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Transverse multipolar light-matter couplings in evanescent waves
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We present an approach to study the interaction between matter and evanescent fields. The approach is based
on the decomposition of evanescent plane waves into multipoles of well-defined angular-momentum transverse
to both decay and propagation directions. We use the approach to identify the origin of the recently observed
directional coupling of emitters into guided modes, and of the opposite Zeeman state excitation of atoms near
a fiber. We explain how to rigorously quantify both effects and show that the directionality and the difference
in excitation rates grow exponentially with the multipolar order of the light-matter interaction. We also use
the approach to study and maximize the transverse torque exerted by an evanescent plane wave onto a given
spherical absorbing particle. All the obtained physical insights can be traced back to the two main features
of the decomposition of evanescent plane waves into transverse multipolar modes: A polarization independent
exponential dominance of modes with large transverse angular momentum, and a polarization-controlled parity
selection rule.
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I. INTRODUCTION AND SUMMARY

The analysis and engineering of light-matter interactions
are central subjects in electrodynamics. The current minia-
turization trends in nanophotonics increase the demands on
the performance of theoretical models for interactions at close
quarters. The interaction between a molecule and the guided
mode of a nearby waveguide, or between a quantum dot and a
nearby nano-antenna, are two examples of current interest. The
properties of evanescent fields and the light-matter couplings
mediated by them are a key part of any nanophotonics theory.

The interaction between near fields and matter systems,
often atoms, has been the subject of both experimental and the-
oretical research (see, e.g., Refs. [1–17]). The research shows
that the angular-momentum properties of evanescent fields are
different from those of propagating fields, and that these dif-
ferences are important for understanding the interactions. For
example, in very recent developments, the concept of a trans-
verse electromagnetic spin has been introduced [11,16,18]
and used to explain experimental results showing directional
light-matter coupling mediated by evanescent fields [13–15].
In the context of transverse electromagnetic spin, this is
known as transverse spin-momentum locking. The concept
of transversely spinning fields is also treated in Refs. [19,20].

In this article, we combine a complete multipolar decom-
position of the evanescent fields with the idea of choosing a
transverse axis to quantize the angular momentum. In Sec. II,
we decompose an evanescent plane wave into multipolar
modes with well-defined angular momentum around the
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direction transverse to both decay and propagation directions.
The transverse multipolar structure reveals a polarization-
independent exponential predominance of modes with large
multipolar order and large transverse angular momentum.
The dominant modes have either large positive or large
negative values of the transverse angular momentum. The
sign of the dominant transverse angular momentum switches
with the propagation direction, i.e., it is locked to it. This
exponential trend increases the relevance of higher-order
multipolar couplings in evanescent light-matter interactions.
We also derive a polarization-dependent selection rule: Half
of the coefficients in the transverse multipolar decomposition
of a transverse electric (TE) or transverse magnetic (TM) plane
wave are zero. Given a transverse multipolar order and angular-
momentum value, the TE plane waves have zero content of one
of the two possible multipole parities and the TM plane waves
have zero content of the other one. The selection rule applies
not only to TE and TM plane waves, but to any pair of modes
with opposite eigenvalue under a mirror reflection across the
plane perpendicular to the direction of angular-momentum
quantization. In particular, the selection rule controls the
selective interaction between mirror-symmetric evanescent
fields and the electric or magnetic multipoles of the matter
particles immersed in them. The physical consequences of the
selection rule and the increased relevance of higher multipolar
orders in evanescent fields are clearly identified in all the
practical situations that we consider in later sections.

In Sec. III, we use the theory developed in Sec. II to
analyze the recently observed directional coupling of emitters
into guided modes [13–15], and the simultaneous preparation
of different atomic states using the same guided optical
mode [12]. We explain how to rigorously quantify both effects
and show that the directionality and the difference in excitation
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rates grow exponentially with the multipolar order of the
light-matter interaction.

In Sec. IV we use the transverse multipolar decomposition
developed in Sec. II to study the transverse torque exerted by
an evanescent plane wave onto an absorbing sphere. We first
derive the formulas to compute the torque exerted on a sphere
by an incident beam expressed as a superposition of transverse
multipolar modes. Then, we find the plane-wave parameters
that maximize the torque exerted on a silicon sphere with
a given radius immersed in an evanescent plane wave; that
is, the optimal combination of frequency, angle of incidence,
and polarization of the corresponding propagating plane wave
undergoing total internal reflection. In the example that we
consider, the optimal frequency coincides with the magnetic
quadrupolar absorption resonance of the sphere. The optimal
polarization is found to be TE polarized, which, according
to the aforementioned selection rule, and contrary to the TM
polarization, can excite the magnetic quadrupolar absorption
resonance of the sphere with the largest possible value of
transverse angular momentum.

The physical insights obtained in the applications highlight
that both the selection rule and the enhanced role of
multipolar couplings of higher order are crucial for precisely
understanding and engineering the interaction of evanescent
light with matter.

II. TRANSVERSE ANGULAR MOMENTUM ANALYSIS OF
EVANESCENT PLANE WAVES

A. Transverse angular momentum

We start by considering the situations shown in Fig. 1(a).
An object is illuminated by different electromagnetic fields.

FIG. 1. Objects immersed in electromagnetic fields. The fields
decay along a given direction and have a well-defined linear
momentum component along a direction orthogonal to the first one.
This gives rise to a corresponding Poynting vector component with
decaying amplitude, which is represented by the straight red arrows.
The fields induce torques on the objects around a third direction
orthogonal to both decay and momentum. The torques are depicted
as curved gray arrows. The sense of the torque depends on the decay
and momentum directions.

θin

( t, μt)

( b, μb)

bμb tμt

θin > θc = asin tµt

bµb

|Ψ

FIG. 2. We consider a planar interface between two media. The
permittivity and permeability of the bottom and top media are (εb,μb)
and (εt ,μt ), respectively. A plane wave propagating in the bottom
medium impinges on the interface at an angle θin larger than the total
internal reflection angle θc. This creates an evanescent plane wave
|�〉 in the top medium.

The intensity of the fields decreases along a given direction
(+ẑ or −ẑ in the figure). Additionally, the field has a well-
defined linear momentum component in a direction orthogonal
to the first one (+x̂ or −x̂ in the figure). We may imagine that
the fields “push” the objects as indicated by the straight red
arrows. In Fig. 1(a) the pushes are strongest near the bottom
of the object and decrease in strength as z increases, being
weakest near the top of the object. Our intuition tells us that
the z-dependent pushes will create a torque around the third
axis ŷ. The torque is represented by the curved gray arrows.
We also intuitively understand that the sense of the torque will
depend on both the momentum and decay directions. When
the horizontal arrows point along −x̂ instead of x̂, the torque is
created in the opposite sense [Fig. 1(b)]. The sense of the torque
also reverses when the field decreases along −ẑ [Fig. 1(c)]. The
two sign changes compensate each other when flipping both
momentum and gradient [Fig. 1(d)].

We would now like to turn our intuition about the torque
around ŷ into physically relevant quantities. To this end, we
propose to expand the electromagnetic field in a basis of
modes with well-defined angular momentum around the ŷ
direction (Jy). This choice is motivated by conservation of
angular momentum. For example, when an object absorbs
radiation with a value of Jy equal to my , it experiences a
torque proportional to my [21,22].

We now follow this program for the evanescent plane wave
depicted in Fig. 2.

B. Transverse angular momentum content of an
evanescent plane wave

The field |�〉 on top of the surface in Fig. 2 is created by
a monochromatic plane wave of frequency ω incident from
below at an angle θin higher than the angle of total internal
reflection θc. The field |�〉 has all the relevant properties
of the fields in Fig. 1. Its linear momentum along the x̂
direction is well defined,1 and so are the other two momentum

1A field with a “well-defined” or “sharp” component of momentum
is a field that is an eigenstate of the corresponding operator. For
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FIG. 3. The figure illustrates the steps that allow to go from
a decomposition into multipoles of well-defined ẑ component of
angular momentum with origin at the interface (a), to a decomposition
into multipoles of well-defined ŷ component of angular momentum
with origin at a distance d above the interface (c). We first shift the
origin up by a translation along the ẑ axis Tẑ(d) (b), and then (c) rotate
the shifted coordinate system by −π/2 around the x̂ axis Rx̂(−π/2).

components

p = [px,0,pz], (1)

with p2
x + p2

z = (ω
√

εtμt )2. Additionally, p2
x is larger than the

square of the wave number in the top medium,

p2
x = (ω

√
εbμb)2 sin θin > (ω

√
εtμt )

2, (2)

where (εb,μb) and (εt ,μt ) are the bottom and top medium’s
permittivity and permeability,2 respectively. We assume
isotropic and nonabsorbing media. As a consequence of
Eq. (2), pz in Eq. (1) is imaginary in the top medium,

pz = i

√
p2

x − ω2εtμt , (3)

which confers the field its evanescent character in the ẑ
direction: An exponential decrease of the intensity as we go
further up the top medium.

Our aim is to decompose the evanescent field |�〉 in the
top medium into modes of well-defined angular-momentum
component around the ŷ direction (Jy). Additionally, we desire
for the angular momentum to be referred to an origin of
coordinates located some distance above the interface between
the two media. In this way, the center of coordinates can be
made to coincide with the spatial position of a hypothetical
particle immersed into the evanescent field, like the sphere in
Fig. 6. Then, the multipolar response of the particle can be

example, the evanescent plane wave in Fig. 2 is an eigenstate of
Px , Py , and Pz: Px |�〉 = (ω

√
εtμt )|�〉, Py |�〉 = 0|�〉, Pz|�〉 =

i(p2
x − ω2εtμt )1/2|�〉. The total momentum of the field would then

be the power of the field times the eigenvalue. In our formulation,
the power of a field |�〉 is proportional to its norm squared 〈�|�〉.
The same considerations apply to other properties like angular
momentum.

2We use units where the vacuum’s ε0 and μ0 are both equal to 1.

used together with the decomposition of the evanescent field
to compute the light-matter interaction.

Appendix A contains the detailed derivations of the de-
composition of |�〉 into modes with well-defined transverse
angular momentum Jy . The procedure that we follow in
Appendix A is indicated in Fig. 3. First, we obtain the
expansion of the evanescent plane wave in a basis of multipolar
fields of well-defined Jz with origin at the interface [Fig. 3(a)].
Such a decomposition can be found in Refs. [23–25]. The key
step is to construct the evanescent plane wave by transforming
a propagating plane wave with momentum [0,0,ω

√
εtμt ]

through a rotation around the ŷ axis by the complex an-
gle [25,26]

θev = arcsin

(√
εbμb

εtμt

sin θin

)
= arccos

⎛
⎝

√
1 − p2

x

ω2εtμt

⎞
⎠,

(4)
where the angle of incidence in the bottom medium, θin,
is larger than the angle of total internal reflection θc =
arcsin[

√
εtμt/(εbμb)].

After obtaining the decomposition into modes of well-
defined Jz, we shift the origin by a distance d above the
interface [Fig. 3(b)]. In the last step we rotate the coordinate
system to obtain modes of well-defined Jy at the shifted origin
[Fig. 3(c)].

The final result in Appendix A are the values of the complex
amplitudes α±

j,my
in the expansion

|�〉 =
∑

j > 0,

|my | � j

α+
j,my

|k, j, my, +〉 + α−
j,my

|k, j, my, −〉, (5)

where |k j my ±〉 denote the multipolar fields of wave number
k = ω

√
εtμt , angular momentum squared J 2 equal to j (j + 1)

(j > 0 and integer), angular momentum around the ŷ axis
(Jy) equal to my (|my | � j and integer), and helicity λ =
±1. Appendix A includes instructions for using the publicly
available EASYSPIN code [27] to compute α±

j,my
.

Later in the article we study the torque induced by
evanescent plane waves on spherical absorbing particles. The
symmetry of such problem calls for the use of multipolar fields
of well-defined parity:

|�〉 =
∑

j > 0,

|my | � j

βτ=1
j,my

|k, j, my, τ = 1〉

+βτ=−1
j,my

|k, j, my, τ = −1〉, (6)

where the parity of |k, j, my, τ 〉 is τ (−1)j [28, Eq. 11.4-
7]. The value τ = 1 corresponds to the “electric” multipoles,
and τ = −1 corresponds to the “magnetic” multipoles (see
Refs. [28, Eq. 11.4-25] and [29, p. 18]).

The relationship between multipoles of well-defined helic-
ity and those of well-defined parity is [28, Eq. 11.4-6]:

√
2|k j my τ 〉 = |k, j, my, +〉 + τ |k, j, my, −〉. (7)

Given the coefficients of the expansion of |�〉 into multi-
poles of well-defined helicity of Eq. (5), the coefficients for
the expansion into multipoles of well-defined parity in Eq. (6)
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FIG. 4. Absolute value of the multipolar coefficients of evanescent plane waves in the top medium of Fig. 2. The vertical scale is
logarithmic. The key in Fig. 4(a) applies to all plots. The parameters in Fig. 2 are set to εt = μt = μb = 1, εb = 2.25, θinc = 1.27 radians,
d = 0.14(2π )/(ω

√
εtμt ). Graphs (a) and (b) correspond to a TE polarized plane wave incident from the bottom medium. Graphs (c) and

(d) correspond to a TM polarized plane wave. The four main figures show the amplitudes of a decomposition into multipolar modes with
well-defined Jy [|βτ

j,my
| in Eq. (6)]. The four insets show the amplitudes for multipolar modes with well-defined Jz.

can be obtained by using Eq. (7):

√
2βτ

j,my
= α+

j,my
+ τα−

j,my
. (8)

The four main graphs in Fig. 4 show the amplitudes of the
parity coefficients of the decomposition of a TE [Figs. 4(a)
and 4(b)] and a TM [Figs. 4(c) and 4(d)] evanescent plane
wave into modes with well-defined Jy . We plot |βτ

j,my
| on a

logarithmic scale. The evanescent plane waves result from the
setup of Fig. 2 with the parameters indicated in the caption
of Fig. 4. The infinite range of j in Eq. (6) is truncated at
jmax = 10.

The amplitudes of modes with well-defined Jy show the
same trend in the four cases: They grow as my decreases.
The growth is linear with −my on a logarithmic scale, hence
exponential on a linear scale. The sign of the slope in the figures
is locked to the sign of the x component of linear momentum in
Eq. (1). Starting with the opposite sign (px → −px) [Fig. 1(b)]
results in the opposite slope in all four cases, where modes

with large positive my dominate. The slope also changes sign
when changing the decay direction ẑ → −ẑ [Fig. 1(c)]. The
simultaneous change of momentum and gradient directions
results in the original slope [Fig. 1(d)]. We highlight that these
trends are polarization independent: Since they are the same
for the TE and the TM plane waves, they will occur in any
linear combination of the two.

The trends in the amplitudes match the intuitive ideas
about the situation in Fig. 1. The exponential predominance of
amplitudes with a given sign of my indicates a predisposition
of the field for inducing a torque of the corresponding sense in
particles immersed in it. For a given sign of my , the sense of
the torque can be deduced by using the right-hand rule.

The match between our intuition and the analytical results is
lost in a decomposition into multipoles of well-defined Jz. The
insets in Fig. 4 show the amplitudes of the decompositions into
modes with well-defined Jz (|βτ

j,mz
|) in a logarithmic scale. The

amplitudes of the modes with well-defined Jz in the insets are
symmetric around mz = 0, which does not allow an intuitive
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FIG. 5. Power (logarithmic scale) of the plane wave in the top
medium of Fig. 2 contained in the j th multipolar subspace as a
function of the angle of incidence θin of the plane wave in the bottom
medium. The behavior in the propagating region is different than in
the evanescent region. In a propagating plane wave, the power in each
multipolar space is constant. In an evanescent plane wave, the power
concentrates in multipolar subspaces of high j . See Appendix B for
the details of the calculations.

prediction of the existence of torque. This shows the advantage
of choosing ŷ as the quantization axis for angular momentum
in our study.

Besides matching our intuition, the decomposition into
modes of well-defined Jy provides information that can be
used in the study and engineering of light-matter interaction
for objects located near surfaces. We now discuss the enhanced
role that high multipolar orders play in evanescent fields, and
a polarization-controlled selection rule which exists in mirror
symmetric fields such as TE and TM plane waves.

C. The enhanced role of high multipolar orders

The modes with large multipolar order j dominate in both
Jy and Jz decompositions. This is a distinct characteristic of
evanescent plane waves. In the multipolar decomposition of
propagating plane waves, all the j subspaces have exactly the
same total sum of squared amplitudes. As soon as θin is larger
than the angle of total internal reflection, the power is unevenly
split between the different j subspaces, and it concentrates
exponentially at larger j values. This can be appreciated in
Fig. 5.

As shown in Appendix B, the formal origin of this differ-
ence is that the angle θev in Eq. (4) is real for propagating plane
waves but complex for evanescent plane waves. Notably, this
shows that evanescent fields provide a means for enhancing the
relative importance of higher multipolar orders in light-matter
interactions at close range. This enhancement has been seen
experimentally in Ref. [4], where the authors could measure
atomic quadrupolar transitions of cesium atoms immersed
in an evanescent field. The enhancement of the quadrupolar
interaction was also theoretically studied in Ref. [5] by some
of the same authors.

TABLE I. Polarization of the plane wave with nonzero contribu-
tion in the (j,my) multipolar mode of parity τ (−1)j . The table is valid
for any field that is an eigenstate of the mirror reflection across the
XZ plane. The behavior of fields with eigenvalue −1 (+1) is given
by that of the TE (TM) plane wave.

j = 1 j = 2

my −1 0 1 −2 −1 0 1 2
(Electric) τ = 1 TM TE TM TM TE TM TE TM
(Magnetic) τ = −1 TE TM TE TE TM TE TM TE

D. A polarization-controlled selection rule

In Appendix C we show that, given a (j,my) pair, the TE
plane waves have zero content of one of the two possible
parities and the TM plane waves have zero content of the
other one. In the transverse multipolar expansion of a TE
plane wave, the complex amplitude of the “electric” mode
|k, j, my, τ = 1〉 contains a multiplicative factor equal to
1 − (−1)j+my , and the complex amplitude of the “magnetic”
mode |k, j, my, τ = −1〉 contains a multiplicative factor equal
to 1 + (−1)j+my . In a TM plane wave, the same multiplicative
factors are swapped between the two parities. While the
dominance of modes with large transverse angular momentum
seen in Fig. 4 is polarization independent, the parity content
of the evanescent plane wave in each (j,my) subspace is
not. Table I shows which polarization produces a nonzero
contribution for each value of parity and my , for the dipolar
(j = 1) and quadrupolar (j = 2) cases. The consequences of
this selection rule can be observed in Fig. 4.

Crucially, the only relevant assumption in the derivation of
the selection rule is the fact that the TE (TM) plane waves
are eigenstates of the mirror reflection across the XZ plane
with opposite eigenvalue −1 (+1). As argued at the end of
Appendix C, the rule applies not only to plane waves, but also
to general eigenstates of this particular mirror reflection. The
rule is hence relevant for the selective excitation of resonances
in objects placed in general evanescent fields with mirror
symmetry, such as, for example, the TE and TM modes of
an optical fiber.

Incidentally, Fig. 4 shows another regularity: The coeffi-
cients for modes with my = 0 are equal to zero for all even
values of j . This can be traced back to a regularity of the small
Wigner matrices and is actually a feature of all fields with zero
eigenvalue of the ŷ component of linear momentum.

III. APPLICATION TO EXPERIMENTS

The analysis and results contained in Sec. II can be applied
to the analysis of evanescent light-matter interactions. We now
discuss two such applications.

A. Directional coupling of emitters into evanescent modes

The experimental results reported in Refs. [13–15] provide
very clear evidence of evanescent directional coupling of an
emitter into guided modes. The origin and magnitude of this
directionality can be elucidated by using the analysis from
Sec. II.
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Let us consider an electric dipolar emitter lo-
cated above the interface and exclusively generating
|k, j = 1, my = −1, τ = 1〉 waves. We are first interested
in the coupling of the dipole emission into the plane waves
analyzed in Fig. 4, and into their counterpropagating versions
with px < 0. The coupling efficiency of the dipole into each
plane wave will be proportional to the amplitude squared of
the coefficient βτ=1

1,−1 in the corresponding expansion. This
statement follows from electromagnetic reciprocity.

Let us first apply the parity selection rule in Table I: The
electric dipole (j = 1, my = −1) will only couple to a TM
mode. Then, for the considered TM plane waves, the ratio
between |βτ=1

1,−1|2 for px > 0 and px < 0, and hence the ratio
between the coupling efficiency to the two counterpropagating
TM plane waves is

∣∣βτ=1,px>0
j=1,my=−1

∣∣2

∣∣βτ=1,px<0
j=1,my=−1

∣∣2 =
∣∣βτ=1,px>0

j=1,my=−1

∣∣2

∣∣βτ=1,px>0
j=1,my=1

∣∣2 ≈ 36, (9)

where the first equality follows from the equality of the
denominators due to symmetry.

Equation (9) means that the electric (j = 1, my = −1)
dipole will couple to the plane wave with px > 0 with 36 times
more strength than to the one with px < 0. The directionality
is exactly reversed for the (j = 1, my = 1) dipole. Overall,
the sign of the transverse angular momentum of the dipole
emission determines the directionality of the excited wave
to a large extent. Notably, the directionality ratio increases
exponentially with the multipolar order. It is equal to 36
for the (j = 1, my = ±1) modes, equal to 1340 for (j =
2, my = ±2), and equal to 5 × 104 for (j = 3, my = ±3).
Similar analysis and conclusions would apply to the directional
coupling of a magnetic dipole into TE modes (see Table I).

The above analysis uses both the exponential behavior
of the coupling coefficients and the parity selection rule for
mirror-symmetric fields. It applies directly to Refs. [13,14],
where the guided modes have the appropriate mirror sym-
metry. In Ref. [15], the waveguide breaks the symmetry
and the parity selection rule cannot be used. Nevertheless,
the polarization-independent exponential dependence of the
coupling coefficients creating the directionality still applies.

The rigorous quantitative analysis of the experiments in
Refs. [13,14] can be achieved by considering the decompo-
sition of the actual optical guided mode, instead of the plane
waves in Fig. 4.

We note that the directionality is achieved by means
of angular-momentum selection, not handedness selection.
When an emitter produces a pure helicity wave of the kind
|k, j, my, λ〉, its preferential coupling direction is completely
determined by the transverse angular momentum my and is
independent of the helicity λ. We can illustrate this with
the following example: A |k, j = 1, my = −1, λ〉 wave
preferentially couples towards one direction. If we rotate the
emitter by a rotation that takes ŷ to −ŷ, the handedness of
the radiation does not change, but its angular momentum flips
sign, and it will now preferentially couple towards the opposite
direction.

This is an important distinction. An electric or magnetic
dipolar emitter with my = ±1 can be associated with the

vectors (∓ẑ − ix̂)/
√

2, which suggests the name “circularly
polarized” electric or magnetic dipoles. This does not mean
that they emit circularly polarized waves of a single handed-
ness, which is what dipoles of well-defined helicity do (see
Refs. [30, Sec. 2.7.3] and [31,32]). Dipoles of well-defined
helicity require the simultaneous presence of electric and
magnetic dipoles in a definite phase relationship, as can be
deduced from inverting Eq. (8).

B. Excitation of atoms into opposite Zeeman states

We finish the section with a discussion of the simultaneous
excitation of atoms into opposite Zeeman states by means
of the same guided optical mode [12]. The experiments in
Ref. [12] show that the atoms trapped on “top” of a tapered fiber
preferentially make a dipolar transition of opposite angular
momentum with respect to those trapped at the “bottom” of
the fiber.

We note that the intensity of the evanescent fields that
interact with the two groups of trapped atoms decreases in
opposite directions (say, ẑ and −ẑ). As can be appreciated from
Fig. 1, this gradient reversal has the same effect as the change
in propagation direction: It reverses the slopes in Fig. 4. This
means that the sign of the transverse angular momentum of the
dominant modes will be opposite in the two cases, and that the
electric-dipole transition of atoms on “top” will preferentially
be of the opposite sign of transverse angular momentum than
for the atoms at the “bottom.” This transition-rate difference
is of the same character as the ratio in Eq. (9). If we consider
the reflection across the plane containing both the “top” and
“bottom” atoms, both the TM plane wave used in Eq. (9) and
the illumination injected in the tapered fiber have3 eigenvalue
1. The use of the coefficients of the transverse multipolar
expansion of the actual optical mode in the fiber will result
in the rigorous prediction of the transition-rate difference.

The outcomes of our symmetry-based arguments are
consistent with those of the microscopic theory for the forward
and backward scattering of guided light from a multilevel atom
developed in Ref. [9].

Notably, the rate difference will increase exponentially for
higher-order multipolar transitions. This is essentially due to
the same reason that produces the directionality explained in
Sec. III A: The exponential trend shown by the decomposition
of evanescent plane waves with respect to the transverse
angular momentum (e.g., Fig. 4).

IV. TRANSVERSE TORQUE ON SPHERICAL PARTICLES
IN EVANESCENT FIELDS

In this section, we use the decomposition of Sec. II to
analyze and maximize the transverse torque experienced by a
spherical absorbing particle immersed in an evanescent plane
wave. The sketch of the problem is displayed in Fig. 6. A
sphere of radius R located at a distance d above the interface
interacts with the evanescent field created by the total internal
reflection of a plane wave propagating in the bottom medium.

3This can be deduced from Ref. [10, Fig. 2].

053822-6



TRANSVERSE MULTIPOLAR LIGHT-MATTER COUPLINGS . . . PHYSICAL REVIEW A 94, 053822 (2016)

2R

d

θin

( t, μt)

( b, μb)

bμb tμt

θin > θc = asin tµt

bµb

|Ψ
ŷ x̂

ẑ

FIG. 6. An absorbing spherical particle of radius R located a
distance d above the interface interacts with the evanescent field
produced in the system of Fig. 2.

To solve this electromagnetic problem exactly, the Green
tensor of the bilayer needs to be used to account for the
interaction between the particle and the environment. The
initial field incident on the particle is the evanescent plane
wave. The particle interacts with it and generates a scattered
field which reflects back from the surface to the particle. The
particle interacts with this new field, and so on. It is, however,
very common [23,26,33–37] to ignore the backaction from the
particle onto itself, and assume that the particle is effectively
placed in a homogeneous medium where the initial evanescent
plane wave is the only incident field. As argued in Ref. [23],
the approximation improves as the particle is located further
from the interface. Our choice of parameters d = 700 nm and
R = 70 nm are more conservative than in Ref. [23].

Under this approximation, the problem can be solved by
using Mie theory. The Mie problem can be solved by using
the multipoles of well-defined helicity as has been done in
Refs. [32,38]. Nevertheless, the problem is usually solved
in the parity basis, which is adapted to the symmetry of

an achiral spherical particle. Thus, we use the expansion of
the evanescent wave into multipoles of well-defined parity of
Eq. (6). In this section we use the symbols (e) for “electric”
and (m) for “magnetic” to denote quantities related to τ = +1
and τ = −1 in Eq. (6), respectively.

In Mie theory, the scattering problem is solved once the
expression of the incident electromagnetic field is decomposed
into multipoles:

|�inc〉 =
∑

j > 0,

|mi | � j

β
(e)
j,mi

|k, j, mi, (m)〉 + β
(m)
j,mi

|k, j, mi, (e)〉,

(10)
where the subindex i will be equal to either y or z.

Then, once the coefficients β
(τ )
j,mi

are known, the scattered
field can be immediately found as [39,40]

|�sca〉 =
∑

j > 0,

|mi | � j

β
(e)
j,mi

aj |k, j, mi, (m)〉

+β
(m)
j,mi

bj |k, j, mi, (e)〉, (11)

where (aj ,bj ) are the so-called Mie coefficients. The Mie
coefficients are independent of the choice of the angular
momentum quantization axis.

A. Expression of torque in basis of
transverse-angular-momentum multipoles

The knowledge of the total field (|�inc〉 + |�sca〉) allows us
to calculate Maxwell’s stress-energy tensor, which then allows
us to compute the net time-averaged radiation torque N on the
sphere via the corresponding flux integrals.

If the Mie problem is solved in the multipolar basis of
well-defined Jz, the torques on the sphere can be computed by
using the formulas obtained by Barton et al. [41], which were
later corrected by Farsund et al. in Ref. [42]. The torques are
normalized by R3|�inc|2, yielding N in dimensionless units:

Nx,mz
= −kR

8π

∑
j > 0,

|mz| � j

Re
{√

(j − mz)(j + mz + 1)
[
(|aj |2 − Re{aj })β(e)

j,mz
β

(e)∗
j,mz+1 + (|bj |2 − Re{bj })β(m)

j,mz
β

(m)∗
j,mz+1

]}
, (12)

Ny,mz
= −kR

8π

∑
j > 0,

|mz| � j

Im
{√

(j − mz)(j + mz + 1)
[
(|aj |2 − Re{aj })β(e)

j,mz
β

(e)∗
j,mz+1 + (|bj |2 − Re{bj })β(m)

j,mz
β

(mw)∗
j,mz+1

]}
, (13)

Nz,mz
= −kR

8π

∑
j > 0,

|mz| � j

mz

[
(|aj |2 − Re{aj })

∣∣β(e)
j,mz

∣∣2 + (|bj |2 − Re{bj })
∣∣β(m)

j,mz

∣∣2]
, (14)

where it is assumed that εt = μt = 1 for the top medium. Note
that Eqs. (12)–(14) differ from those written in Refs. [36,41,42]
by a j (j + 1) factor because we always consider multipolar
fields of unit norm, like those in Refs. [28,43].

In addition, the terms in Eqs. (12)–(14) have been regrouped
in a different way in order to highlight the torque dependence
on (|aj |2 − Re{aj }) and (|bj |2 − Re{bj }). We define these
quantities as the absorption Mie coefficients:

Aj = |aj |2 − Re{aj }, and Bj = |bj |2 − Re{bj }. (15)

This definition is motivated by their appearance in Eqs. (12)–
(14) [and later in Eqs. (16)–(18)], the typical definition of
absorption cross section in Mie theory, i.e., Qabs = Qext −
Qsca [39], and the following consideration: Since scattering
off the sphere preserves the angular momentum of multipolar
modes, absorption is the only mechanism that allows the
electromagnetic field to exert torque on a spherical particle.
The conservation of the angular momentum of the whole
system (electromagnetic field-sphere), dictates that when the
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sphere absorbs radiation with a value of Jy equal to my , it
must experience a torque proportional to my . Furthermore,
the torque must be proportional to the absorption. Here, it
is seen that, if Aj = Bj = 0 ∀ j , the torque exerted on the
particle is going to be null. This is exactly the case when the
permittivity and permeability of the sphere are real, and there
are no absorption losses [39].

In our case, we need the formulas corresponding to
Eqs. (12)–(14), but for multipolar fields of well-defined Jy .
They can be obtained by using the rotation described in
Fig. 3(c). No calculations need to be done to find out the
analytic expressions of N in the desired basis. Due to the
fact that the scatterer is a sphere, it can be proven that
the expressions for Nx, Ny, and Nz as a function of my are

Nx,my
= −kR

8π

∑
j > 0,

|my | � j

Re
{√

(j − my)(j + my + 1)
[
(|aj |2 − Re{aj })β(e)

j,my
β

(e)∗
j,my+1 + (|bj |2 − Re{bj })β(m)

j,my
β

(m)∗
j,my+1

]}
, (16)

Ny,my
= −kR

8π

∑
j > 0,

|my | � j

my

[
(|aj |2 − Re{aj })

∣∣β(e)
j,my

∣∣2 + (|bj |2 − Re{bj })
∣∣β(m)

j,my

∣∣2]
, (17)

Nz,my
= kR

8π

∑
j > 0,

|my | � j

Im
{√

(j − my)(j + my + 1)
[
(|aj |2 − Re{aj })β(e)

j,my
β

(e)∗
j,my+1 + (|bj |2 − Re{bj })β(m)

j,my
β

(m)∗
j,my+1

]}
. (18)

Note that Eqs. (12)–(18) can be used to verify that
the coefficients β

(τ )
j,mz

and β
(τ )
j,my

displayed in Fig. 4 are
properly related. We can indeed verify that Ni,mz

= Ni,my

for i = x,y,z.

B. Torque maximization

The torque around the ŷ axis exerted on a sphere by any
plane wave can be calculated by using Eq. (17) and the
coefficients β

(τ )
j,my

from Eq. (6). This analytical formula allows
us to study how a given parameter affects the torque. For
example, the images in Fig. 1 provide some intuition regarding
the existence and the sign of a transverse torque on a particle.
However, the dependence of the transverse torque Ny on the
incidence angle θin is not clear.

Equation (17) can also be used to find the wavelength,
polarization, and angle of incidence of the normalized
monochromatic plane wave propagating in the bottom medium
of Fig. 6, which maximizes the torque on a given sphere in
the top medium. To such end, we probe a spherical particle
by using the excitation scheme depicted in Fig. 6 with plane
waves of different wavelengths varying from 380 to 625 nm,
and different incidence angles θin varying from θin = θc to
θin = π/2. Both TE and TM polarizations are considered for
the incident plane wave in the bottom medium. All the different
plane waves in the bottom medium are assumed to have the
same intensity. The optical constants of the top and bottom
media are εt = μt = μb = 1 and εb = 2.25. The size of the
sphere is R = 70 nm, the distance from the center of the sphere
to the interface is d = 700 nm.

Two different particles are considered: one made of gold
and the other made of silicon. The permittivity of gold
and silicon are obtained through linear interpolation of the
data points in Refs. [44] and [45], respectively. Both gold
and silicon absorb in the range of wavelengths that we
consider.

Figure 7 shows the results obtained for the transverse torque
Ny for a particle made of gold and an incident TE wave
[Fig. 7(a)], and an incident TM wave [Fig. 7(b)]. In Figs. 7(c)

and 7(d), the same calculations are done for a particle made
of silicon. First, we note that Ny is negative in all cases.
This is consistent with the fact that the setting considered
in this section corresponds to the situation in Fig. 1(a). We
also observe that Ny is maximized for certain angles θin. The
optimal angles are found to belong to the interval 47◦–66◦.
Note that these optimal angles are a function of different
variables. That is, the optimal angles vary depending on the
wavelength, polarization (TE or TM), and material (gold or
silicon). This fact implies that the optimum angle is not the
result of the difference in transmission given by the TE and
TM Fresnel coefficients.

We observe that Ny exhibits a clear resonant behavior
for the silicon particle. Silicon spheres are known to have
a rich resonant behavior [46–49]. The interplay between the
resonances of the sphere and the selection rule illustrated in
Table I will be the focus of the next section.

With respect to maximizing the torque in the Si sphere, we
determine from Figs. 7(c) and 7(d) that a TE plane wave with
a wavelength around 458 nm and angle of incidence equal to
59.57◦ is the monochromatic plane wave propagating in the
bottom medium whose evanescent field results in the maxi-
mum torque on the silicon particle. This is opposite to the case
of propagating plane waves, where the optimal polarization for
exerting torque on spherical absorbing particles is the circular
polarization [50,51], i.e., the equal-amplitude mix of TE and
TM waves.

C. Selective excitation of absorption resonances

Looking at Figs. 7(c) and 7(d), one can see that incident TE
and TM evanescent waves give rise to very different torques.
Now, the peaks seem to be linked with resonances of the
silicon sphere. Different peaks seem to arise depending on
the polarization of the incident evanescent wave.

To analyze these features, in Fig. 8 we plot Ny(λ) for
θin = 57.6◦ for TE and TM waves. The angle belongs to
the optimal range found in the previous section. Then,
we also plot the first three absorption Mie coefficients,
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FIG. 7. Torque induced on a particle under evanescent-plane-wave illumination. The geometry of the problem is described by Fig. 6, with
R = 70 nm, d = 700 nm, εt = μt = μb = 1, and εb = 2.25. The plane wave in the bottom medium has a TE polarization for panels (a) and
(c), and a TM polarization for panels (b) and (d). The particle is made of gold for panels (a) and (b), and it is made of silicon for panels (c) and
(d). For all the plots, different incident angles θin have been considered, going from θc to π/2. The torques are dimensionless (see text).

Aj, Bj of Eq. (15) for j = 1,2,3. We have not plotted
higher-order modes because their contribution to the torque
can be neglected. In Fig. 8, we can thus compare the
obtained torques with single absorption resonances, since the
resonances of Aj , |aj |, and Re{aj } happen at different spectral
positions [52].

We observe in Fig. 8 that most of the peaks in Ny(λ) are
due to single absorption resonances of the particle. We see that
the most prominent resonances for both TM and TE waves are
the electric (EQ) and magnetic quadrupolar (MQ) resonance,
respectively. Furthermore, absorption magnetic dipolar (MD)
and magnetic octupolar (MO) resonances can also be singled
out, both of them being excited by the TE evanescent wave.
These observations are consistent with the two main features

of the expansion of TE and TM evanescent plane waves. The
first has been shown in Fig. 4: The projection of evanescent
waves with multipolar modes grows exponentially with j and
my , reaching a maximum when my = ±j . This enhances the
role of higher multipolar orders such as the quadrupole. The
second one is illustrated in Table I: When my = ±j , a TM
(TE) wave only excites modes of the electric (magnetic) parity.
Furthermore, looking at Eq. (18), we see that the modes with
the largest my are those that contribute most to the torque.
Putting all this together, we can now figure out why TM (TE)
evanescent plane waves are able to efficiently excite higher-
order multipolar resonances of the electric (magnetic) parity
with their maximum possible transverse angular-momentum
value. Efficiency here must be understood as relative to
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FIG. 8. Modulus square of the absorption Mie coefficients Aj , Bj with j = 1,2,3 for a R = 70 nm silicon sphere embedded in air. These
coefficients are compared with the torque experienced by the same silicon particle when it is located d = 700 nm above the interface. The
value of the torque has been computed for incident TE and TM plane waves with θin = 57.6◦. The torques are dimensionless (see text).

excitation of lower-order resonances. We note that the situation
is quite different when engineering the multipolar content of a
propagating beam [40,53], where the exponential growth does
not happen.

Notably, the polarization-dependent excitation of multipo-
lar absorption resonances does not qualitatively depend on the
approximation made in Sec. IV A. The reason is that, under
a TE (TM) illumination, the secondary interaction-reflection
events between the sphere and the interface will still sum up
to a field that is an eigenstate of the mirror reflection across
the XZ plane. This happens because the entire system (i.e.,
excitation, interface, and sphere) has this symmetry. As argued
at the end of Appendix C, the polarization-controlled selection
rule illustrated in Table I applies not only to plane waves, but
also to general eigenstates of this particular mirror reflection.

Two last comments are in order. First, notice that, given a
wavelength, the product Aj |β(e)

j,my
|2 tends to 0 for growing

j . That is, the decay of Aj (Bj ) with j is faster than
the exponential growth of the evanescent-wave coefficients
β

(e)
j,my

(β(m)
j,my

) with j . These conditions keep the additions in
Eqs. (12)–(18) finite. And last but not least, as we observe in
Figs. 7 and 8, even though the dipolar absorption resonances
of the sphere are larger than the quadrupolar ones, the torque
due to evanescent plane waves turns out to be dominated by
the quadrupolar orders. Unlike in many other light-matter-
interaction situations, where the dipolar contribution of the

sample predominates, the evanescent light-matter interaction
changes this pattern.

V. CONCLUSION

The decomposition of an evanescent plane wave into
multipoles of well-defined transverse angular momentum has
been shown to be a valuable approach to study and engineer
evanescent light-matter interactions.

We have shown that, when this approach is applied to
experiments involving evanescent light-matter couplings, it
leads to their qualitative understanding and to the ability
of making rigorous quantitative predictions about them. We
have also shown how the approach can be used to study
the transverse torque exerted by an evanescent plane wave
onto a given spherical absorbing particle and to find the
parameters that maximize it; that is, the optimal combination
of frequency, angle of incidence, and polarization of the cor-
responding propagating plane wave undergoing total internal
reflection.

The physical insights that we have obtained can be traced
back to the two main features of the decomposition of
evanescent plane waves into transverse multipolar modes:
A polarization-independent exponential dominance of modes
with large transverse angular momentum, and a polarization-
controlled parity selection rule.
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We have provided the derivations needed to implement the
transverse multipolar decomposition of an arbitrary evanescent
plane wave, thereby allowing the corresponding decomposi-
tion of any evanescent field, such as, for example, the field
around a tapered fiber.

We believe that the presented approach can be of help in the
study and engineering of evanescent light-matter interactions.
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APPENDIX A: DECOMPOSITION OF AN EVANESCENT
PLANE WAVE INTO MODES WITH WELL-DEFINED

TRANSVERSE ANGULAR MOMENTUM

Our goal is to obtain the decomposition of the evanescent
plane wave in the top medium of Fig. 2 into modes with
well-defined Jy , and with the origin of coordinates at a distance
d above the interface. The expansion shall read

|�〉 =
∑

j > 0,

|my | � j

α+
j,my

|k, j, my, +〉 + α−
j,my

|k, j, my, −〉. (A1)

The procedure that we follow is depicted in Fig. 3. First,
we obtain the expansion of the plane wave in a basis of
multipolar fields with well-defined Jz and origin in the
interface [Fig. 3(a)]. We then shift the origin by a distance
d above the interface [Fig. 3(b)], and finally we rotate the
coordinate system to obtain modes of well-defined Jy at
the shifted origin [Fig. 3(c)]. Other procedures are possible.
We have chosen this route because of the availability of
explicit formulas for translating and rotating multipolar fields
when the quantization axis for angular momentum is the
ẑ axis [28]. Additionally, the choice of helicity (λ = ±1)
for characterizing the polarization simplifies the translation
formulas, as we explain later.

Before starting, we consider the following result [28,
Eq. 7.3-15]:

〈mz, j |R(α,β,γ )|j, mz〉 = Dj (α,β,γ )mz

mz

= exp(−imzα)dj (β)mz

mz
exp(−imzγ ),

(A2)

where dj (β)mz
mz

are the reduced Wigner matrices. Equation (A2)
is the matrix element of the rotation with Euler angles
(α,β,γ ) between the two states |j, mz〉 and |j, m〉. The
publicly available EASYSPIN code [27] includes a convenient
implementation4 of Eq. (A2).

4See the documentation of the EASYSPIN function
wignerd(j,[α,β,γ ]).

We now write an equation that we will use several times:

〈λ̄, mz, j̄ , k|R(α,β,γ )|k, j, mz, λ〉
= δλ̄λδj̄j exp(−imzα)dj (β)mz

mz
exp(−imzγ ), (A3)

where δnm is the Kronecker delta. To write Eq. (A3), we have
used that rotations do not change the eigenvalues of the linear
momentum squared (equal to k2), the angular momentum
squared [equal to j (j + 1)], or helicity.

Any evanescent plane wave in the top medium of Fig. (2)
can be written as the sum of two evanescent plane waves of
well-defined helicity:

|�〉 = β+|p, +〉 + β−|p, −〉. (A4)

For a given polarization of the impinging plane wave in
the bottom medium, the coefficients β± in Eq. (A4) can be
obtained by using the Fresnel formulas and the relationship
between plane waves of well-defined helicity and the TE and
TM plane waves [30, Sec 2.2.3]:√

2|p, te〉 = |p, +〉 + |p, −〉,
√

2|p, tm〉 = |p, +〉 − |p, −〉. (A5)

We start by writing a decomposition of an evanescent plane
wave |p λ〉 into multipoles of well-defined Jz and origin at
the interface [Fig. 3(a)]. We note that the typical expression
of the Fresnel transmission coefficients implicitly contains the
assumption that the origin of coordinates is at the interface
between the two media. Objects corresponding to this origin
of coordinates will be indicated by o prescripts and subscripts:

|p, λ〉 =
∑

j > 0,

|mz| � j

oαλ
j,mz

|k, j, mz, λ〉o, (A6)

where k = ω
√

εtμt . The complex amplitudes oαλ
j,mz

are given
by the projection of each of the modes onto the plane wave,
i.e., the scalar product:

oαλ
j,mz

= o〈λ, mz, j, k|p, λ〉. (A7)

To obtain the complex amplitudes, we first use the following
result [28, Eq. 9.4-8]: The plane wave with wave number
k = ω

√
εμ, helicity λ, and momentum

p = k[sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )], (A8)

can be obtained by rotating a plane wave of the same wave
number and helicity with momentum aligned with the ẑ axis:

|p, λ〉 = R(φ,θ,0)|kẑ, λ〉. (A9)

This result is valid for both propagating and evanescent plane
waves.

We now use the decomposition of |kẑ, λ〉 into multipoles
of well-defined Jz [28, Eq. 8.1-11]:

|kẑ, λ〉 =
∑
j>1

|k, j, (mz = λ), λ〉o, (A10)

and obtain, from Eqs. (A7), (A9), and (A10),

oαλ
j,mz

=
∑
j>1

〈λ, mz, j, k|R(φ,θ,0)|k, j, (mz = λ), λ〉

(A3)= exp(−imzφ)dj (θ )mz

λ . (A11)
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The last equality follows from Eq. (A3), which we indicate by
(A3)= . We will use this notation often.

Equations (A6) and (A11) provide the decomposition of the
plane wave into modes of well-defined Jz with the origin of
coordinates at the interface between the two media.

The next step in our program is to obtain the expansion
of the same plane wave into multipoles of well-defined Jz

but with the origin of coordinates at a distance d above the
interface [Fig. 3(b)]:

|p, λ〉 =
∑

j > 0,

|mz| � j

αλ

j,mz
|k, j, mz, λ〉. (A12)

The absence of the “o” prescripts and subscripts denotes
objects referred to the shifted origin.

To obtain the coefficients αλ

j,mz
as a function of the already

known oαλ
j,mz

we proceed as follows: First, since the origin
shift is essentially a change of basis which does not modify
the physical state, we can write∑

j > 0,

|mz| � j

αλ

j,mz
|k, j, mz, λ〉 =

∑
j > 0,

|mz| � j

oαλ
j,mz

|k, j, mz, λ〉o.

(A13)
Now, because the multipolar fields with respect to each origin
form a complete basis, we may expand |k, j, mz, λ〉o as a
function of the |k, j, mz, λ〉. A crucial point here is that
translations do not change helicity:

|k, j, mz, λ〉o =
∑
j̃ ,m̃z

γ
j̃ ,m̃z

j,mz
|k, j̃ , m̃z, λ〉. (A14)

Then, using the orthogonality of the multipolar fields:

αλ

j,mz
= 〈λ, mz, j, k|p λ〉 (A13)(A14)=

∑
j > 0,

|mz| � j

oαλ
j,mz

γ
j,mz

j,mz
.

(A15)

All that is left is to specify the coefficients γ
j,mz

j,mz
. As seen

in Eq. (A15), the γ
j,mz

j,mz
change the coordinates from a basis

of multipoles centered at the interface to a basis of multipoles
centered at z = d. Since we have translated the basis vectors by
d ẑ and the coordinates change with the inverse transformation,

the γ
j,mz

j,mz
must be the matrix elements of a translation by −d ẑ

in the multipolar basis. Their analytical expression can be
obtained from [28, Prob. 9.4] using that translations along the
z axis do not change the eigenvalue of Jz:

γ
j,mz

j,mz
(k,λ) = 〈λ, mz, j, k|Tz(−d)|k, j, mz, λ〉

= δmzmz

∑
l�0

(2l + 1)iljl(kd)

× [mz0(j l)jmz][jλ(j l)λ0], (A16)

where jl(·) is the spherical Bessel function of order l, Tz(·)
is a translation along the z axis, and the symbols in square
brackets are Clebsch–Gordan coefficients [28, p. 120]. The

publicly available EASYSPIN code [27] includes a convenient
implementation of the Clebsch–Gordan coefficients5

Equation (A16) is the translation theorem for multipolar
fields of well-defined helicity. Since helicity commutes with
translations, the translated version of an eigenstate of helicity
is still an eigenstate of helicity with the same eigenvalue. This
is a simplification with respect to the case of eigenstates of
parity which mix upon translation.

Here is an important note for the use of the translation
theorem in numerical calculations. The translation of a (j,m)
mode produces modes with j = j , but also modes with j �= j

whose amplitudes decay with |j − j |. Conversely, a translated
j mode contains contributions from original j �= j modes. It is
important that enough contributions of j �= j modes are con-
sidered from both j > j and j < j “sides.” This means that,
for a desired maximum j = j̄max value after the shift, the orig-
inal expansion needs to contain enough modes with j > j̄max.

The last step is to obtain the expansion into modes of well-
defined Jy at the shifted origin:

|p, λ〉 =
∑

j > 0,

|my | � j

αλ
j,my

|k, j, my, λ〉. (A17)

This can be achieved by a rotation of the shifted coordinate
system by −π/2 around the x̂ axis, as indicated in Fig. 3(c).
Since the components of angular-momentum transform as a
vector upon rotations, the Rx̂(−π/2) rotation of an eigenstate
of Jz (|k, j, mz, λ〉) results in an eigenstate of Jy with
eigenvalue my numerically equal to mz:

|k, j, (my = mz), λ〉 = Rx̂(−π/2)|k, j, mz, λ〉. (A18)

We hence have

αλ
j,my

= 〈 λ, my, j, k|p, λ〉
(A18)= 〈λ, (mz = my), j, k|Rx̂(π/2)|p, λ〉
(A12)=

∑
j > 0,

|mz| � j

αλ
j,mz

〈 λ, (mz = my), j,

k|Rx̂(π/2)|k, j, mz, λ〉
=

∑
j > 0,

|mz| � j

αλ
j,mz

〈 λ, (mz = my), j,

k|R(−π/2,π/2,π/2)|k, j, mz, λ〉
(A3)=

∑
j > 0,

|mz| � j

αλ
j,mz

exp(imyπ/2)dj (π/2)
my

mz

× exp(−imzπ/2), (A19)

where the fourth equality follows from the Euler angle
expression of the rotation

Rx̂(π/2) = R(α = −π/2, β = π/2, γ = π/2). (A20)

5The [mm′(jj ′)JM] coefficient in our notation is obtained by
calling the EASYSPIN function clebshgordan(j,j ′,J,m,m′,M).
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The coefficients in Eq. (A1) can finally be obtained from
Eqs. (A4), (A17), and (A19).

APPENDIX B: DISTRIBUTION OF THE EVANESCENT
PLANE WAVE POWER ACROSS

MULTIPOLAR SUBSPACES

The decomposition of a plane wave into modes of well-
defined transverse angular momentum in Appendix A is valid
for both propagating and evanescent plane waves. The only
qualitative difference is the angle θ in the reduced Wigner
matrix elements dj (θ )mz

λ in Eq. (A11): θ is real for propagating
plane waves and complex for evanescent plane waves. This
difference has a substantial effect on the distribution of the
power of the plane wave across multipolar modes with different
j .

Figure 5 is a plot of the following quantity referred to
Eq. (A11):

Qj (θin) =
m=j∑

m=−j

∣∣oαλ=1
j,m

∣∣2

=
m=j∑

m=−j

∣∣∣∣dj

[
arcsin

(√
εbμb

εtμt

sin θin

)]m

λ=1

∣∣∣∣
2

. (B1)

Qj (θin) measures the power of the plane wave in the top
medium of Fig. (2) contained in the j th multipolar subspace
as a function of the angle of incidence of the plane wave in the
bottom medium.

The behavior mentioned in the main text is evident in
Fig. 5. While the plane wave in top medium is propagating,
each j subspace contains exactly the same power (note the
logarithmic scale in the graph). The plane wave in the top
medium becomes evanescent in the shaded region. As soon
as θin is larger than the angle of total internal reflection, the
power is unevenly split between the different j subspaces, and
it concentrates exponentially at larger j values. The graph is
identical for λ = −1 in Eq. (B1).

APPENDIX C: RESTRICTIONS ON THE TRANSVERSE
ANGULAR MOMENTUM MULTIPOLAR COEFFICIENTS

OF TRANSVERSE ELECTRIC AND TRANSVERSE
MAGNETIC PLANE WAVES

The TE and TM plane waves with momentum p =
[px,0,pz], defined as

√
2|p, te〉 = |p, +〉 + |p, −〉,

√
2|p, tm〉 = |p, +〉 − |p, −〉, (C1)

are eigenstates of the mirror reflection across the XZ plane,
which we denote as Mŷ:

Mŷ|p, te〉 = −|p, te〉, Mŷ|p, tm〉 = |p, tm〉. (C2)

This imposes restrictions on the complex amplitudes of
the expansion of the plane waves in multipolar fields of well-
defined transverse momentum (Jy). To obtain the explicit form
of the restrictions, we start by applying the mirror reflection

Mŷ to the expansion of |p, λ〉 in Eq. (A17):

Mŷ|p, λ〉 = Mŷ

∑
j > 0,

|my | � j

αλ
j,my

|k, j, my, λ〉

=
∑

j > 0,

|my | � j

αλ
j,my

�Rŷ(π )|k, j, my, λ〉

=
∑

j > 0,

|my | � j

αλ
j,my

(−1)my �|k, j, my, λ〉

=
∑

j > 0,

|my | � j

αλ
j,my

(−1)j+my |k, j, my, − λ〉, (C3)

where the second equality follows from Mŷ = �Rŷ(π ), where
� is the parity operator, the third equality follows from
Rŷ(π )|k, j,my, λ〉 = exp(−imyπ )|k, j,my, λ〉, and the fourth
follows from Ref. [28, Eq. 11.4-5].

Let us now focus on the expansion of the TE plane wave:
√

2|p, te〉=
∑

j > 0,

|my | � j

α+
j,my

|k, j, my,+〉+α−
j,my

|k, j, my, −〉,

(C4)

where we apply the mirror reflection:
√

2Mŷ|p, te〉 =
∑

j > 0,

|my | � j

α+
j,my

Mŷ|k, j, my, +〉

+α−
j,my

Mŷ|k, j, my, −〉
(C3)=

∑
j > 0,

|my | � j

α+
j,my

(−1)j+my |k, j, my, −〉

+α−
j,my

(−1)j+my |k, j, my, +〉. (C5)

Since Mŷ|p, te〉 = −|p, te〉 [Eq. (C2)], it must be that

√
2|p, te〉 (C4)=

∑
j > 0,

|my | � j

α+
j,my

|k, j, my, +〉

+α−
j,my

|k, j, my, −〉
(C2)= −

√
2Mŷ|p, te〉

(C5)=
∑

j > 0,

|my | � j

−α+
j,my

(−1)j+my |k, j, my, −〉

−α−
j,my

(−1)j+my |k, j, my, +〉, (C6)

which forces

α±
j,my

= −(−1)j+my α∓
j,my

. (C7)

The same result is obtained starting with the TM plane wave.
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Let us now consider the multipolar basis of fields of well-
defined parity [28, Eq. 11.4-6]:

√
2|k, j, my, τ = 1〉 = |k, j, my, +〉 + |k, j, my, −〉,

√
2|k, j, my, τ = −1〉 = |k, j, my, +〉 − |k, j, my, −〉,

(C8)

where the parity of |k, j, my, τ 〉 is τ (−1)j , and τ = 1(−1)
corresponds to the “electric” (“magnetic”) multipoles [28,
Eq. 11.4-25].

Using Eq. (C8) we can establish the relationship between
the multipolar helicity coefficients α+

j,my
and the multipolar

parity coefficients +βτ
j,my

of the two multipolar expansions of
|p, +〉:

+βτ=1
j,my

= +βτ=−1
j,my

=
α+

j,my√
2

. (C9)

Parallel steps for |p, −〉 result in

−βτ=1
j,my

= −(−βτ=−1
j,my

) =
α−

j,my√
2

. (C10)

Equations (C1), (C4), (C9), and (C10) allow us to now
write

√
2|p, te〉 =

∑
j > 0,

|my | � j

(α+
j,my

+ α−
j,my

)|k, j, my, τ = 1〉

+ (α+
j,my

− α−
j,my

)|k, j, my, τ = −1〉,

√
2|p, tm〉 =

∑
j > 0,

|my | � j

(α+
j,my

− α−
j,my

)|k, j, my, τ = 1〉

+ (α+
j,my

+ α−
j,my

)|k, j, my, τ = −1〉. (C11)

Finally, restriction (C7) applied to Eq. (C11) results in
√

2|p, te〉=
∑

j > 0,

|my | � j

α+
j,my

{[1 − (−1)j+my ]|k, j, my, τ =1〉

+ [1 + (−1)j+my ]|k, j, my, τ = −1〉},
√

2|p, tm〉=
∑

j > 0,

|my | � j

α+
j,my

{[1 + (−1)j+my ]|k, j, my, τ =1〉

+ [1 − (−1)j+my ]|k, j, my, τ = −1〉}. (C12)

Equation (C12) contains the following parity selection rule:
Given a (j,my) pair, the TE (TM) polarized plane waves have
a contribution from only one of the two possible parities, and
the contributing parity is opposite for the TE- versus the TM-
polarized plane wave.

It should be noted that, in a transmission or reflection
problem, the TE (TM) plane waves in Eq. (C12) would be
multiplied by the corresponding Fresnel coefficients.

An important generalization of the result in Eq. (C12) is
possible. It is straightforward to check that one can substitute
the TE and TM plane waves by general eigenstates of Mŷ with
eigenvalues −1 and +1, respectively, and all the steps in the
derivations remain unchanged. In essence, we have only used
the relationships between multipolar fields of well-defined
helicity and multipolar fields of well-defined parity, and the
fact that the fields are eigenstates of Mŷ.
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