does not contain any
explicit dependencies following from the particular form of
function ε(px,s). In other words, for any medium, defined by
its electron dispersion, which may be different from Eq. (1),
the current density will be expressed similarly to Eq. (3). At the
same time, properties of the specific environment, determined
by its electron energy spectrum, will affect the expression for
the current density through coefficients similar to Gr,s . Thus,
deriving equations describing the evolution of electromagnetic
waves in the CNT array, we also derive a universal approach
for optimizing simulations of the wave propagation in generic
media defined by the energy dependence of the conduction
electrons on their quasimomenta. Given that the equations for
the current density and vector potential have been derived, one
can select a numerical scheme for solving the corresponding
system of equations, this scheme remaining effective for
other environments. Of course, a particular medium comes
with a specific electron-energy spectrum, thus leading to
different values of coefficients similar to those in Eq. (4),
which determine the Fourier decomposition of the spectrum.
Nonetheless, the actual form of the governing equation [similar
to Eqs. (6) and (10)] and the type of the numerical scheme
remain the same.

There is another approach to the visualization of the pulse
evolution, which can be combined with the one proposed
above. Intensity I (ξ,υ,ζ,τ ) given by Eq. (15) yields the
distribution of the electric-field energy of the pulse at a fixed
instant of time. However, neither the distribution of the electric
field nor the distribution of the field’s energy density at a
given moment of time determine the direction of motion of
electromagnetic pulses. In other words, when plotting the dis-
tribution I (ξ,υ,ζ,τ ) at a particular moment of time, one cannot
directly know in what direction the electromagnetic waves
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propagate, without having at least one similar plot at another
moment of time. However, there is a method for identifying
the propagation direction of the electromagnetic pulse at time
τ without calculating the distribution of I (ξ,υ,ζ,τ ) at time
τ + dτ . Namely, one can supplement I (ξ,υ,ζ,τ ) at time τ by
Poynting vector S = {Sx,Sy,Sz} [40,41] (see Appendix C).

The absolute value of the Poynting vector determines the
magnitude of power flux carried by the field at each point
of the CNT array at any instant of time. The direction of
the power transfer is determined by the sign and magni-
tude of components of S; sign(Sx), sign(Sy), sign(Sz), and
|Sx |, |Sy |, |Sz|, respectively. To explain this possibility, we
resort to the simple example of the wave propagating along
the z axis. The propagation of the electromagnetic pulse in
the positive direction of z is associated with the transfer of
energy in this direction, which implies a positive Poynting-
vector component Sz. Accordingly, the propagation in the
negative direction is associated with Sz < 0. Thus, quantities
I (ξ,υ,ζ,τ ) and Sz(ξ,υ,ζ,τ ) complement each other in drawing
the complete structure of the electromagnetic field at any
given moment: I (ξ,υ,ζ,τ ) determines the spatial localization
of the electromagnetic field (i.e., the state of the system at
time τ ), while a particular component of the Poynting vector
identifies the direction and intensity of the field-energy transfer
along the respective axis, making it possible to predict the state
of the system at time τ + dτ .

III. NUMERICAL RESULTS

A. System’s parameters and initial conditions

We assume that initially (at time τ = τ0) the electron
density is uniform with value n0, while the scalar potential
is zero throughout the sample. These initial conditions are
similar to those used in Ref. [30]:

η(ξ,υ,ζ,τ0) = 1, (16)

�(ξ,υ,ζ,τ0) = 0. (17)

Assuming that there are two electromagnetic pulses propagat-
ing towards each other in the CNT array, we define the initial

projection of the vector-potential field of the pair of pulses as
follows:

�(ξ,υ,ζ,τ0) =
2∑

i=1

{
�i(ζ,τ0) exp

[
− (ξ−ξ0i)2+(υ − υ0i)2

λ2
i

]}
,

(18)

where �i(ζ,τ0) is the corresponding profile of the projection
of the ith pulse onto the ξ axis at ξ = ξ0i and υ = υ0i , and λi is
the dimensionless initial transverse half-width of the ith pulse,
while ξ0i and υ0i are the coordinates of the pulses’ centers
at τ = τ0. We have chosen the Gaussian profile of the input,
given by Eq. (18), in the (ξ,υ) plane due to its occurrence in
various applications [15,46,47].

To further justify the choice of the initial profile of each
electromagnetic pulse in the longitudinal (ζ ) direction, we
provide the following arguments relating to Eq. (6). First, as
shown by numerical calculations, coefficients Gr [see Eq. (4)]
rapidly decay with the increase of r . Therefore, we keep only
the terms with r = 1 in Eq. (6). Second, for the time being
we only consider the variation of the field in the longitudinal
direction, restricting ourselves to the 1D description with
coordinate ζ and accepting the assumption of uniformity of
the field along the ξ and υ axes. Third, the assumption of the
uniformity of the field along the ξ axis allows us to neglect
possible perturbation of the electron density (i.e., we have
η ≈ 1). It follows from here that a single scalar potential
keeps a constant value throughout the sample, i.e., ∂�/∂ξ = 0.
This conclusion also follows from Eq. (8), which for η = 1
admits the trivial stationary solution � = 0. As a result, we
reduce Eq. (6) to an evolution equation for the nonvanishing
component of the vector potential:

∂2�

∂τ 2
− ∂2�

∂ζ 2
+ σ 2 sin � = 0, (19)

where we define σ ≡ √
G1. Our calculations always produce

G1 > 0, hence, σ is real, with σ 2 > 0. Equation (19) has
the form of the celebrated sine-Gordon equation, which gives
rise to solutions in the form of a breather, i.e., an oscillating
nontopological soliton [48]:

�B(ζ,τ ) = 4 arctan

⎛
⎝√

1

�2
− 1

sin
[
σ�

τ−(ζ−ζ0)u/v√
1−(u/v)2

]
cosh

{
σ [τu/v − (ζ − ζ0)]

√
1−�2

1−(u/v)2

}
⎞
⎠, (20)

with � ≡ ωB/ω0 < 1, u being the speed of the pulse propaga-
tion, v = c/

√
ε the linear speed of the electromagnetic waves

in the medium, while ζ0 is the coordinate of the breather’s
center at τ = τ0.

Note that Eq. (6) shares similarities with Eq. (19), and, in
some sense, it may be treated as a non-1D inhomogeneous
modified sine-Gordon equation. Since Eq. (19) generates
breather solutions given by Eq. (20), one may expect a
possibility for the propagation of similar solitary waves
generated by Eq. (6).

We assume that the CNT array is irradiated by two bipolar
ultrashort electromagnetic pulses propagating towards each

other, so that the vector-potential field of the pair of pulses is
determined by Eq. (18), in which �i(ζ,τ0) have a form similar
to that in Eq. (20):

�i(ζ,τ0) = 4 arctan

{√
1

�2
− 1

sin χi

cosh μi

}
, (21)

χi ≡ σ�i

τ0 − (ζ − ζ0i)ui/v√
1 − (ui/v)2

, (22)

μi ≡ σ

[
τ0ui

v
− (ζ − ζ0i)

]√
1 − �2

i

1 − (ui/v)2
. (23)

053823-5



ALEXANDER V. ZHUKOV et al. PHYSICAL REVIEW A 94, 053823 (2016)

Here, we use the term “bipolar” in the sense that the
electromagnetic field changes its sign in the course of the pulse
propagation. We emphasize that we choose the far separated
initial (at τ = τ0) electromagnetic pulses, given by initial
conditions (21), hence, the interaction between them is initially
negligible.

It is worth stressing that the use of 1D equation (19) relates
solely to the choice of the longitudinal profile of the initial
condition [specifically, in the form of Eq. (20)] while we
stay in the general framework of the 3D model. Clearly, the
system of governing equations (6), (8), and (10), with initial
conditions (16), (17), (18), and (21), does not have exact
analytical solutions. We have therefore conducted a numerical
investigation of the interaction of the electromagnetic pulses
in the CNT array. To simulate the system of governing
equations, we employed an explicit finite-difference scheme
previously used and detailed in Refs. [38,49], which was
generalized for this 3D setting. Difference scheme steps in
both time and space were iteratively decreased twice until
the solution became unchanged in the eighth decimal place,
thereby ensuring both spatial and temporal convergence of the
obtained solution. Thus, we have numerically found values
of �(ξ,υ,ζ,τ ), �(ξ,υ,ζ,τ ), η(ξ,υ,ζ,τ ), the energy density of
the electric field, defined as per Eq. (15), and also the Poynting
vector.

In our simulations, we used the following realistic values
of the parameters: m = 7, b = 1.42 × 10−8 cm, γ0 = 2.7 eV,
dx ≈ 2.13 × 10−8 cm. The system is immersed into a medium
with the relative dielectric constant ε = 4. We consider the
system at room temperatures T = 293 K, with the equilibrium
electron concentration n0 = 1018 cm−3 [39]. As follows from
Eq. (7), ω0 ≈ 7.14 × 1013 rad s−1, α and β in Eqs. (8) and
(10) take values α ≈ 5.8 × 10−3 and β ≈ 1.72 × 102, while
σ = 0.95 in Eqs. (22) and (23). Note also that our results are
obtained in the framework of the collisionless model, which is
valid at times not exceeding the above-mentioned relaxation
time:

t < trel ≈ 3 × 10−13 s (24)

[9], which may be sufficient to complete the collision between
the pulses.

The parameters of the electromagnetic pulses ui/v, �i ,
and λi were varied in a wide range, similar to what was
done previously in Ref. [30]. To be specific, we here present
typical results for the following initial parameters: u1/v =
−u2/v = 0.95, �1,2 = 0.5, which corresponds to a half-cycle
pulse with vacuum wavelength ≈ 16 μm, belonging to the
long-wavelength infrared range, and λ1,2 = 2, ξ01,2 = υ01,2 =
0, ζ02 = −ζ01 = 3. Note that, because of our choice of the
initial conditions, the centers of the electromagnetic pulses,
(ξ01,υ01,ζ01) and (ξ02,υ02,ζ02), are initially located on the ζ

axis.

B. Interactions of the electromagnetic pulses

Figures 2–5 display results of the 3D simulations of the
interaction of bipolar laser pulses in the CNT array with
the parameters defined in the previous subsection. Figure 2
shows the evolution of the energy density distribution of the
electric field, I (0,0,ζ,τ ), in the array in the course of the

FIG. 2. The evolution of the energy density I (ξ = 0,υ = 0,ζ,τ )
of the electric field on the ζ axis. Values of I at every instant of time
are color coded, with red and purple corresponding to maxima and
minima.

propagation and interaction of the pulses along the ζ axis,
i.e., in the case of ξ01,2 = υ01,2 = 0. With the value of ω0

chosen above, the length unit on the ζ axis corresponds
to a distance c/ω0 ≈ 4 × 10−4 cm in physical units, hence,
the coordinate interval shown in the figure, |ζ | � 5, corre-
sponds to distance �z ≈ 4 × 10−3 cm. Further, the unit of
dimensionless time τ = ω0t/

√
ε corresponds to physical time√

ε/ω0 ≈ 2.8 × 10−14 s, and the interval from τ = 0 to 6,

FIG. 3. The distribution of the energy density I (ξ,0,ζ,τ ) of the
electric field in the plane of (ξ,ζ ) prior to and past the collision, at
different times τ : (a) τ = 0.1, (b) τ = 1.0, (c) τ = 5.0, (d) τ = 6.0.
Values of I are color coded in the same way as in Fig. 2.
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FIG. 4. (a) The intensity distribution of the pulses on the ζ axis at different times τ : before the collision, at τ = 0.1 (line a), τ = 1.0 (line
b), and after the collision, at τ = 5.0 (line c), τ = 6.0 (line d). Dashed lines correspond to the counterpropagating pulse. (b) The same for the
scaled electric field E‖/E0.

shown on the figure, corresponds to the physical time interval
�t ≈ 1.7 × 10−13 s [2]. Thus, the applicability condition for
the collisionless approximation, given by Eq. (24), is valid
for these results. The simulations reveal that the colliding
electromagnetic pulses temporarily merge, within time interval
2.75 < τ < 4.25, which is accompanied by fluctuations of
the field energy density in a limited region of space. At
the post-collision stage, the pulses separate and continue the
propagation in a way similar to that before the collision. Lastly,
it is worth adding that with the increase in the velocity, the

collision between pulses becomes more elastic. The basic
reason for this is that the collision time decreases.

Figure 3 shows the distribution of the energy density
I (ξ,0,ζ,τ ) of the electric field in the array in the course of
the propagation and interaction of the pulses in the plane of
(ξ,ζ ) (at υ = 0): before the collision [Figs. 3(a) and 3(b)],
and after the collision [Figs. 3(c) and 3(d)]. Note that the
distribution of I (0,υ,τ ) in the plane of (υ,ζ ) is very similar to
what is observed in the plane of (ξ,ζ ). The energy density of the
field is represented by ratio I/I

(ξ,ζ )
max , different values of which

FIG. 5. Electron density distribution η(ξ,0,ζ,τ ) and η(0,υ,ζ,τ ) in planes (ξ,ζ ) and (υ,ζ ), respectively, before and after the collision of
the electromagnetic pulses at different times: (a), (e) τ = 0.1, (b), (f) τ = 1.0, (c), (g) τ = 5.0, and (d), (h) τ = 6.0. Different values of the
concentration correspond to a variation of colors from violet (minimum) to red (maximum).
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FIG. 6. Electron density distributions η(ξ,0,ζ,τ ) and η(0,υ,ζ,τ ) in the planes (ξ,ζ ) and (υ,ζ ), respectively, corresponding to a single
propagating pulse, at different times: (a), (e) τ = 0.1, (b), (f) τ = 1.0, (c), (g) τ = 5.0, and (d), (h) τ = 6.0. Different values of the density
correspond to a variation of colors from violet (minimum) to red (maximum).

correspond to a variation of colors (flooded contours) from
violet to red, I

(ξ,ζ )
max being the maximum value of the intensity

at given time in the plane of (ξ,ζ ). This figure shows stable
propagation of the pulses in the array, without any conspicuous
spreading.

Figure 4 shows, for clarity, the distribution of the en-
ergy density I (0,0,ζ,τ ) and the electric-field amplitude
E‖(0,0,ζ,τ )/E0 of the pulses along the ζ axis at some
time τ . Figures 2–4 clearly corroborate that both pulses
propagate quite stably both before and after the collision. By
the stability, we mean that the pulses pass, with a virtually
undistorted shape, the distance considerably greater than their
characteristic sizes along the propagation direction (ζ ).

The simulations demonstrate that, in the course of the
propagation of the pulses, their longitudinal and transverse
widths may change, following decrease of the peak energy
density. The reduction in the peak density may be explained by
their dispersive spreading in the propagation direction (ζ ), as
well as by diffractive broadening in the orthogonal directions.
Also, a part of the pulses’ energy goes into formation of
“ripples” or “tails,” i.e., emission of small-amplitude waves.
Nevertheless, in the entire parameter region considered in this
work, these effects remain small and do not cause destruction
of the pulses. Note also that, in this paper we consider
the conservative model, in which the total energy remains
constant, hence, attenuation of the pulses is not accounted for
by dissipative losses.

Considering various factors that cause the change in the
shape of the colliding pulses, we concluded that the pulses
propagating toward each other induce dynamical spatiotem-
poral perturbations in the electron density and scalar potential
η and � (similar effects in the spatial domain have been
previously considered in Refs. [30,38]). Thus, each pulse,
coming into the spatial region already visited by the other one,
experiences an impact from the perturbations left by the second
pulse. In other words, the evolution of the electromagnetic

field of the pulse is indirectly affected by the presence of the
counterpropagating one, which leads to the indirect interaction
between the pulses through the perturbations induced by them
in the electronic subsystem of the CNT array.

C. Redistribution of the electron density

As mentioned above, the propagation and interaction of the
pulses result in significant redistribution of the conduction-
electron concentration. Figure 5 shows the distribution of the
electron density before the collision. The electron density
in the planes of (ξ,ζ ) and (υ,ζ ) is represented by ratios
(η − η

(ξ,ζ )
min )/(η(ξ,ζ )

max − η
(ξ,ζ )
min ) and (η − η

(υ,ζ )
min )/(η(υ,ζ )

max −(υ,ζ )
min ), re-

spectively. Different values of the ratios correspond to a
variation of colors from violet to red, similar to Fig. 2.

For comparison, Fig. 6 shows the distribution of the electron
density in the course of the propagation of a single pulse, at
the same moments of time. This figure clearly shows that the
propagating pulse leaves behind a wake consisting of high-
and low-density spots. Therefore, during the collision and
thereafter, each pulse not only perturbs the medium, as seen in
Fig. 6, but, as said above, it is forced to propagate in a medium
which has already been perturbed by the counterpropagating
pulse, which leads to the aforementioned indirect interaction
between the pulses. The electron-concentration distribution
after the collision [see Figs. 5(c) and 5(g) and 5(d) and 5(h)]
is symmetric with respect to a plane drawn through the origin
perpendicularly to the ζ axis.

Note that the pulse velocities are high (somewhat smaller
than the speed of light in the surrounding dielectric), therefore,
they are actually exposed to the environment perturbed by
the counterpropagating pulse for a very short of time, the
corresponding perturbation in the electron density of the
passing pulse being on the order of a few percent. As a result,
the interaction affects the shape of the pulses, but does not
lead to dramatic changes in their dynamics, and does not
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FIG. 7. (a) Intensity distribution I/I0 for different times. The
solid red (resp. green) line a (resp. b) shows the profile of the
pulse before (resp. after) the collision at τ = 0.1 (resp. at τ = 5.0).
The dashed lines represent the counterpropagating pulse at the same
instant: red, before collision at τ = 0.1, and green, after collision
at τ = 5.0. For the sake of comparison, the profile of the single
pulse is shown by the blue line at τ = 5.0. (b) The same for ratio
E‖/E0.

destabilize their propagation. Here, we have to emphasize
that the primary goal of this study is to demonstrate that the
pulses survive the collision, which may thus be considered as
a quasielastic one. We do not address the stability over much
longer propagation distances, which is a topic for a separate
investigation.

Figure 7 shows a comparison of quantities I (0,0,ζ,τ ) and
E(0,0,ζ,τ ) in two situations: (i) the single-pulse propagation
and (ii) the collision between the pulses. Naturally, the
evolution of the shape of the solitary wave interacting with
the other pulse is somewhat different from the evolution in the
case of a single pulse. The differences manifest themselves
in the shape of both the solitary waves’ bodies and their tails
trailing the bodies.

D. Evolution of the Poynting vector

Finally, we present the results produced by the simulations
for the energy transfer associated with the propagation and
interaction of the electromagnetic pulses in the system. As
shown by the simulations, the strong inequality holds between
components of the Poynting vector: |Sz| � |Sy | � |Sx |. Thus,
the energy transfer is chiefly directed along the ζ axis. This
result reflects the fact that the processes of the formation of
“tails” extending in the transverse direction (along the ξ and
υ axes), as well as the transverse pulse broadening, are much
weaker than the longitudinal energy transfer.

FIG. 8. The normalized Poynting-vector component Sz/S0 asso-
ciated with the pulses’ fields at different times τ . The solid red (resp.
green) line a (resp. b) shows the profile of the pulse before (resp. after)
the collision at τ = 0.1 (resp. at τ = 6.0). The dashed lines represent
the counterpropagating pulse at the same instant: red, before collision
at τ = 0.1, and green, after collision at τ = 5.0. Solid and dashed
lines correspond, respectively, to the energy transfer in the positive
and negative directions along the ζ axis.

Figure 8 shows the distribution of the normalized z

component of the Poynting vector, Sz/S0 (see Appendix
C for details) at different time instants τ , prior to the
collision between the pulses and afterwards. The figure is an
alternative way of presenting the evolution of the shape of
the electromagnetic pulses. For clarity, Sz/S0 is represented
by lines of different colors (in the same way as in Figs. 4
and 7). Specifically, red indicates the profile of solitary waves
before they hit each other, and green refers to the post-collision
stage. Areas on the axis corresponding to the transfer of
energy in the positive and negative directions of the ζ axis are
indicated by solid and dashed lines, respectively. The figure
corroborates that the pulses retain their individuality after
the collision, passing distances much greater than their own
sizes.

Figure 8 allows us to evaluate the pulse’s energy flux along
the propagation direction. For the given values of parameters,
we find [see an explanation for Eq. (C5) in Appendix B]
S0 ≈ 6.5 × 109 W/cm2, which corresponds to the unit on the
vertical axis of Fig. 8. Thus, the maxima of |Sz| on the ζ

axis for each pulse before and after the collision yields 7.1 ×
1011 W/cm2 and 3.2 × 1011 W/cm2, respectively.

Some peculiarities of the propagation and interaction of
the light bullets reported in this paper can possibly be used
for the design of new elements of nanoscale optoelectronic
devices and laser control systems, as well as for all-optical data
processing. In particular, the effect of the redistribution of the
electron density by an electromagnetic solitary wave suggests
possibilities for the creation of CNT-based light-by-light
control devices, utilizing the respective indirect interaction
between the control and signal pulses. These perspectives for
the use of CNT arrays are suggested by results of Refs. [50,51]
and [52–56], which predict strong transformation of radiation
as a result of its reflection from solitons in a nonlinear medium,
with dynamical nonuniformity of the refractive index moving
along with the soliton. This effect may be probably used for
the design of metamaterials with rapidly changing dynamical
properties.
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IV. CONCLUSIONS

Key results of this work may be summarized as follows:
(i) The complete set of equations describing the evolution

of the field and charge density were derived for the prop-
agation and interaction of light bullets in the array of CNTs
(semiconducting carbon nanotubes). Our modeling framework
takes into account the perturbation of the electron density by
the nonuniformity of the field along the CNT axis.

(ii) The mechanism of the indirect interaction of extremely
short electromagnetic pulses via the overlapping perturbations
of the electron subsystem in the CNT array was thoroughly
studied by using the visualization of two complementary
quantities: the distribution of the energy density of the
electric field, as a characteristic of the field localization, and
components of the Poynting vector, as a characteristic of the
propagation direction and energy flux.

(iii) The numerical model used in this work allows the
investigation of different scenarios of the interaction of
bipolar electromagnetic pulses in the CNT arrays. It has been
established that the pulses separate after the collision, restoring
their shape and steadily moving over distances much greater
than their characteristic sizes.

(iv) The electromagnetic pulses induce a dynamic per-
turbation of the electron density in the medium, which, in
turn, affects the evolution of the electromagnetic waves in the
environment. This mechanism may possibly have implications
for the design of novel optoelectronic devices.

Finally, it is worth highlighting that our analysis is limited
to the particular case of a strictly conservative system. Our
estimates show that including effects associated with more
realistic composites can lead to slight quantitative changes
in the results, although the qualitative description remains
unchanged.
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APPENDIX A: DERIVATION OF THE DISPERSION
RELATION FOR LINEAR WAVES IN THE SYSTEM

The full system of evolution equations is

∂2�

∂τ 2
−

(
∂2�

∂ξ 2
+ ∂2�

∂υ2
+ ∂2�

∂ζ 2

)
+ η

∞∑
r=1

Gr

× sin

[
r

(
� +

∫ τ

0

∂�

∂ξ
dτ ′

)]
= 0, (A1)

∂2�

∂τ 2
−

(
∂2�

∂ξ 2
+ ∂2�

∂υ2
+ ∂2�

∂ζ 2

)
= β(η − 1), (A2)

∂η

∂τ
= α

∞∑
r=1

Gr

∂

∂ξ

{
η sin

[
r

(
� +

∫ τ

0

∂�

∂ξ
dτ ′

)]}
. (A3)

The linearization of Eqs. (A1) and (A3) is performed on top
of the trivial solution � = � = 0, η = 1, and (for the time
being) only the first harmonic is kept in the Fourier series in
Eqs. (A1) and (A3) [Eq. (A2) is linear by itself]:

∂2�

∂τ 2
−

(
∂2�

∂ξ 2
+ ∂2�

∂υ2
+∂2�

∂ζ 2

)
+G1

(
� +

∫ τ

0

∂�

∂ξ
dτ ′

)
= 0,

(A4)

∂η

∂τ
− αG1

∂

∂ξ

(
� +

∫ τ

0

∂�

∂ξ
dτ ′

)
= 0. (A5)

Further, we define

θ ≡ η − 1, (A6)

ϕ ≡
∫ τ

0

∂�

∂ξ
dτ ′, (A7)

hence,

∂�

∂ξ
≡ ∂ϕ

∂τ
, (A8)

and replace Eq. (A2) by the equation differentiated with respect
to ξ :

β
∂θ

∂ξ
− ∂2

∂τ 2

(
∂�

∂ξ

)
+ ∂2

∂ξ 2

(
∂�

∂ξ

)
+ ∂2

∂υ2

(
∂�

∂ξ

)

+ ∂2

∂ζ 2

(
∂�

∂ξ

)
= 0. (A9)

Then, ∂�/∂ξ in Eq. (A9) is replaced by ∂ϕ/∂τ , according to
Eqs. (A8), and definition (A7) is used in Eqs. (A4) and (A5).
Thus, the linearized equations are cast in their final form:

∂θ

∂τ
− αG1

∂ϕ

∂ξ
− αG1

∂�

∂ξ
= 0, (A10)

β
∂θ

∂ξ
− ∂3ϕ

∂τ 3
+ ∂3ϕ

∂τ∂ξ 2
+ ∂3ϕ

∂τ∂υ2
+ ∂3ϕ

∂τ∂ζ 2
= 0, (A11)

G1ϕ + G1� + ∂2�

∂τ 2
−

(
∂2�

∂ξ 2
+ ∂2�

∂υ2
+ ∂2�

∂ζ 2

)
= 0.

(A12)

Solutions to linearized equations (A10) and (A11) are
looked for in the usual form

(θ,ϕ,�) ∼ exp (−iF τ + iKξ + iPυ + iQζ ), (A13)

where K,P,Q are arbitrary wave numbers, and F is the
frequency to be found. The substitution of ansatz (A13) in
Eqs. (A10) and (A11) leads to the dispersion equation, written
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in the determinant form ∣∣∣∣∣∣∣
−iF −iαG1K −iαG1K

iβK iF 3 + iF (K2 + P 2 + Q2) 0

0 G1 G1 − F 2 + (K2 + P 2 + Q2)

∣∣∣∣∣∣∣ = 0. (A14)

In an explicit form, Eq. (A14) is a cubic equation for F 2:

(F 2)3 − G1(F 2)2 − F 2[(K4 + P 4 + Q4) + 2(K2P 2 + K2Q2 + P 2Q2) + G1(K2 + P 2 + Q2) + αβG1K
2]

+αβG1(K4 + K2P 2 + K2Q2) = 0. (A15)

In the limit of K2,P 2,Q2 → ∞, a relevant dispersion branch
is given by an asymptotic solution to Eq. (A15):

F 2 ≈
√

(K4 + P 4 + Q4) + 2(K2P 2 + K2Q2 + P 2Q2).

(A16)

The main objective is to obtain a band gap from a numerical
analysis of Eq. (A15) that would be a habitat for solitons. It
seems that the band gap does not exist because, in the limit of
K2,P 2,Q2 → 0, the asymptotic form of Eq. (A15) is

(F 2)2 + F 2[(K2 + P 2 + Q2) + αβK2]

−αβK2(K2 + P 2 + Q2) = 0. (A17)

Obviously, Eq. (A17) shows that, in this limit, the spectrum
does not contain a band gap, but rather a Dirac cone (which is
not surprising for a medium related to graphene). Sometimes,
solitons may actually exist or “almost exist” in the absence of
a true band gap [57]. In fact, it is a separate problem to check
if solitons exist in the present model in the strict mathematical
sense.

APPENDIX B: COMPUTATION OF THE
CONDUCTION CURRENT

Here, we aim to derive an expression for the conduction-
current density j along the CNT axis, applying an approach
similar to the one used in Refs. [42,43] for semiconductor
superlattices. Assuming the variation length of the electro-
magnetic field to be much larger than the electron de Broglie
wavelength and length dx in the electron dispersion law (1),
we write the current density, associated with the motion of the
conduction electrons, as

j = 2e

m∑
s=1

∫ +π�/d

−π�/d

vx(px + p0,s)f (px,s)dpx. (B1)

Here, vx is the electron’s velocity and f (px,s) is the associated
distribution function. The integration with respect to quasimo-
mentum px is carried out over the interval between −π�/d and
+π�/d (note that px/� thus varies within the first Brillouin
zone), and p0 is determined by the equation of motion

dp0

dt
= −

(
e

c

∂A

∂t
+ e

∂φ

∂x

)
. (B2)

It follows from Eq. (B2) that

p0 = −
(

e

c
A + e

∫ t

0

∂φ

∂x
dt ′

)
. (B3)

Next, to continue the derivation of the current density by
means of Eq. (B1), we need an expression for the velocity
of the electrons: vx(px + p0,s). To this end, we use the
known definition vx(px,s) = ∂ε(px,s)/∂px . The expression
for vx(px,s) being available, we make a substitution, px →
px + p0, to obtain vx(px + p0,s).

Next, we expand the electron spectrum ε(px,s) in the
Fourier series:

ε(px,s) = δ0,s

2
+

∞∑
r=1

δr,s cos

(
r
dx

�
px

)
, (B4)

δr,s = dx

π�

∫ π�/d

−π�/d

ε(px,s) cos

(
r
dx

�
px

)
dpx. (B5)

Using expression (B4) for the electron energy spectrum, we
rewrite the electron velocity vx(px,s) as

vx(px,s) = ∂ε(px,s)

∂px

= −dx

�

∞∑
r=1

rδr,s sin

(
r
dx

�
px

)
. (B6)

Making the substitution px → px + p0 in Eq. (B6), we can
rewrite current density (B1):

j = −2e
dx

�

m∑
s=1

∫ π�/d

−π�/d

∞∑
r=1

rδr,s

× sin

{
r
dx

�
(px + p0)

}
f (px,s)dpx. (B7)

Further, we make use of the Fermi-Dirac distribution

f (px,s) = N

1 + exp
[

ε(px,s)
kBT

] , (B8)

where N is the constant determined from the normalization
condition,

2
m∑

s=1

∫ π�/d

−π�/d

f (px,s)dpx = n, (B9)

where prefactor 2 accounts for the two possible electron spin
projections. We stress that the conduction-electron density n

in Eq. (B9) is, generally, a function of the spatial coordinates
and time, n = n(x,z,t).

Now, we transform the current density given by Eq. (B7),
taking into regard the distribution function (B8) and
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normalization condition (B9):

j = −γ0e
dx

�
n

∞∑
r=1

Gr sin

{
r
dx

�

(
e

c
A + e

∫ t

0

∂φ

∂x
dt ′

)}
, (B10)

Gr = −r

∑m
s=1(δr,s/γ0)

∫ +π�/d

−π�/d
cos

(
r dx

�
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){
1 + exp
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ε(px,s)
kBT

]}−1
dpx∑m

s=1

∫ +π�/d

−π�/d

{
1 + exp

[
ε(px,s)
kBT

]}−1
dpx

. (B11)

Using an expression for the electron spectrum following from Eq. (B4), we finally obtain

Gr = −r

∑m
s=1(δr,s/γ0)

∫ +π�/d

−π�/d
cos

(
r dx

�
px

){
1 + exp

[ δ0,s

2kBT
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q=1
δq,s

kBT
cos

(
q dx

�
px

)]}−1
dpx∑m

s=1

∫ +π�/d

−π�/d

{
1 + exp

[ δ0,s

2kBT
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q=1
δq,s

kBT
cos

(
q dx

�
px

)]}−1
dpx

. (B12)

Finally, with substitution pxdx/� → κ and notation θr,s =
δr,s(kBT )−1, we obtain expression (4) used in the main text.

APPENDIX C: POYNTING VECTOR

The redistribution of the energy density of energy in the
system in the course of motion and transformation of the
solitary waves can be described by analyzing the evolution of
the Poynting vector, i.e., the vector of the energy-flux density
of the electromagnetic field [40,41]:

S = (c/4π )E × H. (C1)

We assume that the medium under consideration is nonmag-
netic, with relative permeability 1. In this case, the magnetic
component of the field, being expressed in terms of the vector
potential as H = ∇ × A, can be written as

H = H0

(
0,

∂�

∂ζ
, − ∂�

∂υ

)
, (C2)

where H0 = −�ω0(edx)−1.
Thus, calculating the vector product of the electric (11)

and magnetic (C2) fields, we find the Poynting vector S =
{Sx,Sy,Sz} with the following components:

Sx = S0

(
∂�

∂υ

∂�

∂υ
+ ∂�

∂ζ

∂�

∂ζ

)
, (C3)

Sy = −S0
∂�

∂υ

(
∂�

∂τ
+ ∂�

∂ξ

)
, (C4)

Sz = −S0
∂�

∂ζ

(
∂�

∂τ
+ ∂�

∂ξ

)
, (C5)

where S0 = (c/4π )(�ω0)2(edx)−2ε−1/2.
Computation of the absolute value of the Poynting vector

allows us to find the density of the field’s energy flux at
each point and any instant of time. The direction of the
power transfer is determined by signs of the components of
S: sign(Sx), sign(Sy), sign(Sz). The energy transfer associated
with the motion of the electromagnetic pulses and the
formation of their tails along the ζ axis is determined by the
corresponding component Sz, given by Eq. (C5). The energy
transfer along the ζ and υ axes, which can also contribute to a
change in the shape of the pulse, is determined by components
Sx [Eq. (C3)] and Sy [Eq. (C4)], respectively. The simulations
show that the strong inequality between projections holds,
|Sz| � |Sy | � |Sx |, hence, the energy transfer occurs chiefly
along the ζ axis. This result reflects the fact that the formation
of the tails in the transverse directions (along ξ and υ), as
well as transverse pulse broadening, are much weaker than the
longitudinal energy transfer associated with the propagation
of the pulses along the ζ axis.
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