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Locally parity-time-symmetric and globally parity-symmetric systems
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We introduce a class of systems holding parity-time (PT ) symmetry locally, whereas being globally P
symmetric. The potential, U = U (|r|), fulfills PT symmetry with respect to periodically distributed points
r0 : U (|r0 + r|) = U ∗(|r0 − r|) being r0 �= 0. We show that such systems hold unusual properties arising from
the merging of the two different symmetries, leading to a strong field localization and enhancement at the
double-symmetry center, r = 0, when the coupling of outward to inward propagating waves is favored. We
explore such general potentials in one and two dimensions, which could have actual realizations combining
gain-loss and index modulations in nanophotonic structures. In particular, we show how to render a broad
aperture vertical-cavity surface-emitting laser into a bright and narrow beam source, as a direct application.

DOI: 10.1103/PhysRevA.94.053819

I. INTRODUCTION

PT -symmetric systems, introduced as a curiosity in
quantum mechanics [1,2], are recently being explored in
the field of acoustics [3], plasmonics [4], or Bose-Einstein
condensates [5] and more extensively in optics [6–8]. A
necessary condition for a system to be PT symmetric is that
the complex potential fulfills U (r) = U ∗(−r). Therefore, in
the case of periodic PT -symmetric systems, the requirement
is that the real and complex modulations of the potential
are dephased a quarter of the period of the modulation.
While being complex, such systems may have real spectra
and hold counterintuitive physical effects arising from their
complex topology. Depending on parameters, above some
threshold value, the PT symmetry may be spontaneously
broken, the eigenvalues become complex conjugate pairs,
and a phase transition occurs at this exceptional point (EP).
This is the onset of the so-called PT -phase transition
leading to unusual features. Among these novel unexpected
properties are asymmetric reflections, asymmetric invisibility,
asymmetric mode coupling, Bloch oscillations, spectral singu-
larities, or coherent perfect absorbers as time-reversed lasers
[9–13].

However, most periodic PT -symmetric systems can be
regarded as belonging to two limiting situations corresponding
to already well-known potentials. On one extreme, there are
purely real-valued periodic potentials, which in the simplest
harmonic modulation case may be expressed as U (r) =
nRecos(qx), being q the spatial period of the modulation and
nRe its amplitude. On the other extreme, there are purely
imaginary potentials exhibiting gain-loss modulations, which
in the simplest harmonic case may be simply expressed as
U (r) = nImcos(qx). Note that both limits lead to a symmetric
coupling of resonant modes, i.e., the two counterpropagating
modes with wave vector |k|, exp(−ikx) and exp(ikx), are
coupled symmetrically at resonance, for q = 2k. The peculiar
situation arises close to the EP, only when both the real and
imaginary parts of the potential are simultaneously modulated,
with a ±π/2 phase shift: U (r) = nRecos(qx) + inImsin(qx).
Indeed, when both modulations are balanced, nRe = nIm,
the complex potential can be simply expressed as U (r) =
n exp(±iqx), which evidences that the coupling becomes

strongly unidirectional. For example, for such a complex
modulation the left-propagating mode exp(−ikx), is efficiently
coupled to the right propagating mode, exp(+ikx), but not
vice versa. The point nRe = nIm is precisely the EP or PT-
phase transition, separating two extreme situations. Mathe-
matically, the coupling between the two, left/right, propagating
mode is conveniently described via linear coupling matrices,
M = {{0,nRe + nIm},{nRe − nIm,0}}, which at the PT -phase
transition point degenerate to M = {{0,2n},{0,0}}. Generally,
in the presence of more modes (or mode continuum) the
description of the field dynamics becomes more complex;
however, the phase transition separating the two extreme
limits of real-like and imaginary-like periodic potentials still
exists. The question that arises is what occurs if the PT -
symmetry condition is not met globally but only locally.
Let us consider a simple one-dimensional (1D) situation as
the one represented in Fig. 1(a): such a complex potential
leads to a unidirectional coupling “to the left” on the right
half-space, and “to the right” on the left half-space. Therefore,
an accumulation of the field can be expected at x = 0. The
same idea applies to two dimensions (2D) [see Figs. 1(b)
and 1(d)], when the radial coupling between incoming and
outgoing axisymmetric waves is asymmetric. Note that the
physical realizations of the two above discussed arrangements,
in 1D and 2D, are nowadays available in microphotonics, in
particular for the special fabrication of microchip and vertical-
cavity surface-emitting lasers (VCSELs) [14,15]. In optics,
the refractive index corresponds to the real component of the
potential, whereas gain or loss stands for its imaginary part;
purely real or imaginary modulated systems being photonic
crystals and gain-loss modulated (GLM) systems, respectively
[16–20]. Therefore, PT -symmetric optical potentials are
expected to behave either as PhC-like systems or as GLM-like
systems.

In this article, we propose a class of locally PT -symmetric
and globally P-symmetric systems for field localization
and enhancement, which we analyze on general linear
systems both in 1D and in 2D. To show the potential
application of the idea, we explore a specific nonlinear
system, the 2D VCSEL, in the concluding part of the
article.
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FIG. 1. Inward unidirectional coupling: (a) 1D complex potential,
where nRe and nIm correspond to the real and imaginary parts
of the modulation of the potential; (b) analogous axisymmetric
configuration in 2D. (c) Two possible realizations of such 2D
geometries in broad aperture microlasers (modified VCSELS) with
either a modulated gain layer and/or a modulated (microcorrugated)
mirror, with asymmetric spatial coupling of the fields evolving in
time. (d) 3D coaxial complex modulation, analogous to (b) and (c),
with asymmetric radial coupling for fields propagating along z. The
arrows in (a) and (b) indicate the direction of the asymmetric mode
coupling.

II. MODEL

We start with the general normalized paraxial electromag-
netic field equation (equivalent to the Schrödinger equation for
a quantum wave function) as a mathematical model, including
diffraction and a complex potential, as

∂tA(r,t) = i∇2
⊥A(r,t) + iU (r)A(r,t), (1)

where A(r,t) is the slowly varying amplitude envelope of the
complex electromagnetic field distributed in space, r , and U (r)
is the potential with a profile satisfying the particular symmetry
conditions. The particular requirement for the potential is
the local PT symmetry: U (|r0 + r|) = U ∗(|r0 − r|), with
respect to periodically distributed points r0, being r0 �= 0;
and the global P symmetry: U (r) = U (−r). For simplicity,
using normalized spatial coordinates, such a potential may
be expressed as U (r) = nRe cos(|x| + φ) − inIm sin(|x| + φ)
in 1D, and U (r) = nRe cos(r + φ) − inIm sin(r + φ) in 2D as
illustrated in Fig. 1. Here, nRe and nIm denote the normalized
amplitudes of the real and the imaginary components of
the potential, respectively. The phase φ characterizes the
P-symmetry center, at r = 0, being an important parameter
for the field localization and enhancement. Therefore, nRe, nIm,
and φ are the three key parameters determining the spatial and
temporal dynamics of such systems. Equation (1) describes
the field temporal evolution of the schemes represented in
Figs. 1(a)–1(c), or equivalently, the spatial evolution for
propagation along z for Fig. 1(d).

III. 1D SYSTEMS

We numerically solve Eq. (1) considering the general 1D
potential U (r) = nRe cos(|x| + φ) − inIm sin(|x| + φ), for an
initial Gaussian beam: A(x) = A0e

−(x/w)2
where the initial

FIG. 2. 1D locally PT -symmetric and globally P-symmetric
systems. (a) Localization (kIm) map calculated after a sufficient
long time (t∼300 units) in parameter space (nRe,nIm) for φ = 0. (b)
Growth (ωIm) map at the center (x = 0) for φ = 0 in the parameter
space, obtained numerically with a finite difference time domain
method using a hyper-Gaussian filter as boundary conditions. (c), (d)
Analysis of two representative points, with parameter sets (0.4,0.3)
and (−0.4,0.3), respectively. For both points, the spatial field profiles
in linear and natural logarithmic scales are shown in (i) and (ii), while
(iii) represents the spatial field spectra, as obtained from the Fourier
transform, in natural logarithmic scale. Note that localization, kIm,
and growth, ωIm, exponents are dimensionless quantities due to the
normalization.

beam width w is broad enough to cover several PT - modu-
lation periods (w � 1). As expected, such a system develops
an exponential field localization at x = 0, also exhibiting an
exponential growth in time, due to the linear nature of the
system. The envelope of the field may be asymptotically
expressed as A(x) ≈ e−iωt e−ik|x| where k = kRe + ikIm and
ω = ωRe + iωIm are both complex numbers; kIm and kRe

denote the spatial localization exponent and wave number of a
dominant mode, respectively, while ωIm,ωRe stand for the tem-
poral growth exponent and temporal oscillation frequency. We
numerically obtain the localization as kIm = d/dx(ln[A(x,t)]),
after a sufficient long evolution time; and the temporal growth
at x = 0 as: ωIm = d/dt(ln[A(0,t)]). We explore the param-
eter space (nRe,nIm) to determine the regimes of maximum
field localization and growth; the results are summarized in
Fig. 2.

The field is expected to be localized around theP-symmetry
point for nRe ≈ nIm, resulting from the unidirectional coupling
between propagating waves, on the left-hand x < 0 and
right-hand x > 0 half-spaces. The dark blue area in both maps
represents almost no localization [Fig. 2(a)] or no field growth
[Fig. 2(b)]. We observe that the growth for φ = 0 is larger at
the top and bottom regions [see Fig. 2(b)], suggesting that it
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strongly depends on the amplitude of gain modulation, nIm.

More precisely, the growth attains large values for parameter
sets with |nIm| > |nRe| where the system displays a GLM-
like behavior. However, on the top-right quadrant (nRe > 0,

nIm > 0), for φ = 0, the P symmetry and the presence of a
higher index at x = 0 surrounded by gain areas, leads to large
growths and strong localizations for large values of nRe and
nIm values, indicating the crucial role of the interplay between
the real and the imaginary modulations [Fig. 2(a)].

To illustrate the effect of the PT potential on the spa-
tiotemporal field dynamics, we consider two representative
points, (c) and (d), with the same gain-loss modulation but
opposite sign in the index modulation profile, lying within
and outside the field localization area. Note that while for
point (c) the potential leads to an inward coupling of the wave
vectors inducing a sharp field localization [see Fig. 2(c)(i)],
the coupling at point (d) is outward and the field is spatially
spread [see Fig. 2(d)(i)]. The same field profiles represented
in logarithmic scale evidence the exponential character of the
localization in Fig. 2(c)(ii), while localization is nearly zero
for the flat curve of Fig. 2(d)(ii). We also provide both spatial
field spectra in Figs. 2(c)/2(d)(iii) as obtained from the Fourier
transform, although resonant peaks are not visible for point
(c) due to the exponential slopes. Note that the spectrum in
Fig. 2(c)(iii) extends over the first and second harmonics of
the modulation. The effect of index and gain-loss modulation
on field localization and enhancement, for φ = 0, in parameter
space, is also shown in Supplemental Material video 1 [21].

The localization is, however, remarkably phase dependent,
occurring in different quadrants of the parameter space for
different phases. Figures 3(a), 3(b), and 3(c) provide the
localization maps for the representative phases: π/4,π/2, and
π . Note that, while for φ = π/4 localization also occurs for the
first quadrant (nRe > 0,nIm > 0), a comparison with the map
provided in Fig. 2(a) clearly indicates that the most intense
field localization is achieved for φ = 0. For φ = π/2 strong
localization flips to the second quadrant (nRe < 0,nIm > 0)
where the system is almost PhC-like. Further increasing the
phase, for φ = π , localization moves on to the third quadrant
(nRe < 0,nIm < 0) (being the corresponding map exactly sym-
metric to the one for φ = 0). Supplemental Material video 2
visualizes how the localization regime spins counterclockwise
when the phase increases. Localization is stronger when the
asymmetric coupling between wave vectors provided by the
local PT -symmetric complex optical potential is directed
inward [see the insets of Figs. 3(a) and 3(c)], being enhanced
for larger gain-loss modulation amplitudes; these situations
correspond to a GLM-like system. Note that strong localization
is achieved around x = 0 due to the combined effect of
local PT and global P symmetry. However, stand-alone P
symmetry can also provide weaker localization for particular
phases, e.g., localization at the nRe = 0 axis in Fig. 3(a).
In addition, a small localization region is also found for
φ = π/2, indicating a PhC-like behavior, not relying on local
PT symmetry, as coupling is directed outward in the case of
Fig. 3(b).

A direct interpretation of the different localization regimes
may be based on the competition of spatial modes in the
field spectra. The interaction of different growing modes
gives birth to different localization regimes, depending upon

FIG. 3. Phase dependence and mode analysis in 1D systems.
(a)–(c) Localization (kIm) maps calculated after a sufficient long time
(t ∼ 300 units) in parameter space (nRe,nIm) for φ = π/4,π/2, and
π , respectively. (d)–(f) Spatial field spectrum as obtained from the
Laplace transform, in natural logarithmic scale, for representative
points within the field localization areas for each phase corresponding
to the parameter sets (0.4,0.3), (−0.4,0.1), and (−0.4,−0.3). The
insets in localization maps (a)–(c) display the corresponding potential
profiles for each representative point. The dominant modes, kx , of the
three representative points are: (d) kx = ±0.5, ± 1.5, ± 2.5, . . .; (e)
kx = 0, ± 1, ± 2 . . .; and (f) kx ≈ ±0.3, ± 0.7, ± 1.70, . . ..

the modulation amplitudes and phase. Since the spatial
modes have an intrinsic complex nature, k = kRe + ikIm, the
commonly used Fourier transform does not allow a precise
localization of the real components of the spectrum, as
growing modes have exponential slopes. In this situation,
the Laplace transform is the optimal method to explore the
complex spectrum [22]. The Laplace transform defined as
A(s) = ∫ ∞

0 A(x)e−sxdx is a generalization of the Fourier
transform, since being s = σ + ik, it reduces to the Fourier
transform for σ = 0. For a decaying field in the form
A(x) = e−(ikRe−kIm)x , the Fourier and Laplace transforms result,
respectively, as A(k) = 1/[kIm + i(kRe − k)] and A(s = σ +
ik) = 1/[(kIm − σ ) + i(kRe − k)]. This Laplace transform has
a pole at (σ,k) = (kIm,kRe) and the cross section over the pole
σ = kIm gives a sharp peak. We obtain the Laplace transform
numerically, which however is defined on the half plane, kIm �
σ and provide its cross section for kIm ≈ σ , where σ is calcu-
lated from the field localization exponent in Figs. 3(d)–3(f) for
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particular parameter sets. We essentially identify three distinct
regimes on the basis of symmetric spatial modes participating
in the field spectrum. The simplest case corresponds to the
PhC-like limit, where a set of dominant integer modes kx =
0,±1,±2, . . . prevail in the spatial spectrum [see Fig. 3(b) for
φ = π/2]. The other two localization regimes correspond to
the GLM-like limit. In a pure GLM system, the spectrum shows
frequency peaks centered at ±0.5,±1.5, ± 2.5, . . .; this is the
case for φ = π/4 [see Fig. 3(a)]. However, large gain-loss
modulation amplitudes lead to a strong coupling between
different harmonics, eventually shifting the central frequency
peaks towards lower wave numbers, e.g., the system dynamics
supports the dominant mode set kx∼±0.3,±0.7,±1.7, for
φ = 0,π, . . . in Fig. 3(c).

IV. 2D SYSTEMS

Next, we proceed to analyze localPT symmetry and global
P symmetry in 2D, considering the axisymmetric potential:
U (r) = nRe cos(r + φ) − inIm sin(r + φ). The results for φ =
0 are summarized in Fig. 4. Analogously to the 1D potential, a
field enhancement is found at the center, r = 0, now attributed
to the asymmetric radial coupling between inward and outward
propagating waves. Figure 4(a) provides the localization
obtained from the correspondingly linearized field. Since the
axial cross-sectional profile of the field [see Fig. 4(c)(v)] is
not exponentially decreasing, due to the 1/r factor of the axial
symmetry, localization is obtained from the exponential slope
of A(r)

√
r [see Fig. 4(c)(vi)]. The top-right side of the map,

(nRe > 0,nIm > 0), exhibits the more intense field localization
area, approximately corresponding to the one obtained in 1D
in Fig. 2(a). This result, along with the central growth map
for r = 0, provided in Fig. 4(b), indicates that the overall
scenario resembles the 1D situation. The field profile shows
a sharp peak in the 2D plane for the parameter set of point
(c) laying within the localization range [see Figs. 4(c)(i) and
4(c)(iv)]. Additionally, Figs. 4(c)(iii) and 4(c)(vii) depict the
phase of the field in which the slope increases with jumps
from −π to +π , clearly showing the inward propagation.
While remaining analogous to 1D, the proposed effect in this
2D case is more realistic and opens new avenues in optics
for extraordinary field confinement and high power density
at a selected position. In addition, since the beam shaping
effect relies on the anisotropic amplification of modes with
small wave vectors it is robust against noise, contrary to the
conventional mechanism of filtering out nondesired modes,
with higher wave vectors. Next, we provide an example to
demonstrate the functionality of our proposal in a nonlinear
regime.

V. APPLICATION TO VCSELs

Broad aperture lasers, and VCSELs among them, are rele-
vant laser sources; however, they suffer from a major drawback
of poor beam quality due to the lack of an intrinsic transverse
mode selection mechanism. In lowest approximation, the field
dynamics of VCSELs with the proposed complex potential
profile, U (r), satisfying the particular symmetry conditions in
either the 1D or the 2D axisymmetric case, can be described

FIG. 4. (a) Localization (kIm) map of the axial cross-section
profile of the field linearized as A(r)

√
r for a 2D PT -axisymmetric

system as in Fig. 1(b), calculated after sufficient long time (t ∼
300 units) in parameter space (nRe,nIm). (b) Growth (ωIm) map of the
center (r = 0) in parameter space. A strong field enhancement and
localization at r = 0 is shown in (c) for the parameter set (0.4,0.3).
(i), (ii) 2D spatial field profiles in linear and natural logarithmic
scales, respectively. (iii) Field phase. Panels (iv), (v), and (vii) display
the axial cross-sectional profiles of (i)–(iii), while (vi) depicts the
linearized field, A(r)

√
r , in natural logarithmic scale.

by a complex Ginzburg-Landau equation [23]:

∂tA(r,t) = (p − |A|2)A + i∇2
⊥A(r,t) + iU (r)A(r,t), (2)

where A(r,t) is the envelope of complex field distributed in
space, r , and p is pump parameter. The nonlinearity is due to
gain saturation. The complex potential profile, U (r), satisfies
the local PT -symmetry and global P-symmetry conditions
for 1D and 2D axisymmetric systems as discussed above. Such
nonlinear systems generally show the saturation phenomena
with uniform field distribution for p > 0. However, the field
localization and enhancement in such situation is possible at
the center for p < 0 by applying locally PT -symmetric and
globally P-symmetric potential. The results for a particular
parameter set are provided in Fig. 5. The spatial field profile
showing the concentration at the center, r = 0, in Fig. 5(a),
reveals that the 2D PT -axisymmetric system efficiently
localizes the field also in the nonlinear regime.
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FIG. 5. Spatial field distributions for a 2D PT -axisymmetric
VCSEL, calculated after the steady state (t∼150 units) for p = −0.1
and parameter set (0.4,0.4). 3D visualization of the VCSEL output
field profile, concentrated and enhanced at r = 0 in linear (a) and
natural logarithmic (b) scales. (c), (d) Axial cross-sectional profile of
the field in linear and natural logarithmic scale.

VI. CONCLUSIONS

To conclude, we propose a class of local PT -symmetric
and global P-symmetric systems providing a unique platform
for extreme field localization and enhancement around the
P-symmetry point. We provide an alternative to conventional
localization mechanisms, different from the classical index
guiding (trapping potential), gain guiding, and other systems
commonly based on Bragg gratings or gain gratings (dis-
tributed feedback). In the proposed scheme, field concentration
is achieved by asymmetric radial coupling of inward and
outward waves, to which both index and gain-loss contribute

simultaneously to the localization of the field. Specifically, this
class of systems can strongly localize the field, depending on
the relative modulation amplitudes and phase of the complex
potential. Therefore, the most interesting scenario occurs for
GLM-like systems, for which extreme field concentrations are
achieved for a wide range of parameter sets, for φ = 0, either
in the proposed 1D or 2D axisymmetric configurations. Also
for PhC-like systems, less significant field localizations are
obtained for some particular potential phases. It is also worth
mentioning that all potentials satisfying local PT -symmetry
and global P-symmetry conditions can provide the same
localization irrespective of some specific potential profile.
Such potentials could be designed in a variety of different
ways to observe the proposed effect, e.g., sawtooth and
stepwise potentials with equation U (x) = ∑

1/n exp(inqx)
where n = 1,2,3, . . . or n = 1,3,5, . . ., respectively.

The fundamental concept may also be easily implemented
to find remarkable applications in various linear and nonlinear
optoelectronic devices where a high degree of localization is
essentially desirable such as optical switching in nanostruc-
tures, optical modulators, or broad aperture lasers and micro-
lasers. In particular, we show a possible direct application for
an axially modulated VCSEL to improve the brightness and
quality of beam emission to show its applicability in particular
implementations. We note the universality of this nonlinear
example as based on a general complex Ginzburg-Landau
equation, confirming that the field localization and concen-
tration at around the point of merging of two symmetries
can be realized in other different physical systems in Bose
condensates and acoustics, among others.
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