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Imbalance of group velocities for amplitude and phase pulses
propagating in a resonant atomic medium
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The dynamics of light pulses with amplitude and phase modulations is investigated for a medium of resonant
two-level atoms. It is shown that the pulse-like variations of the phase can be also described in terms of group
velocity. It is found that in the nonlinear regime of atom-field interaction, the group velocities of amplitude and
phase pulses can have a large imbalance. Namely, amplitude pulses travel at a velocity less than c, whereas
the group velocity of phase pulses is greater than the velocity of light in free space or it is even negative. The
predicted imbalance of the group velocities can be important in the case of chirped pulses propagating in a
resonant medium.
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I. INTRODUCTION

Investigation of the propagation of light pulses in the
atomic medium is a fundamental problem in optics. The
medium has the greatest effect on the dynamics of pulses
under the conditions of resonant interaction. In particular,
the resonant response of the atomic medium is accompanied
by strong frequency (temporal) dispersion, which leads to
a significant modification of the group velocity of pulses
[1–8]. For example, large slowing of light pulses can take
place [9–15] or, on the contrary, their group velocity can
exceed the light velocity in free space (or even become
negative) [16–23].

At present, chirped pulses [i.e., pulses with simultaneous
amplitude and phase (frequency) modulation] find wide ap-
plication [24], including the following: the optical frequency-
domain reflectometry [25,26], Fourier-transform microwave
spectroscopy [27–29], coherent control of population trans-
fer [30–32], and so on. It is well known [4,8] that for a
medium of resonant two-level atoms in the linear regime,
the group velocities of amplitude and phase modulations
are equal (negative or greater than the light speed in free
space c); therefore, a chirped pulse propagates as a whole.
However, in the nonlinear regime, the problem of the dy-
namics of chirped pulses has been insufficiently studied.
On the one hand, the mathematical description becomes
more complicated in comparison with the linear regime
and often it requires the development of nonstandard ap-
proaches [33–35]. On the other hand, the nonlinear dynamics
is more interesting from the viewpoint of the appearance of
new effects, for example, self-phase modulation, four-wave
mixing, self-induced transparency, soliton regime, and so
on [2,36,37].

In this paper, the propagation of amplitude and phase pulses
is investigated in a medium of resonant two-level atoms in the
nonlinear regime. For clarity, we assume that the amplitude and
phase pulses correspond to variations of the field amplitude or
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phase in the pulse shape. We have found that in the nonlinear
regime, the group velocities of amplitude and phase pulses
can be significantly different. Namely, the amplitude pulses
propagate with slowing down, whereas the phase pulses move
with acceleration. Such a difference in the group velocities
results in a shift of the amplitude modulation with respect to
the phase modulation. This imbalance of the group velocities
is predicted by analyzing the coefficients of a reduced
Maxwell equation derived in the adiabatic approximation
and is confirmed by numerically solving the Maxwell-Bloch
equations.

II. BASIC EQUATIONS

Consider the propagation of a running electromagnetic
wave

E = Ẽ(t,z) e−i(ωt−kz) + c.c. (1)

through a gas of two-level atoms (see Fig. 1), where Ẽ(t,z)
is the slowly varying complex amplitude of the field, ω is
the carrier frequency, and k = ω/c is the wave number. For
simplicity, we use a model of motionless atoms, which is valid,
for instance, in the case of atomic cells with a buffer gas. The
single-atom density matrix ρ̂ satisfies the following operator
equation:

∂

∂ t
ρ̂ + �̂{ρ̂} = − i

�
[Ĥ0,ρ̂] − i

�
[V̂ ,ρ̂], (2)

where Ĥ0 is the Hamiltonian of an unperturbed atom, the
operator V̂ = −(d̂ E) describes the interaction of the atom
with the optical field in the electric-dipole approximation (d̂ is
the operator of the electric dipole moment), and the operator
�̂{ρ̂} describes the relaxation processes. In the rotating-wave
approximation, V̂ is given by

V̂ = −d21Ẽ e−i(ωt−kz)|2〉〈1| + H.c., (3)

where d21 = 〈2|d̂|1〉 is a dipole matrix element. The fast
oscillating dependencies in Eq. (2) can be eliminated by
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FIG. 1. Two-level atomic resonance. Field of frequency ω excites
the transition |1〉 → |2〉 with resonance frequency ω0, γ is the decay
rate of the excited state.

following transformation:

ρ21 = ρ̃21 e−i(ωt−kz), ρ12 = ρ̃12 ei(ωt−kz). (4)

Then the time evolution of the density matrix is described
by the optical Bloch equations

∂ρ11

∂t
= γρ22 − i�̃ρ̃12 + i�̃∗ρ̃21, (5)

∂ρ̃12

∂t
= −(� + iδ)ρ̃12 − i(ρ11 − ρ22)�̃∗, (6)

∂ρ̃21

∂t
= −(� − iδ)ρ̃21 + i(ρ11 − ρ22)�̃, (7)

∂ρ22

∂t
= −γρ22 + i�̃ρ̃12 − i�̃∗ρ̃21, (8)

where γ is the decay rate of the excited state |2〉, � is the

coherence decay rate, δ = (ω − ω0) is the detuning of the field
frequency from the atomic resonance frequency, and �̃ is the
complex Rabi frequency

�̃(t,z) = d21Ẽ(t,z)

�
. (9)

Equations (5)–(7) correspond to the closed atomic transition
|1〉 → |2〉, and the normalization condition for the populations
is satisfied:

Tr{ρ̂} = ρ11 + ρ22 = 1. (10)

To solve Eqs. (5)–(8) we will use the adiabatic approach, which
has been developed in Ref. [38]. The essence of this approach
is the following: the solution for the density matrix ρ̂ can be
constructed in the form of a series in the time derivatives ∂/∂t :

ρ̂ = ρ̂(0) + ρ̂(1) + ρ̂(2) + · · · , (11)

where ρ̂(k) has kth order of ∂/∂t (i.e., ∂k/∂tk). Indeed, let us
write Eq. (2) in symbolic form:

∂ρ̂

∂t
= L̂{ρ̂}, (12)

where L̂{ρ̂} is the linear operator functional. Then the terms
of series (11) can be found from the recurrent equations

L̂{ρ̂(0)} = 0, (13)

L̂{ρ̂(k)} = ∂

∂t
ρ̂(k−1) (k � 1). (14)

The normalization condition for ρ̂(k) has the following form:

Tr{ρ̂(0)} = 1, (15)

Tr{ρ̂(k)} = 0 (k � 1). (16)

For calculations we will employ the described algorithm for
Eqs. (5)–(8), which can be rewritten in vector form

∂ �ρ
∂t

= L̂ �ρ, (17)

where the column vector �ρ we construct from elements of
density matrix ρ̂ as follows:

�ρ =

⎛
⎜⎝

ρ11

ρ̃12

ρ̃21

ρ22

⎞
⎟⎠, (18)

and matrix L̂ has the form

L̂ =

⎛
⎜⎜⎝

0 −i�̃ i�̃∗ γ

−i�̃∗ −� − iδ 0 i�̃∗

i�̃ 0 −� + iδ −i�̃

0 i�̃ −i�̃∗ −γ

⎞
⎟⎟⎠. (19)

In accordance with Eq. (11), the expansion for vector �ρ by
powers of derivatives ∂/∂t has the following form:

�ρ = �ρ (0) + �ρ (1) + �ρ (2) + · · · . (20)

The expression for atomic polarization P (t,z) can be obtained
from the definition as the average dipole moment per unit
volume:

P (t,z) = Na Tr{d̂ ρ̂} = P̃ (t,z) e−i(ωt−kz) + c.c., (21)

where Na is the atomic density, and P̃ (t,z) is defined as

P̃ (t,z) = Nad12ρ̃21. (22)

Using expressions (11) and (22), we obtain the corresponding
expansion for P̃ (t,z):

P̃ (t,z) =
∞∑

k=0

P̃ (k), P̃ (k) = Nad12ρ̃
(k)
21 . (23)

We assume that the complex field amplitude Ẽ(t,z) varies
rather slowly, and for P̃ (k) (k � 1) the adiabatic conditions

Re{P̃ (k+1)} � Re{P̃ (k)},
Im{P̃ (k+1)} � Im{P̃ (k)},

(24)

hold. In this case, it is quite enough to take into account only
the first two terms of the expansion (20), which can be found
from equations

L̂ �ρ (0) = 0, (25)

L̂ �ρ (1) = ∂

∂t
�ρ (0), (26)

using the following normalization conditions:
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ρ
(0)
11 + ρ

(0)
22 = 1, (27)

ρ
(1)
11 + ρ

(1)
22 = 0. (28)

III. PROPAGATION OF AMPLITUDE AND PHASE
PULSES: ADIABATIC APPROACH

In the slowly-varying-envelope approximation (i.e., when
the temporal and spatial scale of the envelope variation is much
greater than the period and the wavelength of the carrier) [39],
the propagation of light pulses is described by the reduced
Maxwell equation

∂Ẽ

∂z
+ 1

c

∂Ẽ

∂t
= 2iπkP̃ . (29)

Using formulas (9) and (22), the last equation can be rewritten
in the following form:(

∂

∂z
+ 1

c

∂

∂t

)
�̃(t,z) = i

2πNaω|d21|2
�c

ρ̃21. (30)

Let us express the complex Rabi frequency �̃ in terms of the
real amplitude � and phase ϕ:

�̃(t,z) = �(t,z)eiϕ(t,z). (31)

Substituting the solution of Eqs. (25) and (26) for the density
matrix into Eq. (30) for the complex Rabi frequency and
equating the real and imaginary parts to zero, we obtain

∂�2

∂z
+ 1

c
(1 + βa�)

∂�2

∂t
+ β

c
a0�

2 + β

c
aϕ

∂ϕ

∂t
= 0, (32)

∂ϕ

∂z
+ 1

c
(1 + βbϕ)

∂ϕ

∂t
+ β

c
b0 + β

c
b�

∂�2

∂t
= 0, (33)

where the following notation is used:

β = 2πNa

�
ω|d21|2. (34)

For convenience, in Eqs. (32) and (33) the squared amplitude
�2 (which is proportional to the light intensity) is used instead
of �. The coefficients of these equations are given by

a� = γ

[γ (�2 + δ2) + 4��2]3
{−γ 2(�4 − δ4)

+ 4�[2�(�2 + δ2) + γ (�2 − δ2)]�2}, (35)

a0 = 2γ�

γ (�2 + δ2) + 4��2
, (36)

aϕ = 4δγ 2��2

[γ (�2 + δ2) + 4��2]2
, (37)

bϕ = −γ [γ (�2 − δ2) + 4��2]

[γ (�2 + δ2) + 4��2]2
, (38)

b0 = δγ

γ (�2 + δ2) + 4��2
, (39)

b� = 1

�2

δγ

[γ (�2 + δ2) + 4��2]3
{8��4

+ 2[2�(�2 + δ2) + γ (�2 − δ2)]�2 − �γ 2(�2 + δ2)}.
(40)

It can be seen from Eqs. (32) and (33) that the last terms,
aϕ and b�, lead to amplitude-phase cross modulation. This
complicates the dynamics of propagation of both the amplitude
and phase pulses. However, the situation is considerably
simplified when the detuning is zero (δ = 0). In this case,
b0 = 0 and the “engagement” coefficients aϕ and b� vanish as
well. Therefore, the equations for the squared amplitude �2

and phase ϕ become separated:

∂�2

∂z
+ 1

v�

∂�2

∂t
+ β

c

2γ�2

γ� + 4�2
= 0, (41)

∂ϕ

∂z
+ 1

vϕ

∂ϕ

∂t
= 0. (42)

Equation (42) for ϕ has a typical form of the reduced Maxwell
equation for well-known amplitude pulses, i.e., pulse-like
variations of the phase can be also described in terms of
group velocity with possibilities of slow or fast pulses, in
the general case. We previously considered the phase pulses in
the context of propagation of polarized pulses in the medium
of degenerated two-level atoms [38] and propagation of
bichromatic pulses in the medium of three-level �-atoms [40].
Thus, the coefficients v� and vϕ in Eqs. (41) and (42) determine
the instantaneous local group velocities (i.e., at the instant of
time t and the coordinate z) of the amplitude and phase pulses,
respectively:

v� = c

[
1 + β

4γ (2� + γ )�2 − γ 3�

(γ� + 4�2)3

]−1

, (43)

vϕ = c

[
1 − β

γ

�(γ� + 4�2)

]−1

. (44)

Note that in the linear approximation [under the condition
�2(t,z) � γ 2/8] we obtain the well-known expression for the
group velocity [4,8]

v� ≈ vϕ ≈ vg = c

[
1 − β

�2

]−1

, (45)

i.e., the group velocities of amplitude and phase pulses
become equal. Due to this the system of Eqs. (41)
and (42) can be reduced to one equation for complex
amplitude:

∂�̃

∂z
+ 1

vg

∂�̃

∂t
+ β

c

1

�
�̃ = 0. (46)

Thus, the pulse with simultaneous amplitude and phase
modulations propagates in the linear medium as a whole. The
group velocity can have two types of values: those exceeding
the velocity of light in free space, vg > c (for β � �2) or those
that are negative, vg < 0 (for β > �2).

However, in the nonlinear regime [under the condition
�2(t,z) � γ 2/8] the situation changes radically. In this case,
the group velocities of amplitude [Eq. (43)] and phase
[Eq. (44)] pulses differ in magnitude. Moreover, two dia-
metrically opposite effects take place: slowing-down of the
amplitude pulses (v� < c) and speeding-up of the phase pulses
(vϕ > c or vϕ < 0). Thus, if at the boundary the amplitude and
phase of the field are simultaneously modulated, then during
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propagation these pulses become shifted with respect to each
other in time and space.

Equations (41) and (42) were obtained within the frame-
work of the adiabatic approximation for the density matrix
(i.e., | Re[ρ(2)

21 ]| � | Re[ρ(1)
21 ]|, | Im[ρ(2)

21 ]| � | Im[ρ(1)
21 ]|) and

they adequately describe the dynamics of light pulses under
the following restrictions on the rate of change of the field
parameters:

∣∣∣∣∂2ϕ

∂t2

∣∣∣∣ � �

∣∣∣∣∂ϕ

∂t

∣∣∣∣, (47a)

∣∣∣∣∂2�

∂t2

∣∣∣∣ � 2�

∣∣∣∣∂�

∂t

∣∣∣∣ for �2 
 �2, (47b)

∣∣∣∣∂2�

∂t2

∣∣∣∣ � 4�2

�

∣∣∣∣∂�

∂t

∣∣∣∣ for γ� � �2 � �2, (47c)

∣∣∣∣∂2�

∂t2

∣∣∣∣ � γ

∣∣∣∣∂�

∂t

∣∣∣∣ for �2 � γ�. (47d)

From Eqs. (47a)–(47d) we can obtain an estimate of the
minimum duration of the amplitude and phase pulses:

τϕ 
 1

�
, (48a)

τ� 
 1

2�
for �2 
 �2, (48b)

(a)

(b)

FIG. 2. Schematic illustration of two types of pulses: (a) field
amplitude �2(t) varies from zero, (b) field amplitude �2(t) varies
from the background �2

0. τ is the pulse duration.

τ� 
 �

4�2
for γ� � �2 � �2, (48c)

τ� 
 1

γ
for �2 � γ�. (48d)

Let us demonstrate the imbalance of the group velocities for
amplitude and phase pulses. Usually the temporal variation of
the field amplitude �2(t) from the zero level is investigated [see
Fig. 2(a)]. However, in the general case, the field amplitude

FIG. 3. Intensity �2
0, phase ϕ, and frequency ∂ϕ/∂t vs time t after

propagation through an atomic medium. The solution of the Maxwell-
Bloch equations (5)–(7), and (30) is shown by a solid line and the
solution of Eqs. (41) and (42), derived in the adiabatic approximation,
is shown by a dashed line. The calculations were performed with the
following parameters: atom density Na = 1012 cm−3, spontaneous
relaxation rate γ = 6 MHz, coherence decay rate � = 500 MHz,
length of atomic medium L = 9 cm, and wavelength of resonant
transition λ = 795 nm. The boundary conditions are specified by
the formulas (49) and (50), where �0 = 370 MHz, �� = 0.1 × �2

0,
�ϕ = 0.3, and τ = 3 ns.

053818-4



IMBALANCE OF GROUP VELOCITIES FOR AMPLITUDE . . . PHYSICAL REVIEW A 94, 053818 (2016)

can be varied starting from a constant (in time) background
[see Fig. 2(b)]. A strong constant component �2

0 provides a
nonlinear response throughout the atomic medium. Consider
the propagation of light pulses with a nonzero background of
the amplitude through an atomic medium under the following
boundary conditions

�2(t,z = 0) = �2
0 + �� e−t2/τ 2

, (49)

ϕ(t,z = 0) = �ϕ e−t2/τ 2
, (50)

where �� and �ϕ are the variations of intensity (in terms of the
Rabi frequency) and phase, respectively; �2

0 is the stationary
amplitude (background) of the input field, and τ is the duration
of the pulses. The background �2

0 is chosen so as to provide the
nonlinear regime in the atomic medium. To verify the validity
of our conclusions based on the expressions for instantaneous
group velocities in Eqs. (43) and (44), we compare the
solution of approximate Eqs. (41) and (42) with the numerical
calculations of Maxwell-Bloch equations (5)–(7) and (30). The
results of the computations are shown in Fig. 3. In the plots
one can see an appreciable shift of the amplitude pulse with
respect to the phase pulse. Moreover, it can be seen that the
adiabatic approximation is in rather good agreement with the
exact solution. Some differences in the shapes of pulses are
associated with the influence of higher orders of dispersion,
which are not taken into account in Eqs. (41) and (42). In the
considered example, the average group velocity (determined
as the ratio between the length of the medium and the delay
time of the pulse) can be estimated as c/2.95 for the amplitude
pulse and 6.8c for the phase pulse. Thus, due to the imbalance
of the group velocities, the center of the frequency chirp is
displaced with respect to the center of the amplitude pulse.

IV. CONCLUSIONS

The propagation of light pulses with amplitude and
phase modulations through a two-level atomic medium under
resonance conditions has been theoretically investigated. It
has been shown that in the nonlinear regime of atom-field
interaction, the group velocity of amplitude pulses is less
than the velocity of light in free space c, whereas the group
velocity of phase pulses exceeds c or is even negative.
This results in a shift (in time and space) of the amplitude
modulation with respect to the phase (frequency) modulation
for chirped pulses. This effect of group velocity imbalance
has been described in analytical form within the adiabatic
approximation and confirmed by numerical calculations of
Maxwell-Bloch equations.

Note that the main advantage of the adiabatic approach
for the density matrix is that analytical expressions can be
obtained for the coefficients of the reduced Maxwell equations.
Analyzing these coefficients (which nonlinearly depend on the
field in the general case), one can predict various effects of light
pulse propagation without solving the equations themselves.
Thus, the adiabatic approach can be successfully used to find
and estimate new effects and to interpret the results obtained
in experiments and numerical simulations.
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